Summary Day 1

- Received briefings on GSICS, GEOSS, and WMO Space Program that put our work into perspective
- Reviewed methodologies that have been applied for GEO-LEO inter-calibration
- Assigned three tasks for GRWG-I
Consensus methodology for GEO-LEO IR sensors inter-calibration
- Focus on AIRS initially, expand to other sensors later (IASI, MODIS, AVHRR, HIRS)
- Consider agency priority, opportunity, and operation issues while designing algorithm
- Major components discussed and summarized in later slides

Tools to be generated and shared
- Web site
 - Exchange information
 - Summary of sensor characteristics (Wu, in collaboration with members)
 - Summary of lessons learned
 - Mission statement etc.
- Consensus algorithm
 - Pseudo code
 - AIRS and GEO data for 2 Nov 2006
 - JMA provide re-navigated MTSAT-1R data
 - UW/SSEC provide spectral conversion
 - These should be available by Feb. 23
 - Each GPRC sends results based on the above by April 1
 - One month data (Nov. 2006 or a month in future with IASI, TBD by 1 Apr 2007) for algorithm development

GRWG-II
- In June, in Europe, in conjunction with the first GSICS Data Working Group
- Topics
 - Progress on GEO-LEO IR inter-comparison
 - Expansion to VISNIR spectrum
 - LEO-LEO
Issues to Consider in Algorithm Design

- **What questions do you likely to ask about the GEO-LEO difference?**
 - Are we sure?
 - Why?
 - What to do?
 - ?

- **What results do you expect from the inter-calibration?**
 - **Correct** measurements – Identify one perfect instrument and use it to calibrate the rest
 - There exists one instrument that, if not perfect, is always the best by any means
 - Is there, or will there ever be?
 - **Consistent** measurements – Identify one reference instrument and use it to calibrate the rest
 - Trend is all that matters
 - Is “relative calibration” all we need?
 - **Improved** measurements – Identify which instrument performs better/worse under what circumstances
 - No instrument is perfect, in fact every instrument may contribute some
 - Measurements are increasingly redundant in some way
 - Is there an end for this?
 - Interaction with vendors
Instrument Calibration

- Stabilized
 - Scan mirror emissivity
 - Temperature variation
- Spin-scan
 - Vicarious calibration
- LEO
 - Imaging instruments (AVHRR, MODIS)
 - Sounding instruments (HIRS, AIRS, IASI)
Operational Issues

- Algorithm Maintenance
 - ?

- Benchmark
 - Code (or pseudo-code)
 - Test data
 - Test results

- Content and Format for Data
 - Attributes of Input Data
 - Result
Discussion

❖ Time

▪ Existing
 • Typically larger than LEO-LEO (>5 minutes)
 • Out of control – vary by GEO

▪ Proposed
 • Principle: Collect all and down-select later, to the extend that the data volume is manageable
 • Threshold: 15 min, since refresh rate of most GEO < 30 min

▪ Suggestions
 • Error budget
 • Schedule GOES
 • Cost-Benefit analysis
Discussion

❖ Space
 ▪ Existing
 • Correlation-based correction to navigation error
 • Detailed consideration of MTF/PSF
 • Histogram
 • Average
 ▪ Proposed
 • Principle: Rely solely on spatial homogeneity
 • Threshold: GEO channel T_b stdv < 1K within 50 km
 ▪ Suggestions:
 • Threshold depends on scene T_b?
 • Threshold on other channels (e.g., MODIS)?
 • Other measure of homogeneity (e.g., max-min)?
Discussion

- Scene
 - Existing
 - All
 - Separately for clear and cloud
 - Proposed
 - Principle: Collect all and select/analyze later
 - Threshold: None
Discussion

Geometry

- Existing
 - Viewing zenith angles constrained
 - Relative azimuth constrained or not
 - Near nadir

- Proposed
 - $\delta\sec(\theta) < 0.05$
 - Nadir and off-nadir
 - Azimuth angle ϕ recorded
Discussion

- **Spectrum**
 - **Existing**
 - Tobin: Requires atm. state parameters & RTM
 - Tahara: Constrained optimization
 - Gunshor: Fill with calculated spectrum
 - **Proposed**
 - Tobin’s method
 - Evaluate his choice of profiles and RTM later
Discussion

❖ Coverage

▍ Existing
 • Not considered for area-to-area comparison
 • Within X of the center of LEO pixel center in pixel-to-pixel comparison

▍ Proposed
 • The distance between the LEO-GEO pixel centers is less than the major half axis of the LEO FOV