



# **GRWG-I Day 2**





- Received briefings on GSICS, GEOSS, and WMO Space Program that put our work into perspective
- Reviewed methodologies that have been applied for GEO-LEO inter-calibration
- Assigned three tasks for GRWG-I



#### **Summary Day 2**



- Consensus methodology for GEO-LEO IR sensors inter-calibration
  - Focus on AIRS initially, expand to other sensors later (IASI, MODIS, AVHRR, HIRS)
  - Consider agency priority, opportunity, and operation issues while designing algorithm
  - Major components discussed and summarized in later slides
- Tools to be generated and shared
  - Web site
    - Exchange information
    - Summary of sensor characteristics (Wu, in collaboration with members)
    - Summary of lessons learned
    - Mission statement etc.
  - Consensus algorithm
    - Pseudo code
    - AIRS and GEO data for 2 Nov 2006
    - JMA provide re-navigated MTSAT-1R data
    - UW/SSEC provide spectral conversion
    - These should be available by Feb. 23
    - Each GPRC sends results based on the above by April 1
    - One month data (Nov. 2006 or a month in future with IASI, TBD by 1 Apr 2007) for algorithm development
- GRWG-II
  - In June, in Europe, in conjunction with the first GSICS Data Working Group
  - Topics
    - Progress on GEO-LEO IR inter-comparison
    - Expansion to VISNIR spectrum
    - LEO-LEO



#### **Issues to Consider in Algorithm Design**



#### What questions do you likely to ask about the GEO-LEO difference?

- Are we sure?
- Why?
- What to do?
- •

#### What results do you expect from the inter-calibration?

- Correct measurements Identify one perfect instrument and use it to calibrate the rest
  - There exists one instrument that, if not perfect, is always the best by any means
  - Is there, or will there ever be?
- Consistent measurements Identify one reference instrument and use it to calibrate the rest
  - Trend is all that matters
  - Is "relative calibration" all we need?
- Improved measurements Identify which instrument performs better/worse under what circumstances
  - No instrument is perfect, in fact every instrument may contribute some
  - Measurements are increasingly redundant in some way
  - Is there an end for this?
- Interaction with vendors

22-23 January 2007



#### **Instrument Calibration**



#### Stabilized

- Scan mirror emissivity
- Temperature variation
- Spin-scan
  - Vicarious calibration

### ♦LEO

- Imaging instruments (AVHRR, MODIS)
- Sounding instruments (HIRS, AIRS, IASI)



#### **Operational Issues**



## Algorithm Maintenance

?

#### Benchmark

- Code (or pseudo-code)
- Test data
- Test results

### Content and Format for Data

- Attributes of Input Data
- Result









- Existing
  - Typically larger than LEO-LEO (>5 minutes)
  - Out of control vary by GEO
- Proposed
  - Principle: Collect all and down-select later, to the extend that the data volume is manageable
  - Threshold: 15 min, since refresh rate of most GEO < 30 min
- Suggestions
  - Error budget
  - Schedule GOES
  - Cost-Benefit analysis









- Existing
  - Correlation-based correction to navigation error
  - Detailed consideration of MTF/PSF
  - Histogram
  - Average
- Proposed
  - Principle: Rely solely on spatial homogeneity
  - Threshold: GEO channel Tb stdv < 1K within 50 km</li>
- Suggestions:
  - Threshold depends on scene T<sub>b</sub>?
  - Threshold on other channels (e.g., MODIS)?
  - Other measure of homogeneity (e.g., max-min)?









- Existing
  - All
  - Separately for clear and cloud
- Proposed
  - Principle: Collect all and select/analyze later
  - Threshold: None









- Existing
  - Viewing zenith angles constrained
  - Relative azimuth constrained or not
  - Near nadir
- Proposed
  - $\delta sec(\theta) < 0.05$
  - Nadir and off-nadir
  - Azimuth angle  $\boldsymbol{\phi}$  recorded









- Existing
  - Tobin: Requires atm. state parameters & RTM
  - Tahara: Constrained optimization
  - Gunshor: Fill with calculated spectrum
- Proposed
  - Tobin's method
  - Evaluate his choice of profiles and RTM later









- Existing
  - Not considered for area-to-area comparison
  - Within X of the center of LEO pixel center in pixelto-pixel comparison
- Proposed
  - The distance between the LEO-GEO pixel centers is less than the major half axis of the LEO FOV