
Abstract
The goal of the work was to estimate, quantitatively, vegeta-
tion state and productivity using AVHRR-based Vegetation
Condition Index (VCI). The VCI algorithm includes application
of post-launch calibration to visible channels, calculation of
NDVI from channels’ reflectance, removal of high-frequency
noise from NDVI’s annual time series, stratification of ecosys-
tem resources, and separation of ecosystem and weather
components in the NDVI value. The weather component was
calculated by normalizing the NDVI to the difference of the
extreme NDVI fluctuations (maximum and minimum), derived
from multi-year data for each week and land pixel. The VCI
was compared with wheat density measured in Kazakhstan.
Six test fields were located in different climatic (annual
precipitation 150 to 700 mm) and ecological (semi-desert to
steppe-forest) zones with elevations from 200 to 700 m and a
wide range of NDVI variation over space and season from 0.05
to 0.47. Plant density (PD) was measured in wheat fields by
calculating the number of stems per unit area. PD deviation
from year to year (PDD) was expressed as a deviation from
median density calculated from multi-year data. The correla-
tion between PDD and VCI for all stations was positive and
quite strong (r2 � 0.75) with the Standard Errors of Estimates
(SEE) of PDD less than 16 percent; for individual stations, the
SEE was less than 11 percent. The results indicate that VCI is
an appropriate index for monitoring weather impact on vege-
tation and for assessment of pasture and crop productivity in
Kazakhstan. Because satellite observations provide better spa-
tial and temporal coverage, the VCI-based system will provide
efficient tools for management of water resources and the im-
provement of agricultural planning. This system will serve as
a prototype in the other parts of the world where ground ob-
servations are limited or not available.
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Introduction
Over the past decade, spectral vegetation indices, particularly
those derived from the Advanced Very High Resolution Radi-
ometer (AVHRR) on board NOAA polar-orbiting operational sat-
ellites, have shown excellent potential for monitoring vegeta-
tion, environmental parameters, and phenomena (Tucker et al.,
1985; Holben, 1986; Marlingreau, 1986; Prince et al., 1986;
Townshend and Justice, 1986; Tucker and Sellers, 1986; Jus-
tice et al., 1986; NOAA, 1988; Ohring et al., 1989; Rao et al.,
1990; Kogan, 1990; Kogan, 1997). A considerable amount of
AVHRR-based data is now archived and made available to the
global community (Ohring et al., 1989; Los et al., 1994; Town-
shend, 1994; Goward et al., 1994; Gutman et al., 1995; Kid-
well, 1997). 

Among these data sets, the Global Vegetation Index (GVI),
developed by NOAA in 1985 from the Global Area Coverage
(GAC) product (NOAA, 1988; Kidwell, 1997), has a special
place because it showed excellent utility for a wide range of
applications. More importantly, unlike other data sets, the GVI
was comprehensively validated against ground data. This
helped to develop a number of products widely used for esti-
mation of vegetation health, monitoring drought, analysis of
thermal and moisture conditions of land surface, diagnosis of
crop production and pasture biomass, estimation of irrigation
acreage, monitoring vector-borne diseases, fire risk, ENSO (El
Niño—Southern Oscillation) impacts on land ecosystems, etc.
(Kogan, 1995; Hayas and Decker, 1996; Liu and Kogan, 1996;
Kogan, 1997; Unganai and Kogan, 1998; Seiler et al., 2000;
Kogan, 2001; Liu and Kogan, 2002; Dabrowska-Zielinska et al.,
2002).

Successful application of the GVI expanded in the 1990s
when the new tools for data processing, analysis, interpreta-
tion, and dissemination were developed and tested in many
countries (the U.S.A., Mexico, Poland, Russia, China, India,
Zimbabwe, Morocco, Republic of South Africa, Argentina, and
Brazil), including major agricultural producers. Following
these achievements, the United States Agency for International
Development (US AID) provided funds to investigate possible
applications of the new tools in Kazakhstan, a new country
separated from the former USSR. This work included quantita-
tive validation of the new AVHRR-based indices in ecological
environment of this country and their calibration against
ground data (Gitelson et al., 1998). These objectives were set
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up because Kazakhstan is a huge agricultural country (wheat
and cattle producer) where agriculture accounts for a large
share in the total country’s budget. Its dry climate is incompati-
ble with agricultural goals, thus limiting agricultural produc-
tion. Moreover, in recent years, the weather network, which
provides data for assessment of weather impacts on agricultural
crops, shrank considerably and the quality of observations de-
teriorated, which jeopardized the environmental services. This
paper presents comprehensive results of a quantitative compar-
ison and analysis of AVHRR-based indices with ground observa-
tions in Kazakhstan’s wheat fields.

Strategy
To quantitatively validate AVHRR-based algorithms, we fo-
cused on

• A large area with diversified ecosystem resources, 
• An entire growing season in order to reflect the vegetation re-

sponse at different stages of vegetation growth,
• Multi-year analysis of weather impact on vegetation condition

and productivity,
• An area where vegetation is an important part of the popula-

tion wellbeing, and
• Quantitative estimation of the vegetation state and production.

Target Area
Kazakhstan, located in the southern part of the former Soviet
Union, satisfies the identified strategy quite well. Pastures
occupy 87 percent and crops 13 percent of Kazakhstan’s total
area (Figure 1). The climate of Kazakhstan is arid and semi
arid. Annual precipitation changes from nearly 50 mm in the
desert (south) to 300 to 450 mm in the steppe zone in the
north; only a small area in the southeast receives around
1000 mm. Annual potential evapotranspiration in the north-
ern principal agricultural areas is between 500 and 700 mm,
exceeding the amount of precipitation two-fold. In the south,
potential evapotranspiration (700 to 900 mm) exceeds the
annual precipitation four to seven times. Vegetation zones
change from desert in the south to steppe and forest-steppe
in the north.

Agriculture is important for the well-being of Kazakh-
stan’s population, and agricultural productivity is highly de-
pendent on climate and weather. Most of Kazakhstan’s crops
and pastureland are located in arid and semi arid zones. Rain-
fall fluctuations are large during the growing season and from
year to year, putting additional constraints on agriculture.
Drought is the most typical phenomenon of the Kazakhstan
climate, occurring every two to four years. Extreme droughts
occur every 7 to 10 years, leading to considerable losses in
agricultural production.

Data
Satellite Data
Radiances measured by the AVHRR on board the NOAA 9, 11,
and 14 polar-orbiting satellites were used in the study. These
data were collected from the GVI data set (1985–1994), which
includes radiance in the following bands: visible (Ch1), near-
infrared (Ch2), and two thermal channels (Ch4 and Ch5), the
Normalized Difference Vegetation Index, NDVI � (Ch2 � Ch1)�
(Ch2 � Ch1); and solar and satellite angles. The GVI was sam-
pled over space from 1 to 16 km resolution and over time
from one day to one-week composites. 

Ground Data
The ground data included plant density (PD) measured in
spring wheat fields at six weather stations from 1985 through
1994. The PD measurements included calculation of a number
of stems per unit area inside the selected field, every 10 days
during the growing season (WMO, 1972). Following the stan-
dard procedure, PD for each station was measured in the repre-
sentative spring wheat field (normally a 20- to 100-hectare size)
not far from a weather station. In four locations in each field,
the total number of plants (per one square meter of an area) was
counted. These locations were well marked for continuity of
observations. The PD for the field was calculated from the four
one-square-meter samples.

The PD measurements are standard agrometeorological
observations used to characterize plant conditions and pro-
ductivity (WMO, 1972). In the earlier stages (up to tillering) of

PHOTOGRAMMETR IC ENGINEER ING & REMOTE SENS ING

Figure 1. Map of Kazakhstan with the locations of the six weather stations selected for VCI validation. 
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wheat growth, each plant consists of one stem, and density
increases with an improvement (more plants emerge) and de-
creases with a deterioration (some plants die) of environ-
mental conditions. From the tillering (or shooting) stage, each
plant is potentially able to produce up to six additional stems
(grown from the nodal buds), and each of them is potentially
able to produce an ear with grains. The number of additional
stems and their productivity depend on moisture and thermal
conditions; good moisture supply and warm temperature
stimulate stems’ appearance and survival and higher PD.

Therefore, the PD is an indirect measure of vegetation
density and productivity (both biomass and amount of grain;
other characteristics such as leaf area index, biomass, etc.,
are not measured in Kazakhstan). Because PD depends on
moisture and thermal conditions prior to and during the
shooting stage, this parameter is an appropriate indicator of
weather impacts on wheat biomass and production (Ulanova,
1975; Paulsen, 1978; FAO, 1986). Most of Kazakhstan’s
ecosystems and climate zones from semi-desert to steppe/
steppe-forest (Figure 1) were represented in this study.

Methods
The processing of the satellite data included

• Calibration of Ch1 and Ch2 radiance using post-launch
calibration to eliminate noise related to sensor degradation
and, partially, to satellite orbit drift and calculation of albedo
(Rao et al., 1995; Kidwell, 1997);

• Completion of noise suppression to eliminate high-frequency
temporal variations from the NDVI time series (van Dijk et al.,
1986; Kogan, 1990); this is a very important procedure be-
cause noise sources are multiple degrading the data (Goward
et al., 1991; Gutman, 1991); and

• Calculation of the NDVI-based Vegetation Condition Index
(VCI).

The VCI was derived from NDVI by normalizing to NDVI’s
multi-year maximum and minimum values (Kogan, 1990;
Kogan, 2001): i.e.,

VCIywjk � (NDVIywjk � NDVIminwjk)�(NDVImaxwjk � NDVIminwjk).
(1)

Here NDVImin and NDVImax are the lowest and the highest
weekly values observed during the 1985 to 1994 period for
each pixel, respectively; y is year number, w is the week
number (between 1 and 52), j is the latitude (between 55°N
and 75°S), and k is the longitude (between 180°W and 180°E).
For example, for the end of June 1991, station 1 will have the
following values: y � 1991, w � 26, j � 49.53°, and k � 69.31°
(the latter two should be converted to row and column of the
global data set, following a selected map projection).

The VCI concept was designed to extract the weather
component from NDVI values (Kogan, 1990). The fact is that
NDVI represents two environmental signals: ecosystem, which
explains long-term changes in vegetation (driven by climate,
soils, vegetation type, topography, etc.), and weather (short
term), explaining intra- and inter-annual variations in each
ecosystem in response to weather fluctuations. Because the
weather component is much smaller than the ecosystem com-
ponent, the algorithm was developed to enhance the weather
component. This procedure was based on three environmental
laws: law-of-minimum, law of tolerance, and the principle of
carrying capacity (Hardin, 1986). These laws provide the basis
for determining the lowest and the highest potentials of an
ecosystem’s resources in response to the environment.
Basically, extreme NDVI values during the years 1985 through
1994 were calculated for each week and pixel. The resulting
multi-year maximum and minimum NDVI were used as the
criteria for estimating the upper (favorable weather) and the

lower (unfavorable weather) limits of the ecosystem resources
in response to extreme weather conditions. These limits
characterize the “carrying capacity” of each pixel. Because the
minimum and maximum values in the annual cycle delineate
the contribution of the ecosystem component in the NDVI for
the most extreme weather cases, the area between these curves
largely approximates the weather-driven component of NDVI.
The VCI is invariant of ecological background and depends on
weather condition only; it was validated against ground data
(Hayas and Decker, 1996; Kogan, 1997; Unganai and Kogan,
1998; Kogan, 2001).

To compare with ground measurements, VCI was aggre-
gated from 3- by 3-GVI pixels around the selected stations.
Some concerns might be raised regarding matching space-
aggregated GVI with 100-meter transects of ground data. We
made a preliminary comparison of NDVI measured from NOAA
satellite data and from hand-held radiometer data near one of
the selected sites. Although the ground-measured NDVI was
higher, the time series of both values had similar dynamics
(Gitelson et al., 1995). These results are also supported by
identical studies in the wetter climate of Poland (Dabrowska-
Zielinska et al., 2002). Cereal crops (mostly wheat) in Kaz-
akhstan occupy around 18 million hectares. Individual fields
spread to thousands and more hectares and are comparable
to the spatial resolution of GVI data. For much smaller non-
irrigated fields represented by a mixture of wild vegetation
and crops, it has already been proven that in drought/non-
drought years, vegetation responds similarly to the surround-
ing areas, by reduced/increased greenness, vigor, density, bio-
mass, and yield (Decker and Hyas, 1996; Unganai and Kogan,
1998; Dabrowska-Zielinska et al., 2002).

During the 1985 through 1994 growing period, wheat’s 
PD was measured each 10 days as the number of plants per
square meter. Following the previous discussion, wheat’s PD
has some seasonal cycle, showing a density increase around
the tillering stage and a decrease thereafter. Because the goal
of this research was to explore weather-related variations, the
PD was normalized using the approach similar to VCI approxi-
mation; we used multi-year median values of density for each
10-day period of the growing season (PDmed) and also multi-
year minimum (PDmin), and maximum (PDmax) values. Then,
the corresponding VCI values were compared with the differ-
ence between the measured density and the multi-year me-
dian density (PD � PDmed), normalized to the difference
between the maximum and minimum densities. The result-
ing PD deviations (PDD) are expressed as

PDDywjk � (PDywjk � PDmedwjk)�(PDmaxwjk � PDminwjk) (2)

where y, w, j, and k are the same as in Equation 1.

Results and Discussion
The NDVI in the 1991 and 1992 growing seasons were quite
similar in some locations and different in others. Figure 2
shows that the 1991 and 1992 NDVI dynamics for stations 1, 2,
and 3 were low and fairly similar during the entire growing
season, while the NDVI values in 1992 were higher. For sta-
tions 4 and 5, the difference in NDVI was 0.02 to 0.03 in the
early season (weeks 18 to 26); for station 6, the maximum
difference occurred at midseason (weeks 25 to 30). While the
NDVI shows mainly seasonal vegetation dynamics, the VCI
shows changes in the vegetation condition in the range min-
imum to maximum multi-year NDVI values. A typical example
is shown for station 6 where in 1991 the NDVI increased at the
beginning of the growing season (weeks 18 to 20), reached the
maximum in the middle, and dropped at the end. The VCI
showed the opposite tendency, indicating good vegetation
conditions at the beginning and end of the growing seasons
and bad conditions in the middle. 
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Figure 2. Comparison of NDVI and VCI aggregated for 3- by 3-GVI pixels: 1991 (dry conditions) and 1992
(favorable conditions). Stations 1 and 5, Almaty region; 3 and 4, Jeskazgan; and 2 and 6, Akmola (Figure 1). 

The VCI values in 1991 and 1992 were quite different.
Following the VCI estimates at stations 1 and 2, the 1992
growing season was more favorable (VCI values 70 to 90 per-
cent) than 1991 (VCI values 20 to 50 percent). During weeks 22
to 24 in 1991, the VCI showed considerable deterioration of
conditions, while changes in the NDVI were not as pro-
nounced. Conversely, the NDVI values differed considerably
for station 3; the difference in the VCI was not very significant

(about 20 percent). At station 4, temporal VCI dynamics were
extremely different between the years. In 1991, the changes
during the growing season were between 50 and 80 percent
with a minimum for week 24, while in 1992, the VCI was high
(90 percent) from the beginning to the end of the season.
Different VCI dynamics could also be seen at station 6, where
considerable reduction occurred between weeks 25 and 30 in
1991, while in 1992, the VCI reached 75 percent by week 30. 
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Figure 3 shows temporal variation of VCI and wheat’s PDD
in 1991 and 1992. As shown, there is a good match between
the temporal behavior of the VCI and PDD for all ecosystems
and for both favorable and stressed vegetation conditions.
Station 1 shows the closest correspondence between VCI and
PDD for both years. It should be noted that these years had
quite different weather conditions. The year 1991 had severe
drought, which was reflected in both VCI (below 40 percent)

and PDD (below 20 percent). On the other hand, during mostly
favorable 1992, both the VCI and PDD were very high, 70 to
90 percent and 30 to 60 percent, respectively. It is notable that
the dynamics of the VCI and PDD were similar, changing from
a reduction during weeks 18 to 22 to an increase thereafter. In
general, the dynamics of the VCI and PDD matched quite well.
The only two stations where some shifts occurred in 1991
were stations 2 (weeks 22 to 28) and 3 (weeks 25 to 33). 

Figure 3. Seasonal dynamics of the VCI and deviation of wheat plant density (PDD) in 1991 and 1992. Station
locations shown in Figure 1. 
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Figure 4. Scatter plot of VCI versus wheat plant density (PDD). The RMSE of plant density estimation for each station
was less than 13.6 percent.

Figure 4 shows the scatter plot of VCI versus PDD for each
station. The correlation was strong with R2 � 0.7 to 0.8, ex-
cept station 5 (R2 � 0.47), where both VCI and PDD were high
with low variation inside and between the years. Following
these relationships, VCI values around 50 percent characterize
near-normal vegetation conditions. They corresponded to a
near-zero deviation of PD from the multi-year median values.
VCI values below 30 percent, which specify strong drought
conditions (Kogan, 1995), corresponded to a reduction of PDD

below 20 percent. The highest PDD recorded in this study was
around 60 percent, which corresponded to a VCI value around
15 percent, indicating exceptional drought. For a VCI over
60 percent, the density of the vegetation exceeds the median
value, indicating that conditions are favorable for the
development of healthy vegetation.

Although selected stations were located in different cli-
matic and ecological zones and had considerable variation in
elevation (200 to 700 m) and NDVI values (0.05 to 0.47), the
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all-station VCI versus PDD correlation (Figure 5) was quite
strong (R2 � 0.76) with an SE of the PDD estimation of less
than 16 percent, considering that the variation in vegetation
density was large (between �60 and 70 percent). The RMSE was
smaller for a low density, indicating a higher accuracy in esti-
mation of VCI-derived drought conditions. Thus, AVHRR-de-
rived VCI maps shown in Plate 1 can be interpreted in terms of
both wheat conditions and its density deviation from the multi-
year median density (Plate 1).

Conclusions
A satellite-derived vegetation condition index was validated
based on ground measurements of wheat density in the very
different climatic conditions of Kazakhstan. VCI dynamics
during the growing season matched well with plant density
both in direction and values. The deviation of plant density
was shown to be correlated strongly with VCI. Similar to pre-
vious research with crop yield and pasture biomass in differ-
ent parts of the world, VCI once again was shown to be a good
indicator of weather impact on vegetation and, correspond-
ingly, vegetation condition, health, and productivity. It pro-
vides a fairly accurate assessment of unfavorable vegetation

conditions, especially those related to drought impact. The
next step should include quantitative calibration of the VCI
against large area biomass, yield, and production measure-
ments of various crops and pastures in different ecosystems of
Kazakhstan. Also, further research will include combining
NDVI-based estimates of conditions with thermal conditions
estimated from infrared channels.
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