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a b s t r a c t

Biomass burning is a major source of aerosols that affect air quality and the Earth’s radi-
ation budget. Current estimates of biomass burning emissions vary markedly due to
uncertainties in biomass density, combustion efficiency, emission factor, and burned area.
This study explores the modeling of biomass burning emissions using satellite-derived
vegetative fuel loading, fuel moisture, and burned area across Contiguous United States
(CONUS). The fuel loading is developed from Moderate-Resolution Imaging Spectroradi-
ometer (MODIS) data including land cover type, vegetation continuous field, and monthly
leaf area index. The weekly fuel moisture category is retrieved from AVHRR (Advanced
Very High Resolution Radiometer) Global Vegetation Index (GVIx) data for the determi-
nation of fuel combustion efficiency and emission factor. The burned area is simulated
using half-hourly fire sizes obtained from the GOES (Geostationary Operational Environ-
mental Satellites) Wildfire Automated Biomass Burning Algorithm (WF_ABBA) fire
product. By integrating all these parameters, quantities of PM2.5 (particulate mass for
particles with diameter <2.5 mm) aerosols are calculated for each individual fire at an
interval of half hour from 2002–2005 across CONUS. The PM2.5 estimates indicate that the
annual PM2.5 emissions are 3.49� 105, 3.30� 105, 1.80� 105, and 2.24� 105 tons for 2002
(April to December), 2003, 2004, and 2005, respectively. Among various ecosystems, forest
fires release more than 44% of the emissions although the related burned areas only
account for less than 30%. Spatially, PM2.5 emissions are larger in California for all these
years, but only for some individual years in Oregon, Montana, Arkansas, Florida, Arizona,
Louisiana, and Idaho. Finally, the calculated PM2.5 emissions are evaluated using national
wildfire emission inventory data (NWEI) and compared with estimates from different fuel
loadings. The difference between NWEI and GOES fire-based estimate is less than 20% if
the same fuel data are used. The evaluation suggests that the biomass burning emissions
derived from multiple satellite data provide realistic spatiotemporal patterns and can be
assimilated into air quality models for forecasts in real or near real time.

� 2008 Elsevier Ltd. All rights reserved.
: þ1 3017638580.
ang).

. All rights reserved.
1. Introduction

Biomass burning releases trace gases (e.g., carbon
monoxide (CO), carbon dioxide (CO2), and methane (CH4))
and aerosol emissions, which play a significant role in
atmospheric chemistry. For example, it accounts for about
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32% of CO and 40% of CO2 released to the atmosphere
globally (Levine, 1996). These emissions and their long-
distance transports contribute significantly to the uncer-
tainty in simulating climate change and global warming
(Twomey, 1977). They also affect both local and global air
quality which has strong impacts on human health and
environmental pollution (Seiler and Crutzen, 1980; Phu-
leria et al., 2005; Sapkota et al., 2005). Currently, the
aerosol emitted from biomass burning is one of the major
sources of uncertainty in air quality forecasting using
models such as the Community Multi-scale Air Quality
(CMAQ) (Dennis et al., 1996; Byun and Schere, 2006; Eder
and Yu, 2006), and is a critical air pollutant subject to the
National Ambient Air Quality Standards (NAAQS) estab-
lished by the United States (US) Environmental Protection
Agency (EPA) (EPA, 2003).

The estimates of emissions released from biomass burning
have emerged as an important research topic. Recently, Fire
Radiative Power (FRP) has been retrieved from satellite
observations as a proxy for emissions (Wooster and Zhang,
2004; Roberts et al., 2005; Ichoku and Kaufman, 2005). This
method integrates temporal FRP over a fire event to measure
the total Fire Radiative Energy (FRE), which is then converted
into the total combusted biomass using statistical models. The
FRE provides a great potential to estimate emissions directly
although the uncertainty is currently high and the coefficients
between FRE and emissions need to be well determined
(Ichoku and Kaufman, 2005).

Emissions from biomass burning are primarily modeled
using a set of parameters that includes fuel loading and
burned area. Fuel loading is a complex parameter and the
main source of uncertainty in emission estimates (Wie-
dinmyer et al., 2006). Because of the difficulty in param-
eterizing fuel loading, a variety of datasets have been used
in emission modeling. The commonly used fuel loading
datasets include static values at continental scales (Goode
et al., 2000; Liu, 2004; Freitas et al., 2005), field
measurements in local plot areas (<100 m2) (Trollope
et al., 1996; Hoffa et al., 1999), estimates from terrestrial
ecosystem models (Lü et al., 2006), and ecoregion-based
representatives in regional areas (Soja et al., 2004; Reid
et al., 2004; Wiedinmyer et al., 2006). The most widely
used fuel data in Continuous United States (CONUS) are
derived from National Fire Danger Rating System (NFDRS)
(Deeming et al., 1977; Burgan et al., 1998), which are
associated with fuel models using a lookup table. To
improve the quality of NFDRS fuel data, a similar fuel
dataset called the Fuel Characteristic Classification System
(FCCS) has recently been developed by US Department of
Agriculture Forest Service (Sandberg et al., 2001), and
provides more detailed ecosystem types and fuel types.
The quality of such fuel datasets depends greatly on the
class schemes of ecoregions and the representatives of fuel
values.

Burned area is another major parameter in emission
modeling. In investigating historical fire emissions, the
burned areas from wildland fires are usually derived from
potential natural vegetation and ecological fire regime
information (Leenhouts, 1998) and from local and national
fire services or agencies (Hao and Liu, 1994; EPA, 2003;
Lü et al., 2006). Recently, satellite observations have provided
a means to monitor burned areas at a more accurate spatial
pattern. As a result, fire (hotspot) counts from various satel-
lites, such as the Along Track Scanning Radiometer (ATSR),
the Advanced Very High Resolution Radiometer (AVHRR),
and the Moderate-Resolution Imaging Spectroradiometer
(MODIS), have been used as a proxy for the investigation of
biomass burning (Eva and Lambin, 1998; Duncan et al., 2003;
Wiedinmyer et al., 2006). Because of the challenge to link the
fire counts to burned areas (Boschetti et al., 2004; Soja et al.,
2004), burn scars are detected from satellites to analyze
historical variations in biomass burning emissions (Hoelze-
mann et al., 2004); however, they are not able to be produced
in near real time (Roy et al., 2002; Boschetti et al.,
2004). Alternatively, Geostationary Operational Environ-
mental Satellites (GOES) provide highly frequent measure-
ments of fire occurrences (Prins et al., 1998). The fire pixels
retrieved from GOES data have recently been associated with
smoke and aerosol coverage (Prins et al., 1998), which is
necessary to model the diurnal variation of smoke mass in the
source region (Wang et al., 2006). The GOES instantaneous
fire sizes have been demonstrated to be potentially useful in
aerosol forecasting in near real time (Reid et al., 2004), but
they differ from actual burned areas (Prins et al., 1998). Thus,
the corresponding burned areas and fuel loadings need to be
well quantitatively defined.

To support operational air quality forecasts, NOAA
(National Oceanic and Atmospheric Administration) Air
Quality program has requested NESDIS (National Environ-
mental Satellite, Data, and Information Services) to develop
near real time aerosol emissions from biomass burning
events. For this purpose, we use multiple satellite instru-
ments to retrieve spatially distributed parameters for the
modeling of PM2.5 (particulate matter with diameters
less than 2.5 mm) emissions across CONUS. Particularly,
a new fuel dataset is developed from MODIS vegetation
properties. Burned area is simulated from sub-pixel fire
sizes obtained from GOES WF_ABBA (Wildfire Automated
Biomass Burning Algorithm) fire product. Combustion and
emission factors are associated with fuel moisture category
derived from AVHRR vegetation health condition. The
calculated PM2.5 emissions from 2002 to 2005 are exam-
ined in temporal and spatial patterns. Finally, the PM2.5
results are evaluated using different fuel loading datasets
and national emission inventory.
2. Modeling biomass burning emissions

2.1. Model of biomass burning emissions

Emissions from biomass burning are controlled by four
fundamental parameters. These parameters are burned
area, fuel loading (biomass density), the fraction of
combustion, and the factor of emissions for trace gases and
aerosols. By integrating these parameters, Seiler and Crut-
zen (1980) have developed a standard formula to model the
biomass burning emissions:

E ¼ ABCF (1)

where E represents the emissions from biomass burning
(ton); A is the burned area (ha); B is the biomass density



Table 1
Satellite and auxiliary data used for estimates of biomass burning
emissions

Collected data Resolution
(space and time)

Purpose

MODIS land cover 1 km and static Development of fuel loading
MODIS vegetation

continuous field
0.5 km and static Development of fuel loading

MODIS leaf
area index

1 km and 8 days Development of fuel loading

AVHRR global
vegetation index

4 km and weekly Determination of moisture
condition

GEOS fire data 4 km and 30 min Determination of burned
area

NFDRS fuel data 1 km and static Evaluation of model results
FCCS fuel data 1 km and static Evaluation of model results
National wildfire

emission inventory
Field point
and daily

Evaluation of model results
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(ton ha�1); C is the fraction of biomass consumed during a fire
event; and F is the factor of the consumed biomass released as
trace gases and smoke particulates. This simple model has
been widely used to estimate the emissions in regional and
global scales (Ito and Penner, 2004; Reid et al., 2004; Soja
et al., 2004; Korontzi, 2005; Wiedinmyer et al., 2006).

To accurately estimate the smoke particulates released
from biomass burning, we employ the format of model (1)
to calculate emissions at different temporal and spatial
scales. It is due to the fact that fuel moisture condition
varies in different time periods and burned area is a func-
tion of fire event and fire behavior. Moreover, these
parameters are determined based on satellite pixels, which
changes among pixels. Thus, the emission model is modi-
fied to the following format:

E ¼
XK

k¼1

XL

l¼1

XJ

j¼1

XI

i¼1

AijkBijlCijklFijkl (2)

where E is the particulate emissions in a certain time period
and location (ton); i and j define the fire (pixel) location in
column and row; l is the fuel type; k is the time period; A is
the burned area (ha); B is the amount of fuel mass available
for combustion (ton ha�1); C is the combustion factor, and F
is the emission factor for particle PM2.5.

The parameters for estimating biomass burning emis-
sions are derived from various MODIS land surface prod-
ucts, AVHRR vegetation index data, and GOES fire data
(Table 1). These parameters may vary with different time
and space. The emission results are evaluated using other
fuel-based estimates and national wildfire emission
inventory (Table 1). The detailed procedure is described in
the following sections.

2.2. Calculation of fuel loading

Fuel loading is basically divided into live and dead
fuel loadings. The live fuel loading consists of canopy
(foliage and branch) biomass in forests, shrub biomass,
and grass (including crop) biomass, and the dead fuel
loading is composed of litter and coarse woody detritus.
To determine the fuel loadings for each pixel at a spatial
resolution of 1 km, we developed a MODIS Vegetation
Property-based Fuel System (MVPFS) using percent
vegetation cover, leaf area index, and land cover types
(Table 1). Percent vegetation cover, which includes tree
cover, percent non-tree vegetation (shrubs, crop, and
herbaceous), and percent bare ground, is derived from
the MODIS vegetation continuous field (MOD44B) with
a spatial resolution of 500 m (Hansen et al., 2003). Leaf
area index (LAI) is obtained from the MODIS LAI product
(MOD15A2) at a spatial resolution of 1 km and
a temporal resolution of 8 days between 2001 and 2004
(Myneni et al., 2002), which is used to derive maxima
monthly LAI. Land cover data are acquired from the
MODIS land cover product at a 1 km resolution (Friedl
et al., 2002).

Live fuel loading in forest foliage biomass and grass
biomass is a function of percent vegetation cover, maxima
monthly leaf area index, and land cover types. Specifically,
foliage biomass and grass biomass are calculated using
the specific leaf area (SLA) and LAI (Zhang and Kon-
dragunta, 2006). The resultant foliage biomass in CONUS
is less than 7 tons ha�1 in 90% of the forest areas mainly
distributed in boreal forests and east coast regions
(Fig. 1a), and the grass biomass is less than 5 tons ha�1

which is dominated in the central agriculture areas and
western grassland and savanna regions (Fig. 1d). Branch
biomass in forests is estimated using a generalized
foliage-based allometric model (Zhang and Kondragunta,
2006). It is about 21 tons ha�1 on average and about
30 tons ha�1 in the regions of forest land cover types
(Fig. 1b).

The total aboveground biomass for shrubs is a function
of crown area or vegetation cover (Sah et al., 2004). To
calculate shrub biomass, a regression model developed in
the western US (Michell et al., 1987; Brown and Marsden,
1976; Chojnacky et al., 2004) is applied to CONUS.

Bs ¼ 1:09� 105 � 2:161� 103 Vc þ 1:078� 102V2
c (3)

where Bs is the shrub biomass (kg km�2) and Vc is the
percentage of shrub cover. The resultant shrub biomass is
high in the eastern US and the northwestern US while it is
low in the open shrublands in the southern west US
(Fig. 1c).

Employing the relationship of vegetation type with litter
and coarse woody debris (CWD) developed by Matthews
(1997), we generate a dataset of litter fuel loading and CWD
at a 1 km resolution. The litter production is primarily
composed of material such as leaves, fine wood, and fine
roots, while coarse woody detritus is usually larger than 7 cm
in diameter (Harmon et al.,1986). The pools of litter and CWD
are investigated by compiling biomass density measure-
ments for various vegetation types (Matthews, 1983, 1997;
Ito and Penner, 2004). We reclassify the Matthews’ vegeta-
tion types (Matthews, 1983) to MODIS IGBP (International
Geosphere-Biosphere Programme) land cover types using
a crosswalk rule. The corresponding litter and CWD data for
each land cover type are then selected or averaged,
separately.

To estimate litter and CWD more realistically, we sepa-
rate percent vegetation cover for different land cover types
in a 1-km pixel. Non-tree vegetation (percent) within the
forest land cover types is assumed to be a mixture between



Fig. 1. Fuel loadings across CONUS (ton ha�1). (a) Forest foliage, (b) forest branch, (c) shrub, (d) grass, (e) litter, (f) coarse woody detritus.
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grasses and shrubs because they are not able to be further
separated. On the other hand, the trees (percent) in the
land cover types of non-forests are considered as mixed
forests. Thus, the related litter and CWD in each pixel are
refined using the following equation:

Blw ¼ Blwf Vcf þ BlwsVcs (4)

where Blw is litter or CWD density in a pixel (ton ha�1);
Blwf and Blws are litter or CWD density (ton ha�1) for
forests and non-forest vegetation, separately; Vcf and Vcs

are percent tree (forest) cover and non-tree vegetation
cover. The calculated litter and CWD are much larger in
forests than in non-forest land cover regions (Fig. 1e
and f). The CWD values are as high as 30 tons ha�1 in
the northern needle leaf forests while the values are
very small in the central agriculture areas. The litter
displays a similar pattern but the values are relatively
low.
2.3. Fire data and processing

NOAA GOES WF_ABBA produces a fire product from the
GOES East and West data in an interval of half hour (Prins
et al., 1998; Weaver et al., 2004). Particularly, the WF_ABBA
detects instantaneous fires in sub-pixels using 3.9 and
10.7 mm infrared bands by assuming that the thermal
radiance in a 4 km pixel is a linear mixture of radiance from
a fire target and background (Matson and Dozier, 1981;
Prins and Menzel, 1994). This fire product contains the time
of fire detection, fire location in latitude and longitude,
instantaneous estimate of sub-pixel fire size, and a quality
flag (ranging from 0 to 5). The fire size is only retrieved for
pixels with best quality (flag 0) but not for the fire pixels
that are saturated and cloudy and that are indicated as
high, medium, or low probability fires (flags 1–5). In the
WF_ABBA product, the factors including clouds, extreme
solar zenith angles, and satellite noise can obstruct the
detections of some fire events and thus interrupt diurnal
fire patterns. In this study, we acquire fire data from April
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2002 to December 2005, which are retrieved from GOES-8
and 12 using WF_ABBA v6.0. Note that the updated fire data
between January and March 2002 are not available.

We developed a set of models describing diurnal fire
sizes to represent missed detections in temporal patterns.
Analyzing the WF_ABBA fire product from 2002 to 2004
indicates that there are about two-third of the detected
fires which are not quantified with sub-pixel fire size.
Moreover, fires are not continuously detected in some large
fire events. Therefore, fire sizes in these cases need to be
replaced using simulated data. To do this, we select all half-
hourly sub-pixel fire sizes from GOES fire data between
2002 and 2005, and separate those with land cover types.
For each ecosystem, the fire sizes in each specified half hour
are averaged to generate diurnal variations. The averaged
values are then fitted using a Fourier model to create a set
of representative curves of diurnal sub-pixel fire sizes for
forests, savannas, shrublands, grasslands, and croplands,
respectively (Zhang and Kondragunta, 2008). The diurnal
patterns in various ecosystems are similar, which is largest
around 13:00 local solar time (LST). The half-hourly fire size
in shrublands and savannas is generally larger during
10:00–15:00 LST than other hours. The diurnal pattern is
most distinctive in croplands where large fire size domi-
nates during daytime. In contrast, the diurnal fire size in
forests is relatively stable throughout a day. These patterns
are comparable to those of satellite active fire counts
obtained in various studies (Justice et al., 2002; Roberts
et al., 2005; Giglio, 2007). The diurnal pattern is also
associated with diurnal variations in fire weather condi-
tions (Schroeder and Buck, 1970), fuel moisture (Rothermel
and Mutch, 1986), fuel temperature (Countryman, 1966),
and human activity (Giglio, 2007).

Using the representative diurnal curves, we simulate fire
size and use it as a proxy for burned area. Specifically, we
assume that the curve shape of the diurnal fire size for
a specified ecosystem should be similar but the magnitude
could be different for various GOES fire pixels (4 km). Thus, the
representative diurnal curve for the related ecosystem is
shifted to fit available GOES sub-pixel fire sizes in a pixel
during previous 24 h (or previous day). Moreover, we assume
that the fire was burning continuously in a given pixel during
the first and last instantaneous observations because fire
smokes and clouds could obstacle GOES Imager from detect-
ing fires. In this algorithm, the fire sizes in fire pixels with flags
1–5 (about 60% of total observations) are obtained from fitted
diurnal curves. However, if the fires are under clouds during
the whole burning period and there are not any half-hourly
GOES fire detections at all for a fire pixel, thus this fire pixel
would be missed in near real time estimates. Fortunately, such
fire events are generally very small and contribute limited
burning emissions. The sub-pixel fire size in the diurnal curve
is converted to the burned areas using the equation:

A ¼ aF (5)
where A is the area burned within a specified time period
(km2), F is the sub-pixel fire size (km2), and a is a constant
coefficient.

To determine the coefficient in Eq. (5), we compare the
cumulative simulated GOES fire sizes with 20 TM-based
burn scars (obtained from http://burnseverity.cr.usgs.gov/)
across CONUS in 2002. The results indicated that a can be
set to 1 if the cumulative fire sizes are calculated as the
following (Zhang and Kondragunta, 2008): (1) from the
whole diurnal curve if the observed GOES fires in a fire
pixel last longer than 14 h; (2) between first and last
GOES detections along the corresponding fitted curve if
the detected fire duration is short. The burned area
generated with this procedure is well matched with the
burn scars detected from Landsat TM imagery, where the
two datasets are generally distributed along a 1:1 line
(slope is 0.923) with a strongly significant correlation
(p< 0.0001). The simulated GOES burned area also
compares well to the burned area reported in NWEI data
across CONUS (Zhang and Kondragunta, 2008). The data
pairs in the grid size of 20 min reveal that the simulated
GOES burned area accounts for 91% of the variation in the
burned areas from NWEI. The total difference between
them is about 15%.
2.4. Determination of combustion and emission factors

Combustion and emission factors are dependent on fuel
type and moisture condition. We determine fuel moisture
conditions from time series of AVHRR Global Vegetation
Index (GVIx) data, which are then related to moisture
category factors for estimating the factors of combustions
and emissions.

2.4.1. Determination of fuel moisture conditions
Vegetation Condition Index (VCI) is employed as

a surrogate to represent the fuel moisture conditions
required for calculating the factors of combustions and
emissions. The weekly VCI provided in the NOAA AVHRR
product has been demonstrated to be effective in monitoring
drought information for various environments (Kogan,
1995). This parameter is derived from the Normalized
Difference Vegetation Index (NDVI) (Kogan, 1995, 1997):

VCI ¼ 100� NDVI� NDVImin

NDVImax �NDVImin
(6)

where NDVImax and NDVImin in a pixel are the maximum
and minimum values, respectively, in the corresponding
week from 1985 to 2005.

In this study, we obtain weekly VCI values from 2002 to
2005, which are produced from the NOAA Global Area
Coverage (GAC) using smoothed weekly NDVI datasets at
a spatial resolution of 4 km. The weekly VCI values ranging
from 0 to 100 are equally divided into six different cate-
gories which represent fuel moisture conditions of very
dry, dry, moderate, moist, wet, and very wet, respectively
(Fig. 2). The weekly variation in moisture conditions is used
to associate with fuel moisture category factors (mcf),
which are discussed in the following section.

2.4.2. Factors of combustions and emissions
The factor of combustion is a function of fuel type and

moisture category. The combustion factors are calculated
from the following model (Anderson et al., 2004):

Cl ¼
�
1� e�1

�mcf
(7)

http://burnseverity.cr.usgs.gov


Fig. 2. Variation in fuel moisture category and VCI from 2002 to 2005. Moisture category is defined as very dry (0–1), dry (1–2), moderate (2–3), moist (3–4), wet
(4–5), and very wet (5–6).
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where Cl denotes the fraction of fuel loading consumed for
fuel type l which is canopy (foliage and branch), shrub, and
grass, separately; and mcf is the moisture category factor.
The mcf value in each fuel type is determined using the fuel
moisture condition derived from AVHRR VCI data (Table 2),
which increases from dry to wet fuel conditions. As a result,
Cl varies with the temporal (weekly) AVHRR VCI.

The fraction of combustion for litter is assumed to be
100% under various moisture conditions. This may over-
estimate biomass burning for the crown fires if the litter is
not fully burned. However, the value for CWD is calculated
using the following formula (Anderson et al., 2004):

Cw ¼ 0:6ð0:31þ ð0:03� ð0:31�mcfÞÞÞ (8)

The factor of PM2.5 emitted from the burned fuel
loading also varies with fuel types and moisture condi-
tions. We adopt the values from the Fire Order Fire Effects
Model (Reinhardt et al., 1997). Thus, the emission factor for
coarse wood is 8.10, 9.15, 11.25 kg Mg�1 for fuel moisture
conditions of dry, moderate, and wet, respectively.
However, the values of emission factors for litter, canopy,
shrub, and grass are currently constant in various moisture
conditions, which are 3.95, 10.65, 10.65, and 10.65 kg Mg�1,
respectively.
Table 2
Moisture category factor (mcf) (from Anderson et al., 2004)

Moisture condition Canopy Shrub Grass Duff CWD

Very dry 0.33 0.25 0.125 0.33 0.08
Dry 0.5 0.33 0.25 0.5 0.12
Moderate 1 0.5 1 1 0.15
Moist 2 1 2 2 0.22
Wet 4 2 4 4 0.31
Very wet 5 4 5 5 0.75
3. Methods of assessing PM2.5 emission estimates

3.1. Estimates of PM2.5 emissions from different fuel datasets

Because fuel loading is one of the main sources of
uncertainties in estimating biomass burning emissions, we
investigate the effects of fuel loadings on emission esti-
mates by comparing our MVPFS-based results with emis-
sions derived from the NFDRS and the FCCS fuel loadings.
The NFDRS fuel map consists of 21 fuel models, and each
fuel model is assigned with live and dead fuel loadings
using a lookup table. The commonly used fuel model map is
available at the US Forest Service (http://www.fs.fed.us/
land/wfas/fuels/fdfuelmap.gif). Although the spatial reso-
lution of the map is 1 km, it is derived from ecoregion
polygons instead of individual pixels of vegetation prop-
erties. A polygon in NFDRS could cover several US sates,
where same fuel value is assigned. This dataset is originally
designed for the assessment of fire risks (Deeming et al.,
1977), although it has been modified for estimating
biomass burning emissions (Cohen and Deeming, 1985;
Burgan et al., 1998; Leenhouts, 1998; Reinhardt et al., 1997).
Relatively, the FCCS fuel dataset is more comprehensive,
which separates live and dead fuel loadings as 16 types for
112 fuelbed types across CONUS (Sandberg et al., 2001). The
fuelbed type in the FCCS data is classified using ecoregions,
potential natural vegetation, and land use, and interpreted
to 1 km resolution. The quantitative estimates of fuel
loadings within the fuelbeds are derived from georefer-
enced stand-level data on the six ranger districts in forests.
However, both the NFDRS and the FCCS datasets do not
provide fuel information in agriculture areas. Further, fuel
loading is assumed to be homogeneous in a large polygon
region (which is much smaller in FCCS than in NFDRS
dataset) and present sharp boundary between neighbor
polygons (values). For example, difference of the fuel
loadings can be demonstrated in Mcnally fire (36�30N and
118�240W) that occurred in July 2002 (Fig. 3). In this case,

http://www.fs.fed.us/land/wfas/fuels/fdfuelmap.gif
http://www.fs.fed.us/land/wfas/fuels/fdfuelmap.gif
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MVPFS fuel loading provides detailed spatial pattern
(Fig. 3e) that is comparable with the TM-based vegetation
distribution, while NFDRS only presents five different
values (Fig. 3c).

Combining with simulated GOES burned areas, AVHRR
VCI-based combustion and emission factors, the NFDRS and
the FCCS fuel datasets are also used to calculate PM2.5
emissions from 2002 to 2005. These resultant half-hourly
PM2.5 data are aggregated to daily data and then compared
with MVPFS fuel-based PM2.5 estimates using the indices
including coefficient of determination (R2), root mean
square (RMS) difference, and percent systematic RMS
difference (SRMSD) (Willmott, 1981). The SRMSD is
a measure of the linear bias between MVPFS fuel-based
PM2.5 and other estimates using the following formula:

SRMSD ¼
�

1
n

X�bY � X
�2
�1=2

(9)

where bY is the estimated values from correlation models
between MVPFS fuel-based PM2.5 estimates and other
fuel-based PM2.5 values, and X represents other fuel-based
Fig. 3. Fuel loadings in the McNally area (35�490–36�180N, 118�100–118�370W), whe
TM2-blue) before fire occurrence, where the red color indicates dense vegetation
vegetated areas with low fuels. (b) Color TM composite (TM4-red, TM3-green, TM2
grey areas are burn scars. (c) Total NFDRS fuel loadings (1 km). (d) FCCS fuel loading
vegetation distributions in (a). Note that the TM imagery is obtained from the Joi
Severity Mapping Project (http://burnseverity.cr.usgs.gov/fire_main.asp).
PM2.5 estimates, and n is the sample number based on
number of days per year.
3.2. National wildfire emission inventory for the evaluation of
GOES-based PM2.5 emissions

We further compare our emission estimates against the
Inter-RPO 2002 National Wildfire Emission Inventory
(NWEI). The NWEI PM2.5 data for 2002 have been devel-
oped by Air Sciences Inc and EC/R Inc using Seiler and
Crutzen’s (1980) emission model (WRAP, 2005). In the
NWEI estimates of PM2.5, fire events are collected from
federal and state records and county level data with spec-
ified location, calendar day, and fire size. Fuel loading for
each fire event is derived from NFDRS fuel model (Deeming
et al., 1977) and adjusted by adding duff, tree crowns, and
regional composites. Combustion factor is static for each
NFDRS model (WRAP, 2005).

To fully understand the uncertainties in satellite-
derived emission estimates, the NWEI PM2.5 in 2002 are
used to evaluate PM2.5 emissions derived from the
re fire occurred in July 2002. (a) Color TM composite (TM4-red, TM3-green,
cover with large fuels and the grey and white colors represent sparsely

-blue) with spatial resolution of 30 m after fire occurrence, where the dark
s (1 km). (e) MVPFS fuel loadings (1 km), where the pattern is similar to the

nt NPS (National Park Service)–USGS (US Geological Survey) National Burn

http://burnseverity.cr.usgs.gov/fire_main.asp
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simulated GOES burned areas. The latter are: (1) NFDRS-
GOES: NFDRS fuels and static combustion and emission
factors obtained from Cohen and Deeming (1985), which
are close to the algorithm in NWEI except for the fire data;
(2) FCCS-GOES-AVHRR: FCCS fuels and weekly-AVHRR-
controlled emission and combustion factors; (3) MVPFS-
GOES-AVHRR: MVPFS fuels and weekly-AVHRR-controlled
emission and combustion factors. PM2.5 values for various
estimates are matched up in 20 min grids across CONUS for
comparison because it is difficult to match each fire event
from the large amount of small fire events. This comparison
excludes the grids where the fires are only detected in
either GOES fire product or NWEI data. For three large fire
events that covered more than one grid in the Hayman fire
(105.42�W, 39.04�N, from June 8 to 28), the Rodeo fire
(110.43�W, 34.09�N, from June 18 to July 3), and the fire in
Oregon (123.94�W, 42.41�N, from July 14 to August 26), we
match fire regions of the related fire events with a small
buffer zone.

4. Results

4.1. PM2.5 emissions

The temporal and spatial patterns in PM2.5 estimates
presented here are derived from MVPFS fuel loadings,
simulated GOES burned areas (half-hourly), and weekly-
AVHRR-controlled combustion and emission factors. The
Fig. 4. Spatial patterns of annual PM2.5 emissions released from biomass burning i
large values for display purpose.
results aggregated from half-hourly estimates indicate that
the annual PM2.5 emissions are 3.49�105, 3.30�105,
1.80�105, and 2.24�105 tons for 2002 (April–December),
2003, 2004, and 2005, separately. The large emissions are
mainly distributed in the western US because large fire
events occur often in the dry climate during summer season
(Fig. 4). In contrast, the small emissions are spatially dense
in the southeastern US overall the four years, where the
emission values are relatively small while the occurrence of
fire emissions is frequent, particularly in the areas around
Kansas, Oklahoma, and Missouri. This is associated with
prescribed agriculture fires which last only for a few hours
or less in a day. However, PM2.5 emissions are sparsely
dotted with small values in the central and northeastern US.

The PM2.5 emissions at a state level vary greatly (Fig. 5).
The states with large proportions of the total annual
emissions are Oregon (24.7%), California (13.8%), and Col-
orado (10.5%) in 2002; Montana (23.7%), California (12.8%),
and Idaho (9.4%) in 2003; California (17.7%), Arizona
(11.6%), and Florida (9.8%) in 2004; and Louisiana (10.2%),
Idaho (9.0%), and Arkansas (7.5%) in 2005. To some extents,
this spatial pattern is comparable with the simulated
burned areas. The areas in California and Arizona account
for more than 10% of the annual fires in CONUS from 2002
to 2005, separately. The other states with large burned
areas are Oregon and Colorado in 2002, Montana and Idaho
in 2003, Texas and Florida in 2004, and Texas and Louisiana
in 2005. Evidently, the biomass burning emissions may
n 2002 (a), 2003 (b), 2004 (c), and 2005 (d). Note that the dots increase with



Fig. 5. Variations in PM2.5 emissions and simulated GEOS fire sizes in different states from 2002 to 2005.
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have significant impacts on air quality in western and
southeastern regions.

The magnitude of PM2.5 is also a function of ecosystem.
The emissions are mainly released from forest fires (Fig. 6),
which account for more than 44% of the annual amount
during these four years. They are followed by those
released from shrublands and savannas. Generally, these
emissions are not correlated well with the burned areas in
the corresponding land cover types. The simulated burned
area in forests is less than 30% of the total burned areas,
followed by those in shrublands, grasslands, agriculture
areas, and savannas in 2002 and 2003 (Fig. 7). By contrast,
the area is slightly larger in shrublands, but smaller in
forests, croplands, grass, and savannas in 2004 and 2005.
The PM2.5 emission presents strong seasonal cycles
(Fig. 8). The emissions in July and August account for more
than 40% of the total annual amount while they are less
than 10% from November to next February. The magnitude
of this seasonality varies inter-annually, which is much
stronger in 2002 and 2003 than in 2004 and 2005.

4.2. Effects of different fuel datasets on PM2.5 emission
estimates

The daily PM2.5 emissions calculated from the MVPFS
fuel data are significantly correlated with those calculated
using the NFDRS and FCCS fuel loadings (Table 3). The high
correlations exist between emissions derived from MVPFS



Fig. 6. PM2.5 emissions changing with land cover type.
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and FCCS in 2002 and from MVPFS and NFDRS in 2003,
2004, and 2005. However, the magnitude of emissions
from NFDRS fuel loadings is largest, which is about 30–50%
higher than those from FCCS and MVPS fuel loadings. The
emissions from MVPS fuel loading is about 17% larger than
that from FCCS fuel in 2003, but about 7%, 1%, and 16%
smaller in 2002, 2004, and 2005, separately. The large
difference occurred in 2003 is associated with fuel data in
west Montana where fire emission was largest at state
levels. In this region, FCCS fuel loadings in the needle leaf
forests are low relative to northwestern coast areas, while
MVPFS fuel data (like the pattern in NFDRS fuel data) are
similar in northwestern needle leaf forests. Overall, the
RMS differences in daily emissions are smallest between
MVPFS and FCCS, while the differences are large between
MVPS and NFDRS for these years. Among these differences,
the systematic differences between MVPFS and NFDRS,
between MVPFS and FCCS, and between FCCS and NFDRS
are 49–70%, 12–60%, and 44–71%, respectively. In other
words, the unsystematic differences vary greatly among
these fuel datasets. This comparison also demonstrates that
the magnitudes of MVPFS-based and FCCS-based PM2.5
emissions are generally similar while they differ consider-
ably from those calculated using NFDRS fuel loadings. This
result suggests that MVPFS would be a realistic fuel data for
the estimates of biomass burning emissions, because the
FCCS data provide much more detailed fuel information
relative to NFDRS data (Sandberg et al., 2001). On the other
hand, the significant correlation between MVPFS-based
Fig. 7. Simulated GOES burned areas cumu
emissions and NFDRS-based emissions indicates their good
agreements in relative values.

4.3. Correlation between GOES PM2.5 emissions and
NWEI data

The comparison between the matched data of PM2.5
emissions shows that three different emissions calculated
from the simulated GOES burned areas all account for about
88% of variations in the NWEI PM2.5 emissions although
the magnitude differs considerably (Fig. 9). Among the
matched samples (grids, where about 28% of PM2.5 emis-
sions in NWEI is excluded), the emission in the Rodeo fire
event is much smaller in the GOES fire estimates than that
in NWEI (the second largest value in Fig. 9a). It is likely
associated with the fuel loadings used in NWEI because the
simulated GOES burned area is similar to that from NWEI
data (1035 km2). Except for this sample, NFDRS-GOES
estimates are very closely related to NWEI PM2.5 with
samples distributed along a 1:1 line in the plot (Fig. 9) and
a total difference is less than 20%. The small difference may
be partially associated with the emission factors. The PM2.5
emission factors used in NWEI range from 11.36 to
16.62 kg Mg�1 (WRAP, 2005), while the values used in this
study are 3.95–12.89 kg Mg�1 which are similar to other
studies (e.g., Wiedinmyer et al., 2006). In contrast, the
emissions from FCCS and MVPFS fuels (FCCS-GOES-AVHRR
and MVPFS-GOES-AVHRR) are equivalently much smaller
than NWEI PM2.5, especially in large fire events, which are
lated for different land cover types.



Fig. 8. Temporal variation in daily PM2.5 emissions cumulated from half-hourly biomass burning.
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43% and 49% of NWEI values, respectively. This difference is
likely due to the fact that NFDRS data assign a homoge-
nously large fuel value to a large region while MVPFS and
FCCS provide heterogeneous fuel data in each burned area.

5. Discussion and conclusions

PM2.5 emissions vary greatly with ecosystem, state,
season, and year while the seasonal patterns are relatively
stable. Fires and emissions mainly occur between June and
August in CONUS. However, the magnitude of PM2.5
emissions varies in different years, which is much smaller
in 2004 and 2005 than in 2002 and 2003. Although the
burned areas in forests, shrublands and croplands are
similarly large in all or some years, the emissions are
mainly released from forest fires, which account for
more than 44% of the total annual PM2.5 emissions. At
the state level across CONUS, California always produces



Table 3
Statistical comparisons in daily emissions derived from different fuel loading datasets

2002 2003 2004 2005

NFDRS FCCS MVPFS NFDRS FCCS MVPFS NFDRS FCCS MVPFS NFDRS FCCS MVPFS

R2

NFDRS 1.00 0.836 0.889 1.000 0.722 0.922 1.000 0.694 0.840 1.000 0.621 0.803
FCCS 0.836 1.000 0.941 0.722 1.000 0.794 0.694 1.000 0.737 0.621 1.000 0.696
MVPFS 0.889 0.941 1.000 0.922 0.794 1.000 0.840 0.737 1.000 0.803 0.696 1.000

RMS (tons)
NFDRS 0.00 2341 2252 0.00 2301 1383 0.00 744 590 0.00 817 652
FCCS 2341 0.00 457 2301 0.00 1065 744 0.00 352 817 0.00 477
MVPFS 2252 457 0.00 1383 1065 0.00 590 352 0.00 652 477 0.00

Percent of systematic RMS
NFDRS 0.00 65.88 69.89 0.00 71.06 66.43 0.00 55.45 57.20 0.00 43.59 49.94
FCCS 65.88 0.00 13.30 71.06 0.00 60.92 55.45 0.00 23.80 43.59 0.00 12.17
MVPFS 69.89 13.30 0.00 66.43 60.92 0.00 57.20 23.80 0.00 48.94 12.17 0.00

NFDRS, FCCS, and NESDIS denote the emissions calculated using these three fuel datasets, respectively.

X. Zhang et al. / Atmospheric Environment 42 (2008) 6959–69726970
large amount of PM2.5 emissions every year. Other main
sources of PM2.5 emissions in some individual years are
Oregon, Montana, Florida, Arizona, Louisiana, Arkansas,
and Idaho.

The PM2.5 estimated from GOES data are evaluated
although direct validation is currently infeasible (Ito and
Penner, 2004; Soja et al., 2004; Korontzi, 2005). First,
comparing emissions from various fuel data demonstrates
that the PM2.5 emissions estimated from MVPFS are reli-
able. Specifically, the PM2.5 estimated from NFDRS fuel
loading is more than 35% larger relative to the values from
both MVPFS and FCCS fuels. Giving the NFDRS fuel loadings
are developed for assessing fire risk with homogenous
values within large polygons (Burgan et al., 1998) while the
FCCS fuels are dependant on much detailed ecosystem
pattern (Sandberg et al., 2001), we believe that the FCCS
fuel loading produces better PM2.5 estimates. Of course,
future research is needed to better understand their
differences using inter-comparison and reliable ‘‘truth’’
data. Further, the MVPFS and FCCS fuel loadings produce
Fig. 9. Comparison of NWEI PM2.5 against estimates from simulated GOES burn
emissions are matched up in 20 min grids while the values in the three largest fire
values is displayed in (b).
very similar PM2.5 estimates in both spatial and temporal
patterns with an RMS difference less than 17%. This
suggests that the MVPFS fuel loading can produce reasonable
PM2.5 estimates. Moreover, MVPFS can easily be updated
with land cover and land use changes and extended to other
continents using latest satellite data while producing FCCS
fuel data is highly time consuming and financial costs.

Second, the PM2.5 emissions calculated from GOES fire
data match well with NWEI PM2.5 values if similar fuel
loadings are used. The NWEI PM2.5 in 2002 is the best
dataset currently available; nevertheless, this dataset itself
is modeled from various parameters that contain large
uncertainties. If we estimate PM2.5 using NFDRS fuel
loadings and static combustion factors which are used in
NWEI, and GOES fire data, the outputs are generally
comparable to NWEI PM2.5 with a difference less than 20%.
This suggests that the GOES fire dataset is a promise for
emission calculations. From above evaluations, we can
conclude that both GOES fire data and MVPFS fuel loadings
are realistic in producing PM2.5 estimates.
ed areas and different fuel loadings in 2002 (April–December) (a). PM2.5
events are matched based on burn scars. The detailed information for small
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The overall uncertainty in PM2.5 estimates is roughly
estimated from error propagations of inputs because of
the lack of field PM2.5 measurements. Although the fuel
loading is still a research issue (Kasischke and Penner,
2004), estimated uncertainties in the MVPFS fuel loadings
are about 13% (Zhang and Kondragunta, 2006). Further,
although the estimates of burned areas in large regions
could differ greatly (Scholes and Andreae, 2000;
Kasischke et al., 2003; Boschetti et al., 2004), the error of
the simulated GOES burned areas is about 15% according
to the comparison with national inventory data (Zhang
and Kondragunta, 2008). Note that this error may be
partially caused by understory fires because satellite
sensors are generally unable to detect fires under dense
tree canopy. Finally, the uncertainty of emission factors
obtained from field measurements for many important
species is about 20–30% (Andreae and Merlet, 2001). This
value is assumed to be similar to that in combustion
factor. Based on above uncertainties in the input param-
eters, the propagated error in our PM2.5 estimate could
be as high as about 106%.

Overall, the multiple satellite-based algorithm devel-
oped in this study has several advantages for producing
PM2.5 emissions in near real time. First, GOES WF_ABBA is
monitoring fires in real time in NOAA/NESDIS and the fire
product is available online (http://gp16.ssd.nesdis.noaa.
gov/FIRE/fire.html). Using these instantaneous fire data,
our algorithm simulates the diurnal fire sizes in represent-
ing burned areas in near real time. Second, AVHRR vegeta-
tion condition index (VCI) is operationally running in NOAA/
NESDIS in near real time. The weekly VCI in previous week is
employed in our algorithm to produce moisture conditions
for determining dynamic combustion and emission factors.
Finally, MVPFS fuel loading is pixel based rather than poly-
gon based, which provides detailed spatial patterns.
Therefore, by integrating these parameters, the PM2.5
emissions in near real time are currently produced in NOAA/
NESDIS. We believe this algorithm is physically realistic
although the results need to be thoroughly validated once
reliable field data are available. Consequently, operationally
running this algorithm in near real time can significantly
contribute to the air quality forecasts, and can overcome
some limitations in creating fire emissions inventories over
large regions which are costly and time consuming.
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