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Relationships between yearly malaria incidence and (1) climate data from weather station and (2) satellite-based vegetation health
(VH) indices were investigated for prediction of malaria vector activities in Bangladesh. Correlation analysis of percent of malaria
cases with Advanced Very High Resolution Radiometer- (AVHRR-) based VH indices represented by the vegetation condition index
(VCI—moisture condition) and the temperature condition index (TCI—estimates thermal condition) and with rainfall, relative
humidity, and temperature from ground-based meteorological stations. Results show that climate data from weather stations
are poorly correlated and are not applicable to estimate prevalence in Bangladesh. The study also has shown that AVHRR-based
vegetation health (VH) indices are highly applicable for malaria trend assessment and also for the estimation of the total number
of malaria cases in Bangladesh for the period of 1992–2001.

1. Introduction
1

Malaria is a known cause of febrile illness in Bangladesh
for a long time. Nearly, 200,000 malaria cases are reported
each year in Bangladesh for population of 140 millions. This
number can fluctuate depending on weather conditions [1–
3]. Malaria transmission in Bangladesh is mostly seasonal
and limited to the border regions with Myanmar in the
east and India in the north (Figure 1). Out of country’s
6 administrative divisions (containing 64 districts), Dhaka,
Sylhet, and Chittagong (12 districts) are malaria endemic
[4–6]. These 3 divisions contribute nearly 98% of the
total Bangladesh malaria morbidity and mortality statistics
reported each year [7, 8]. Around 27 million people (20%
of the total Bangladesh population) live in malaria endemic
area [9, 10].

2. Malaria and Climate

Three principal environmental factors for mosquito activ-
ity and malaria transmission are important: temperature,
humidity, and rainfall [11, 12]. Temperatures within the
range of 20

o
C–30

o
C affect malaria transmissions in several

ways: (a) development of Anopheles is shortened (b) biting
capacity of mosquitoes is increased, and (c) mosquitoes
survive long enough to acquire and transmit the parasite.
Temperatures lower than 16

o
C or higher than 30

o
C have

a negative impact on the growth of the mosquitoes [13].
Mosquitoes breed in water habitats, thus requiring just the
right amount of precipitation in order for mosquito breeding
to occur. The effect of rainfall on the transmission of
malaria is very complicated varying with the circumstances
of particular geographic regions and depending on the local
habits of mosquitoes [14]. Anopheles dirus (AD) females stay
active during the period when precipitation exceeds 50 mm
per month. However, a combination of large rainfall and
hot weather during June–August might reduce mosquito
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Figure 1: Geographical map of Bangladesh.

activity. Rainfall also affects malaria transmission because it
increases relative humidity and modifies temperature, and
it also affects where and how much mosquito breeding
can take place. Plasmodium parasites are not affected by
relative humidity, but the activity and survival of Anopheline
mosquitoes are. High relative humidity allows the parasite
to complete the necessary life cycle, so that it can transmit
the infection to several persons [15]. If the average monthly
relative humidity is below 60%, it is believed that the life
of the mosquito is so shortened that there is no malaria
transmission [16]. Monthly temperature and humidity are
stable from year to year (variations are 1

o
C and 1%, resp.),

but precipitation has substantial interannual variability.
Human malaria is caused by four different species of

the protozoan parasite Plasmodium: Plasmodium falciparum,
P. vivax, P. ovale, and P. malariae. Bangladesh has only
Plasmodium falciparum (70%) and Plasmodium vivax (30%)
[1, 17, 18]. In this study, we consider both types of malaria,
Plasmodium falciparum and vivax.

3. Data and Methods

Three data types were used in this study: malaria epidemio-
logical statistics, satellite data, and meteorological data from
ground stations.

Malaria statistics were collected from the Directorate
General of Health, Bangladesh’s Ministry of Health from
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Figure 2: Yearly A, the number of patients (patient’s total PT)
whose blood sample was tested for malaria B, the number of positive
malaria cases (PMCs).

1992 to 2001. Malaria data were represented by annual
number of people with fever tested in local hospital. Standard
blood slide examination was done by a medical officer
trained in malaria microscopy, according to the WHO
guidelines, and slide readers were blinded to the clinical
diagnoses. Ten percent each of the positive and negative slides
were reexamined blindly by the National Malaria Reference
Laboratory to evaluate the accuracy of our study’s slide
examination results. The diagnostic criteria were fever or
history of fever within the last 48 hours; an absence of signs of
other disease; inadequate antimalarials (or none) during the
4 weeks prior to present illness [4]. The hospital data were
aggregated by local administrative unit health centers and
further by administrative districts [16, 19]. Available malaria
statistics are the number of patients (patient’s total PT)
whose blood sample was tested for malaria and the number
of positive malaria cases (PMCs). Finally, the number of
malaria cases was expressed in percent as (PMC/PT)∗100.
The dynamics of annual PT and PMC for Bangladesh during
the investigated period are shown in Figure 2.

Satellite data were collected from the Global Vegetation 2
Index (GVI) data set [20]. The GVI is produced by sampling
and mapping the 4-km daily radiance in the visible (Ch1,
0.58–0.68 μm), near infrared (Ch2, 0.72–l.1 μm), and
thermal band (Ch4, 10.3–11.3, μm and Ch5, 11.3–12.3 μm)
measured on board NOAA polar-orbiting satellites, to a 16-
km map. These maps, including the Normalized Difference



Journal of Tropical Medicine 3

Vegetation Index, NDVI = (Ch2− Ch1)/(Ch2 + Ch1), solar
zenith angle, and satellite scan angle, are composited over a
7-day period.

The vegetation health (VH) indices were developed
from Normalized Difference Vegetation Index (NDVI) and
brightness temperature (BT). The data processing included
removal of high-frequency noise from the annual time series
of NDVI and BT, approximation of annual cycle, calculation
of multiyear climatology, and derivation of VH [21].

High-frequency temporal noise in NDVI and BT related
to fluctuating transmission of the atmosphere, sun/sensor
geometry, bidirectional reflectance, random noise, and oth-
ers was removed by statistical smoothing of NDVI and
BT annual time series for each pixel during the entire
period using a combination of median filter and least square
technique. Climatology of NVDI and BT seasonal cycle was
approximated by multiyear maximum (MAX) and minimum
(MIN) weekly values taken from the smoothed data. The
MAX and MIN for each pixel and week were calculated
from twenty years of historical GVI data [20]. The (MAX–
MIN) criterion was used to describe and classify weather-
related ecosystem’s “carrying capacity,” and therefore, it
represented the climatology of those extreme weather-related
fluctuations in NDVI and BT. The NDVI- and BT-derived
weather component was expressed as the Vegetation and
Temperature Condition Indices (VCI/TCI) [21]. Equations
(1)-(2) show numerical approximation of VCI and TCI

VCI = 100∗ NDVI−NDVImin
NDVImax−NDVImin

, (1)

TCI = 100∗ BTmax− BT
BTmax− BTmin

, (2)

where NDVI, NDVImax, and NDVImin (BT, BTmax, and
BTmin) are smoothed weekly NDVI (BT) and their multiyear
absolute maximum and minimum, respectively; the VCI and
TCI change from 0 to 100, reflecting changes in moisture and
thermal conditions from extremely unfavorable (vegetation
stress) to optimal (favorable); the VCI and TCI values around
50 estimates near normal conditions and values <50 indicate
vegetation stress including average intensive when the index
equal 0 [10].

Bangladesh has 34 meteorological stations and these are
not dense. Daily temperature, rainfall, and humidity data
were collected from the weather stations located in these 3
divisions from 1992 to 1999. Ten-day average temperature
(T◦C) and humidity (H%) and 10-day total rainfall (R, mm)
data were generated from collected data. Regional averages of
T, H, and R were calculated as average values from weather
stations.

Meteorological parameters (T , R, and H) were expressed
as a deviation from mean value during 1992–1999 (Percent
of mean for R, difference from mean for T and H) in order
to evaluate weather anomalies during the annual cycle.

4. Result and Discussion

The long-term tendency in malaria cases
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Figure 3: Annual malaria cases in Chittagong, Dhaka, and Sylhet
divisions and trend line, 1992–2001.

dynamics shown in Figure 3 was approximated by linear
equation (3), and weather-related variations around the
trend were expressed in percent as a deviation from the trend
line (4) [10, 22]

Ytrend = a0 + a1 ∗ Yi, (3)

DYi =
(

Yi

Ytrend

)
∗ 100, (4)

where Yi is a percent of malaria cases in a year number i;
Ytrend is a long-term trend in a region during 1992–2001; a0

is an intercept; a1 is a slope; DYi is a deviation from trend
(%) in year i.

Figure 4 shows the dynamics of the Pearson correlation 3
coefficients (PCCs) between end of each year DY with weekly
VCI and TCI during 1992–2001. Analysis of the PCC in
Figure 4 indicates that there are two types of dynamics in the
investigated areas. Dhaka and Sylhet divisions have erratic
correlation dynamics, and Chittagong division has well-
pronounced dynamics, corresponding to the main features
of mosquito’s response to weather and correspondingly their
ability to spread malaria.

Following Figure 4, during the cool season (November
through March) when the number of malaria cases is smaller,
correlation of DY with VCI and TCI is low indicating that
VH indices have low predictive ability. From April, when
a warm season starts and mosquito activity intensifies the
correlation rapidly increases reaching maximum of−0.50 for
VCI and 0.60 for TCI during June-July (weeks 24–28). After
those maximums, the correlation gradually decreases to a
near zero level by the beginning of the next cool season in
November after week 40. A negative correlation of DY with
VCI indicates that more malaria cases (DY is above the trend)
are developing for dryer condition (VCI < 50 or reduced
vegetation greenness, (1)). Oppositely, less malaria cases (DY
is below the trend) are recorded for moist conditions (VCI
> 50 or larger vegetation greenness, (1)). This confirms that
in average wet climate excessive rainfall during monsoon
season negatively affects mosquito activity and their ability
to transmit malaria. Regarding thermal conditions, larger
number of malaria cases (DY is above the trend) is associated
with TCI greater than 50, which indicates cooler weather
(see (2)). Smaller number of malaria cases (DY below trend)
is associated with lower TCI (below 50, hotter weather,
(3)) [10]. Therefore, the investigation of VCI and TCI as
predictors was performed for all three malaria divisions.
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Figure 4: Correlation coefficient dynamics of DY versus A, TCI and
B VCI.

Correlations between DY (percent of malaria data) and
deviation from mean temperature DT, deviation from aver-
age rainfall DR, and deviation from relatively mean humidity
DH are shown in Figure 5. Figure 5 shows that all the selected
parameters: temperature, rainfall, and relative humidity
obtained from the network of ground-based meteorological
stations are poorly correlated with the trend of actual malaria
cases, and none of these parameters can be a proxy for the
malaria trend for the period of 1991–1999.

Majority of annual malaria cases occur in summer.
Therefore, correlating annual malaria cases with VH and
meteorological data pursued two goals: (1) if timing
(summer) of the highest correlation is right, (2) if the
correlation for this period is strong, (3) if before summer
and after summer the correlation is not strong, and (4)
if transition from spring to summer and from summer to
fall is gradual. Following Figure 4, (correlation with VH)
these four goals were met because VH indices are assessing
cumulative conditions (have some “memory”). Following
Figure 5 (correlation with decadal meteorological indices),
all four goals were not met because P, T , and RH are not
showing cumulative conditions (do not have “memory”).

The result of correlation analysis in the Figure 4 was
used to develop regression equations. Several options were
investigated using either TCI (thermal condition) or VCI
(moisture condition) only or both indices for the weeks of
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Figure 5: Correlations between DY and A, average rainfall B, mean
temperature C, and mean humidity.

the highest correlation [10, 19]. General form of regression
equation when both indices were used is written bellow

DP = a0 + a1 ∗ TCIi + a2 ∗VCIi, (5)

where a0, a1, and a2 are coefficients, i is the week number,
and DP is predicted number of malaria cases (%) deviation
from trend.

The tested variables are presented in Table 1 with the
corresponding multiple correlation coefficients (MCCs),
root mean square error (RMSE), and F criteria. Analysis
indicates that for the two minor divisions (Dhaka, Sylhet),
the MCC is not much different than for individual weeks, but
RMSEs are quite large (30%–35%). Such high errors could
be expected since the area of minor divisions is very remote;
population is not large and spread much over diversified
ecosystems and environmental conditions. In spite of large
RMSE, several models were selected for further analysis. For
Dhaka division, models 2 and 3 showed slightly higher MCC
and lower RMSE than others. Model 3 has some advantages
in terms of early indication (week 28) of possible malaria
epidemic. For the Sylhet division, model 3 was selected with
best estimates.

The smallest RMSEs were for the main malaria division
of the country, Chittagong. For Chittagong division, the
best models based on the MCC, RMSE, and F parameters
were numbers three and four. Model four (TCI26 and TCI30

predictors) provides slightly larger MCC and smaller RMSE.
But in terms of timeliness of prediction, model 3 provides
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Table 1: Investigated variables, PCC, and multiple correlation coefficients (MCCs) of models (DY = f (TCI, VCI)).

Correlation coefficient of DY with

Division Model TCI for weeks VCI for weeks MCC RMSE F Value

17 26 28 30 39 41 26 39 40

1 0.59 0.59 6.26 4.20

2 0.48 0.48 6.78 2.40

Chittagong 3 0.59 0.48 0.61 6.57 2.04

4 0.59 0.42 0.63 6.45 2.25

1 0.50 0.53 33.77 3.07

2 0.64 0.65 30.33 5.73

Dhaka 3 0.50 0.64 0.65 29.09 3.96

4 0.50 0.24 0.53 36.01 2.77

5 0.64 0.24 0.66 31.74 1.37

1 0.50 0.50 33.02 2.69

Sylhet 2 0.50 0.39 0.50 35.30 1.17

3 0.29 0.50 0.68 29.86 3.03

Table 2: Variables and statistical measures of the best models from Table 1.

Divisions Model no. Regression coefficient Variables MCC RMSE F

t-Stat Value

Slope Critical value 1 2

a0 a1 a2 5% 10%

Chittagong
3 96.50 1.24 0.53 1.83 1.38 TCI26 VCI26 0.61 6.57 2.04

4 88.94 1.58 0.73 1.83 1.38 TCI26 TCI30 0.63 6.45 2.25

Dhaka 3 93.47 1.30 1.94 1.83 1.38 TCI28 TCI41 0.73 29.09 3.96

Sylhet 3 90.60 1.67 2.24 1.83 1.38 TCI17 TCI39 0.68 29.86 3.03

advanced warning. Final equations of the best accepted
models for the three malaria prone divisions are shown in
Table 2.

In addition to analysis of MCC, RMSE, and F, we also
used t-test for regression coefficients with a significance of
5% and 10%. Following Table 1, for Chittagong division,
model four was selected as the best since t-test value 1.58
for predictor TCI26 was higher than critical value (1.38) with
10% significance. It is interesting to note that when TCI
and VCI for the same week 26 were selected as predictors in
model 3, the performance of statistically significant predictor
TCI26 deteriorated compared to model 4. Regarding Dhaka
and Sylhet models, second, predictor (TCI41 and TCI39 cor-
respondingly) showed statistical significance at 5% critical
value.

5. Model Validations

Further analysis included independent validation of models
(Table 2). Since the training data is short, the Jackknife
technique was used as validation tools. For each model,
one year of malaria and satellite data were excluded from
the 1992–2001 dataset. A model (Q = f (VCI, TCI)) was
developed with one year out and this model was applied to
the removed year to predict the number of malaria cases
deviating from trend (Q) based on satellite data of the
eliminated year. Then, the eliminated year was returned

to the data set and the next year was removed for model
development and testing [23]. Each year data were removed
one at a time and the candidate model was fit nine times
to the eliminated year. As the result of this procedure,
nine independent predictions were obtained, where f is an
arbitrary function.

Finally, in each of the predictions, the number of malaria
cases (P) for the eliminated year (i) was estimated from
equation (5). In addition, the coefficient of determination
(R2) for the numbers of independently predicted and
observed malaria cases, the bias (B), percentage of relative
bias (RB percent), and root mean square error (RMSE) for
this year was estimated using (6), (7), and (9)

Pi = Ytrend

(
Qi

100

)
, (6)

Bi = Pi − Yi, (7)

RBi =
(
Bi − B

)100
Yi

, (8)

RMSE =
√∑10

i=1 (Bi)
2

10
, (9)

where P is predicted malaria cases (%); B is average bias for
all years; RMSE is a measure of the precision of the predicted
value and should be as small as possible for unbiased precise
prediction.
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Table 3: Independent evaluation of the best regression model using “Jack knife” technique.

(a) Chittagong: R2 = 0.71 (between simulated and observed malaria cases), RMSE = 1.20

Year excluded
Malaria

observed
Cases (%)
predicted

Bias (%) (Y-P) Relative bias Estimated trend
Predicted

deviation from
trend

(Y) (P) (B) (RB %) (Y trend%) (Q %)

1992 18.18 17.49 −0.69 −2.67 19.20 91.10

1993 18.60 18.44 −0.16 0.25 19.76 93.33

1994 21.91 23.51 1.60 8.23 20.31 115.75

1995 21.95 19.06 −2.89 −12.22 20.86 91.39

1996 22.60 19.22 −3.38 −14.05 21.42 89.73

1997 18.94 19.93 0.99 6.28 21.97 90.70

1998 24.23 24.09 −0.14 0.25 22.52 106.95

1999 24.23 25.03 0.80 4.15 23.07 108.50

2000 23.14 25.33 2.19 10.33 23.63 107.18

2001 23.14 22.79 −0.35 −0.65 24.18 94.24

Mean 21.69 21.49 −0.203 −0.01 21.69 98.89

(b) Sylhet: R2 = 0.37 (between simulated and observed malaria cases), RMSE = 4.30

Year excluded
Malaria

observed
Cases (%)
predicted

Bias (%) (Y-P) Relative bias Estimated trend
Predicted

deviation from
trend

(Y) (P) (B) (RB %) (Y trend%) (Q %)

1992 9.60 15.50 −5.90 9.53 15.91 97.41

1993 12.76 12.50 0.26 7.17 14.88 83.98

1994 21.25 16.37 4.88 4.30 13.85 118.21

1995 20.67 13.67 7.00 4.42 12.82 106.66

1996 12.12 7.49 4.63 7.55 11.78 63.56

1997 7.40 9.68 −2.28 12.36 10.75 90.03

1998 7.03 6.74 0.29 13.01 9.72 69.34

1999 5.85 12.36 −6.51 15.63 8.69 142.27

2000 8.00 6.85 1.15 11.43 7.65 89.59

2001 8.00 6.98 1.02 11.43 6.62 105.50

Mean 11.27 10.81 0.45 9.68 11.27 96.66

(c) Dhaka: R2 =0.83 (between simulated and observed malaria cases), RMSE =1.09

Year excluded
Malaria

observed
Cases (%)
predicted

Bias (%) (Y-P) Relative bias Estimated trend
Predicted

deviation from
trend

(Y) (P) (B) (RB %) (Y trend%) (Q %)

1992 5.40 6.92 −1.52 10.53 7.24 95.57

1993 7.60 7.64 −0.04 7.48 6.54 116.80

1994 7.70 8.53 −0.83 7.39 5.84 146.13

1995 6.90 5.46 1.44 8.24 5.14 106.31

1996 3.00 1.37 1.63 18.96 4.44 30.87

1997 2.03 3.50 −1.47 28.01 3.74 93.45

1998 2.50 2.56 −0.06 22.75 3.05 83.97

1999 2.40 3.56 −1.16 23.70 2.35 151.59

2000 1.70 2.16 −0.46 33.45 1.65 130.71

2001 1.70 1.07 0.63 33.45 0.95 112.43

Mean 4.09 4.28 −0.18 19.40 4.09 106.78
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Figure 6: Correlation between independently predicted and
observed number of malaria cases (% of malaria cases from the total
number of people who come to the regional hospitals with fever).

Models were independently tested, 3 and 4 for Chit-
tagong and 3 for Dhaka and Sylhet divisions (Table 3). In the
estimation of models performance estimation we followed
such rules: (1) for the entire model R2 greater than 70 and
RMSE less than 15%; (2) for individual years bias (B) less
than 2% and relative bias (RB) less than 10%.

The independently validated results presented in Table 3
and Figure 6 show that for the entire models R2 and
RMSE criteria have been met for Chittagong (model 3) and
Dhaka. However, the analysis of annual model’s performance
showed that only Chittagong models perform reliably. In 8
years for Chittagong division, bias was less than 2% and
RB < 10%. Regarding models for minor malaria regions,
the annual results of testing are negative, since as seen
in Table 3, RB indicates strong deterioration of model’s
performance after 1996 (Sylhet RB was 8%–16% and Dhaka4
RB was 19%–33%), while prior to 1996 a RB was 50% less.
Such explanation can be because Bangladesh government
developed very comprehensive measures to combat malaria
in Sylhet and Dhaka. During 1996–2001, this resulted in
a considerable reduction of malaria cases (as shown in
Figure 3), so the data must be interpreted with caution
because of the decline in surveillance activities in the country
over the past few years (WHO 1999).

Bangladesh government has also undertaken malaria-
fight measures in 13 districts from Chittagong, Sylhet, and
Dhaka divisions. However, the effectiveness was not as good
as in the minor malaria region because a large number of
people were exposed to malaria, especially among poor in
Chittagong division (93% of the entire Bangladesh people
were affected). Smaller effectiveness of malaria combat
measures is also indicated by an increase in the number of
malaria cases during 1992–2001 (as shown in Figure 3).

It would be important to emphasize that although
Chittagong models met both performance criteria (for the
entire model and individual years) in some years B, and
RB exceed the threshold’s level. In 1997 (RB = 11%),
models for Chittagong overestimated the number of malaria-
affected people. First, we should emphasize that 1997 was
a strong El Niño year (positive sea surface temperature
anomaly in the tropical Pacific) [24, 25]. As a result, the
southeastern monsoon in Bangladesh was delayed by one
month resulted in a long period of extremely hot and
dry weather. Figure 7 shows TCI and VCI dynamics in
Chittagong. During the investigated years, severe drought
(TCI = 15–30) developed from June through October. Such
conditions produced much stronger impact on mosquito
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Figure 7: Dynamics of TCI during the years of RB exceeding the
evaluation threshold.

development, disrupted reproductive mosquito cycle, and
intensified malaria transmission, which resulted in smaller
number of malaria cases compared to the prediction. To
characterize such extreme conditions, model’s predictors
should characterize longer period (several weeks and even
months), which is not possible now due to a limited statistical
sample.

6. Conclusions

It is shown in the presented study that such parameters as
the amount of rainfall relative humidity and temperature
obtained from the network of ground meteorological sta-
tions cannot be used as proxies for malaria trend in the three
divisions of Bangladesh. It is also shown here that the satellite
data and in particular AVHRR-based VH indices (VCI and
TCI) are highly applicable as proxies for the malaria trend
assessment and also for the estimation of the total number of
malaria cases in divisions of Bangladesh for the period from
1991 to 2001.
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