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This article shows the results of early crop yield prediction from remote-sensing 10

data. The study was carried out in Kansas, USA. The methodology proposed
allows the estimation of winter wheat (WW), sorghum and corn yields 3–4 months
before harvest. The procedure uses the vegetation health (VH) indices (vegetation
condition index (VCI) and temperature condition index (TCI)) computed for each
pixel and week over a 21-year period (1985–2005) from the Advanced Very High 15

Resolution Radiometer (AVHRR) data. Over this period, a strong correlation
was found between crop yield and VH indices during the weather-related criti-
cal period of crop development, which controls much final crop productivity. The
3-month advanced yield forecasts were independently compared with official agri-
cultural statistics, showing that the estimation errors for WW, sorghum and corn 20

were 8%, 6% and 3%, respectively. Implementing the 3–4 months lead forecast in
operational practice will aid farmers to mitigate weather vagaries using irrigation,
diseases/insects control, application of fertilizers and so on during a growing sea-
son and will help decision-makers to regulate marketing strategies, import/export
and price policies and address food security issues. 25

1. Introduction

Over the years, large-area assessment of crop production has been based on in situ
observations such as weather, climate, soil, economic and agricultural technology (e.g.
cultivar changes, fertilizers, breeding, crop’s protection, mechanization, diseases and
pest control), using different modelling methods: stochastic, deterministic (process- 30

based) and their combination (Obuhov 1949). These approaches have been used for
many years, and the applications were conditioned by their advantages and shortcom-
ings. One of the principal shortcomings of these approaches is that in situ observations
are not dense enough in some regions/countries to adequately represent the high spa-
tial variability of many weather parameters, especially precipitation and soil moisture. 35

This is very important in regions/countries with limited and/or variable water supplies
where the majority of staple food crops are grown. Besides, the availability of in situ
observations is often limited due to economic, political and social situations – experi-
enced primarily in non-developed and also in developing countries. Therefore, in the
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2 F. Kogan et al.

recent 20 years, satellite data have been successfully used to monitor crop and pasture 40

growth and development and to assess agricultural production. Crops such as spring
and winter wheat (WW), corn, sorghum and soybeans were investigated in the USA,
Brazil, Argentina, Greece, Morocco, Zimbabwe, China, Mongolia, India, Poland and
other countries. These research works were conducted for the entire country and all
administrative divisions (state, district, county and so on); the accuracy of predictions 45

was estimated at 8–15%, with 1–3 months warnings in advance of the harvest (Hayas
and Decker 1996, Kogan 1997, McVicar and Jupp 1998, Dabrowska-Zielinska et al.
2002, Liu and Kogan 2002, Singh et al. 2003, Kogan et al. 2003, Domenikiotis et al.
2004, Kogan et al. 2005, Mo et al. 2005).

In our recent research (Salazar et al. 2007) it was shown that the vegetation 50

health (VH) indices obtained from the Advanced Very High Resolution Radiometer
(AVHRR) flown on the National Oceanic and Atmospheric Administration (NOAA)
operational polar orbiting satellites since 1981 can be successfully used to estimate
crop yields over large (Kansas State, around 209 920 square kilometres (km2)),
medium (Crop Reporting District (CRD), 20 000–51 000 km2) and small (county, 55

500–1300 km2) administrative regions. Statistical analysis of WW in Kansas indicated
that WW growth and productivity can be monitored during the entire growing season
and that yield can be estimated 1–3 months in advance of the harvest. Specifically, the
WW yield was shown to correlate strongly with AVHRR-based VH indices (Kogan
1997) during the critical period of crop development and that VH indices can be used 60

as yield predictors.
Since the results of modelling a single crop were successful, we expanded the appli-

cation of this approach to two other major crops in Kansas. In this article we compare
the results of WW yield response to VH indices with those for sorghum and corn,
which have different crop calendars and responses to weather fluctuations. In addi- 65

tion, these crops are fundamentally different, since wheat has C3 photosynthetic type
and other two have C4. The specific goals were to (a) investigate whether sorghum and
corn yields, similar to WW yield, correlate strongly with VH indices during the critical
period (when crop productivity is very sensitive to weather conditions, both moisture
and temperature) of their development; (b) investigate whether VH indices can be used 70

as indicators of sorghum and corn yields; (c) build statistical models and investigate
their performance; and (d) develop and investigate a scheme for early assessment of
regional yield.

2. Study area

Kansas, called the ‘granary’ of the USA (Shroyer et al. 2004), was selected as the study 75

area because it plays a leading role in the country’s agricultural economy. Kansas con-
stantly figures among the top states in the production of WW and sorghum, providing
24% and 39%, respectively, of the total value of crop production in the USA during
2003–2005 (table 1, United States Crop Reporting Board (USCRB) 2006). Kansas’
corn accounts for 3.7% of the total production of the USA, yet it is important to the 80

state agricultural economy, since its value is 2–3 times more than sorghum. Besides,
corn is an interesting crop for investigation because it is less drought resistant than
sorghum for the same crop weight.

Kansas’s major soil is Harney silt loam, which possesses the ideal qualities
of a prairie soil with the best combination of physical and chemical character- 85

istics for growing crops and grasses and producing food and feed (USDA/SCS
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Table 1. The average value of crop production (106 US$), Kansas, USA
(USCRB 2006) during 2003–2005.

Crop
Kansas,

USA USA
Kansas (percentage (%) of total USA

crop production)

WW 1263 5157 24.5
Sorghum 330 841 39.2
Corn 882 23 300 3.7

1993). Following FAO/UNESCO classification (http://www.fao.org/ag/agl/agll/wrb/ AQ2

wrbmaps/htm/kastano.htm), Kansas’s prevailing soils are kastanozem type; the
United States Department of Agriculture (USDA) (USDA/SCS 1993) provides addi-
tional information, classifying Kansas soils as prairie of Harney silt loam type. They 90

cover mostly 26 West Central Kansas counties. Crops occupy over 12 million hectares
(56% of the total 21 million hectares), while range and pasturelands occupy over 8
million hectares (37%). Kansas soils directly impact the economic well-being of peo-
ple, providing nearly $7.5 billion annual income (USCRB 2006). Soils under crops in
addition to adequate water, light and growing season thermal resources help Kansas 95

lead the USA states in WW and sorghum production (USDA 2006).
Kansas has a continental climate (Boden et al. 2004). The average annual precipita-

tion during 1990–2000 showed a gradual reduction from 700 to 800 mm in the east to
400 to 500 mm in the west. Most precipitation falls in summer with the monthly aver-
age ranging between 110 mm in the east and 70 mm in the west. Winter precipitation 100

forms snow cover, which can reach up to 40–50 cm per year for the most of Kansas
area except for the north-west, where snow reaches up to 90 cm. The annual average
temperature in Kansas is between 11◦C and 13◦C. Summer is the warmest period,
with the monthly average temperatures of 24–27◦C and the maximum reaching 34◦C.
In general, Kansas’s climate is suited to agriculture, especially in the north central part 105

of the state. WW and sorghum grown here are ideally suited to the climate and soils
of the area. Corn is generally a successful crop, although sustained periods of hot, dry
and windy weather in July and August and maximum temperatures reaching 35–41◦C
occasionally prove disastrous. Such weather normally leads to excessive evapotranspi-
ration, shortages of water and deterioration of VH, which in turn lead to loss in crop 110

production.

3. Data

(◦N) (◦W) AQ3

3.1 Crops

Crop production in tonnes (t), area in hectares (ha) and yield in tonnes per hectare 115

(t ha-1) were obtained from the USDA National Agricultural Statistics Service (NASS)
database site (http://www.usda.gov/nass/) for Kansas from 1980 through 2005. The AQ4

NASS conducts the June Agricultural Survey each year. During the first 2 weeks in
June, about 2400 interviewers contact more than 125 000 farmers, either by telephone
or in person, to obtain information about crop areas that have either been planted 120

or that they intend to plant and the proportion they expect to harvest as grain. Data
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Figure 1. Crop calendar, Kansas, USA (USHCN 2005). AQ10

AQ11

from this survey are used to estimate the total area planted. The sample design for
this survey utilizes two different sampling frameworks. The area framework, which is
essentially the entire land mass of the USA, ensures complete coverage of the USA
farm population. The list framework, a list of known farmers and ranchers, does not 125

provide complete coverage of all farms, allowing the use of efficient data collection
methods (Vogel and Bange 1999).

The calendar of the three investigated crops is shown in figure 1. In Kansas, WW
planting starts late August, with the majority of crops being planted from September
to early October. Heading of WW occurs the following year late April, with ripen- 130

ing by mid–June, when harvesting starts, and concludes in late July/early August.
Sorghum is generally planted in May and June and corn in April and May. The har-
vest of both crops occurs in September and October (figure 1). The critical period to
weather conditions for these crops is from July to August during heading in sorghum
and during silk in corn. 135

3.2 Satellite

The satellite data represented by AVHRR-measured solar radiation reflected or emit-
ted from the land surface were collected from the NOAA global vegetation index
(GVI) data set available from 1981 through present. The GVI data set was developed
by sampling the 4-km2 global area coverage (GAC) data (in 10-bit counts) to 16-km2 140

spatial resolution and compositing from the daily afternoon observations to seven-day
composite (Kidwell 1997). The GVI digital counts in the visible (VIS, 0.58–0.68 µm,
Ch1), near-infrared (NIR, 0.72–1.1 µm, Ch2) and infrared (IR, 10.3–11.3 µm, Ch4)
spectral regions were used in this research. The VIS and NIR counts were converted
into reflectance using pre-launch calibration coefficients, and the resulting values were 145

post-launch calibrated following Rao and Chen (1995, 1996), Kidwell (1997), Rao and
Chen (1999) and Heidinger et al. (2003), normalized by the cosine solar zenith angle
(SZA) and corrected for the Sun–Earth distance. No corrections for water vapour
absorption, aerosol scattering, bidirectional reflectance, sun–sensor geometry, satellite
positioning (pitch, roll, yaw), orbit degradation and random errors were applied. The 150

normalized difference vegetation index (NDVI) was calculated from the corrected VIS
and NIR values as (NDVI = ((NIR) – ‘(VIS)) ((NIR) + 1/(VIS)). The Ch4 counts were
converted into brightness (radiative) temperature (BT) following Kidwell (1997). The
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resulted annual NDVI and BT time series were smoothed statistically by applying a
5-span median filter and the least-squares technique (Kogan 1997) in order to remove 155

high frequency noise in the data set due to the previously mentioned uncorrected
factors.

4. Methodology

The research strategies used here were (a) to extract the weather component from the
annual crop yield time series and from the NDVI and BT weekly time series values 160

and (b) to correlate the weather-related components of crop yield with NDVI and
BT components. The goal was to investigate the strength of the relationship and to
determine whether the strongest correlation coincides with the period (critical) when
the crop productivity is highly sensitive to weather conditions.

4.1 Yield time series 165

WW, sorghum and corn yields during 1980–2005 are presented in figure 2. As seen,
these crops have exhibited positive yield trends since 1980 due to the improvement in
agricultural technology (e.g. cultivar advances, fertilizers, breeding, crop protection).
These yields were approximated by equation (1) (Brockwell and Davis 2000):

Yi = Ti + dYi, (1)

where T is a slowly changing function representing the deterministic component 170

(trend) regulated by agricultural technology, dY is a random component regulated
by weather fluctuations and i is the year or coded year number.

A trend of the form Ti = a0 + a1ti was fitted to the data by choosing the parameters
a0 (intercept) and a1 (slope) and by minimizing

∑
(Yi – Ti)2 from the first to the last

year; finally, the slopes (a1) for WW, sorghum and corn were estimated as 0.0213, 175

0.0258 and 0.0662 (t ha−1 year−1), respectively.
The random component (dY ) can be approximated by either a difference or a ratio

of the actual yield and the trend yield (estimated from equation (1)). If the trend slope
is small, the difference is an appropriate method of approximation (Obuhov 1949),
which we used in this study: 180

dYi = Yi − Ti. (2)

4.2 AVHRR-based VH indices

The principle for constructing VH indices stems from the properties of green veg-
etation to reflect/emit solar radiation in the VIS, NIR and IR wavelengths. If the
vegetation is healthy, it reflects little radiation in the VIS (due to high chlorophyll
absorption of solar radiation), much in the NIR (due to scattering of light by leaf 185

internal tissues and the low absorption by pigments, water and other leaf constituents)
and emits less thermal radiation in the IR spectral bands (because most of the avail-
able energy is partitioned into the latent heat flux compared with the sensible heat
flux resulting in a relatively cooler canopy compared with the case when the canopy
is water stressed). As a result, healthy vegetation has a higher NDVI and a lower BT. 190

Conversely, unhealthy vegetation has a lower NDVI and a higher BT.
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Figure 2. The average annual crop yield time series, Kansas, USA: (a) WW, (b) sorghum and
(c) – corn.

The VH indices were calculated from the NDVI and the BT (equations (3) and (4)).
The details of the algorithm are presented in Kogan (1997). The vegetation condition
index (VCI) characterizes greenness and vigour, and through them, the chlorophyll
and moisture contents. The temperature condition index (TCI) characterizes how hot 195

the land surface is, including the vegetation canopy. Besides, the TCI characterizes the
moisture availability through the near-surface radiation and aerodynamic conditions
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(Jensen 2000, McVicar and Bierwirth 2001, McVicar and Jupp 2002, 1999, Anderson
et al. 2007), which control the surface energy budget and hence the BT:

VCI = 100 × ((NDVI) − (NDVI)min)

((NDVI)max − (NDVI)min)
, (3)

TCI = 100 × ((BT)max − (BT))

((BT)max − (BT)min)
, (4)

where NDVI, NDVImax, NDVImin, BT, BTmax and BTmin are the smoothed weekly 200

NDVI or BT and their 1985–2005 absolute maximum (Amax) and absolute minimum
(Amin). Since the Amax and Amin reflect the lowest and the highest values of NDVI and AQ5

BT for each week during the 24 years of observation period, they can be considered
the extreme thresholds of the annual NDVI and BT fluctuations. The NDVI and BT
envelops, outlining these thresholds in the annual cycle, permit one to estimate whether 205

a particular year’s NDVI and BT are closer to Amin (the lowest greenness (equation
(3)) and the highest BT (equation (4)) indicating vegetation stress, or closer to Amax

(highest greenness and lowest BT) indicating healthy conditions, or between Amax and
Amin. Similarly to climatic thresholds (average, minimum, maximum and so on), we
named the Amax–Amin envelop as ‘climatology’ relative to which the NDVI and BT 210

are expressed as VCI, TCI and VHI. VH indices change from 0, quantifying severe
vegetation stress, to 100, quantifying favourable conditions (Kogan 1997). The average
Kansas spatial values of VH indices for each week and crop during 1985–2005 were
calculated for the major areas of each investigated crop location in Kansas (figure 3).

The NOAA-11 AVHRR instrument unexpectedly failed on 13 September 1994. AQ6
215

Therefore, the 1995 data for WW and 1994 data for sorghum and corn were
excluded from the analysis. This situation caused a gap in the afternoon observations
between September 1994 and February 1995, when the NOAA-14 became operational.
Moreover, the data from June to September (the period critical for corn and sorghum

Figure 3. The satellite data collection for the major crop areas (white part). The pixel data
were averaged over the white area for each week of 1985–2005 and for each crop, Kansas, USA
(USCRB 2006).
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production) of 1993 were removed from the statistical analysis because record flooding 220

occurred across North Dakota, South Dakota, Nebraska, Kansas, Minnesota, Iowa,
Missouri, Wisconsin and Illinois (Stallings 1994). This flooding produced much stand-
ing water, resulting in greatly reduced NDVI values compared with other years (water
strongly absorbs radiation in NIR and marginally impacts VIS, resulting in a near-zero
and/or negative NDVI). 225

4.3 Other methodological considerations

One of the principles used in the data analysis was to investigate the relationship
between the in situ and satellite data characterizing weather component. Therefore,
the data were expressed as a deviation from some standards: for yield – from the
upward trend (expressed as dY ) and for VH (VCI and TCI) – from NDVI and BT 230

climatology. Both correlation and regression analysis of these deviations were per-
formed to investigate the association of dY with VCI and TCI. We correlated dY of
each crop with each week’s VCI and TCI during 1985–2005 to investigate whether dY
correlates strongly with VH indices during the ‘critical period’ (a period of strong crop
response to changes in weather conditions) of the investigated crops and to find the dif- 235

ferences and similarities in the investigated crops’ response and their correspondence
to each crop growth and development. In addition, since the critical period continues
for 4–7 weeks in a row, all these weeks might show a strong correlation between dY and
VH indices. An inclusion of all these weeks in the statistical models is not advisable,
since the independent variables (VH indices) are highly collinear (correlate strongly 240

with the neighbouring periods’ VH). Therefore, two types of dY models were investi-
gated: (a) with the independent variables for the week (during the critical period) with
the highest Pearson correlation coefficient (equation (5)) and (b) several weeks indices
(during the critical period) with the Pearson correlation coefficient greater than 0.5.
In the second case, the mean values for the selected weeks were used as independent 245

variables (equation (6)):

AQ7dY = a0 + b1 (VCI)i + b2 (TCI)j + e, (5)

dY = a0 + b1

∑ (VCI)i

n
+ b2

∑ (TCI)j

m
+ e, (6)

where i and j identify a week number for VCI and TCI, respectively; n and m identify
the number of weeks for which the mean VCI and the mean TCI, respectively, are
calculated; and e is the error (Table 2). AQ8

An important step in building statistical models is to test model predictions inde- 250

pendently, since tests using the same training data would be very optimistic. The
approach of reserving part of the data for validation is problematic when the quantity
of data is limited as in this case. An alternative approach used here is cross-validation
(‘leave-one-out’). In this approach, a single year was left out one by one from the data
set, a model was built and prediction was made for the eliminated year. As a result, 255

20 independent comparisons between the model predictions and observations were
made.

To estimate the reliability of independent predictions, the corresponding verifica-
tion model statistics were generated. Test criteria have been separated into two groups:
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Table 2. Pearson correlation coefficients of dY with the vegetation condition index (VCI) and
temperature condition index (TCI) for the period critical to crop dependence on weather,

Kansas, USA.

Winter wheat with VCI

VCI12 VCI13 VCI14 VCI15 VCI16 VCI17 VCI18 VCI19 VCI20 VCI21
dY 0.8222 0.8645 0.8641 0.8772 0.8724 0.8686 0.8749 0.8722 0.8753 0.8433

Sorghum with VCI

VCI28 VCI29 VCI30 VCI31 VCI32 VCI33 VCI34 VCI35 VCI36 VCI37
dY 0.7873 0.8088 0.8182 0.8682 0.8761 0.8848 0.8792 0.8751 0.8506 0.7649

Corn with VCI

VCI31 VCI32 VCI33 VCI34 VCI35 VCI36 VCI37 – – –
dY 0.8539 0.8638 0.8798 0.8528 0.8629 0.8194 0.7771 – – –

Winter wheat with TCI

TCI16 TCI17 TCI18 – – – – – – –
dY 0.693 0.7318 0.7205 – – – – – – –

Sorghum with TCI

TCI27 TCI28 TCI29 TCI30 TCI31 TCI32 TCI33 – – –
dY 0.7825 0.8416 0.8602 0.8667 0.8283 0.8023 0.7661 – – –

Corn with TCI

TCI28 TCI29 TCI30 TCI31 TCI32 TCI33 TCI34 – – –
dY 0.7692 0.8497 0.8746 0.8966 0.8834 0.8905 0.821 – – –

Notes: Numbers attached to VCI and TCI indicate the week number of the calendar year, where
week 1 is 1–7 January. Dashes indicate that the correlation coefficient is less than 0.5.

summary measures and difference measures. The first one includes the mean (Ō) of the 260

observed values (Oi) and the mean (P̄) of the predicted values (Pi), while the second
one describes the quality of simulation and includes the mean bias error (MBE, equa-
tion (7)) and the root mean square error (RMSE, equation (8)). They all are calculated
according to Willmott (1982) and based on the term of (Pi–Oi):

(A) Mean bias error (MBE): MBE =
∑ ((Pi) − (Oi))

n
, (7)

(B) Root mean squared error (RMSE): RMSE =
∑ ((Pi) − (Oi))

2

n
. (8)

The summation is done from case 1 (i = 1) to case n (i = n). 265

5. Results and discussion

Figure 4 shows the dynamics of correlation coefficients for the end-of-season dY
of each crop with each week’s (from the first week in January to the last week in
December) VCI and TCI during 1985–2005. The goals were to investigate if (a) dY
correlates strongly with VH indices during the ‘critical period’ (a period starting from 270
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2 to 3 weeks before flowering and ending with grain filling) of the investigated crops;
(b) dY correlates weakly during non-critical and/or out of the growing season peri-
ods; and (c) to find the differences and similarities in crops’ response to VCI and TCI
and the correspondence of this response to crops’ growth and development.

The correlation results (figure 4) emphasize first a distinctive and right difference 275

between an early maturity season of WW, in which flowering and grain filling occur
during April–May, and summer crops (sorghum and corn), which reproduce during
July–September. As expected, the correlations of WW’s dY with VH indices are low
during January–March when WW is dormant and the indices are driven by soil and
snow rather than by vegetation. WW’s dY is highly correlated with VCI (0.82–0.88) 280

during weeks 12–21 (April to May), when WW is heading, flowering and filling grain.
Similarly, WW is highly correlated with TCI (0.69–0.73) during weeks 16–18 (late
April–early May, see table 3). The indicated period is the most critical for WW because
optimal moisture and thermal conditions are needed for maximum WW productivity.
Both VCI and TCI reflect this situation quite well correlating strongly with dY . By 285

early summer, when harvest starts and ends a few weeks later, correlations of WW dY
with VH indices drop very quickly.

Summer crops have the same bell-shaped correlation curve dynamics reflecting
sorghum and corn responses to changes in weather conditions (see figure 4). During
July–September when sorghum and corn biomasses are developing, correlations of 290

dY with VCI and TCI are very strong. These crops are very sensitive to moisture and
thermal conditions, which are indirectly represented by VCI and TCI, respectively.
For sorghum, the highest correlation of dY with VCI (0.76–0.88) occurs during weeks
28–37 (mid-July–mid September) and with TCI (0.77–0.87) occurs during weeks 27–33
(July–mid-August). For corn, the strong correlation of dY with VCI (0.78–0.88) occurs 295

during weeks 31–37 (August–mid-September), and with TCI (0.77–0.90) during weeks

Table 3. Regression of dY on the two independent variables, VCI and TCI, for 1 week
with the highest correlation coefficient (model approximated by equation (5)).

Coefficients Parameter estimate SE (t ha–1) t-Value p-Value

Winter wheat∗
a0 −0.7658 0.1078 −7.1033 0.0000
b1 0.0105 0.0023 4.6247 0.0002
b2 0.0033 0.0023 1.4339 0.1697

Sorghum†
a0 −1.6317 0.1475 −11.0615 0.0000
b1 0.0165 0.0034 4.9330 0.0001
b2 0.0138 0.0032 4.3674 0.0004

Corn‡
a0 −1.7025 0.1505 −11.3151 0.0000
b1 0.0152 0.0037 4.0983 0.0007
b2 0.0179 0.0038 4.6833 0.0002

Notes: ∗Residual SE: 0.1853 on 17 degrees of freedom (DF). Multiple R2 = 0.7943.
F-statistic: 32.83 on 2 and 17 DF, p-value: <0.0001.
†Residual SE: 0.2598 on 17 DF. Multiple R2 = 0.8977. F-statistic: 74.5855 on 2 and 17
DF, p-value: <0.0001.
‡Residual SE: 0.2465 on 17 DF.
Multiple R2 = 0.9014. F-statistic: 77.68 on 2 and 17 DF, p-value: < 0.0001.
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28–34 (mid-July to August) (see table 3). During the indicated periods, sorghum and
corn are very sensitive to environmental stress such as a very high temperature, nutri-
ent deficiency and water deficit or excess; any of which may reduce the potential crop
yield. High correlations of dY with VCI and TCI during the investigated crops’ crit- 300

ical period show the ability of the indices to be used as indicators of crop yield. It is
important to note that the correlation of dY with VH indices, during the sorghum crit-
ical period, is slightly lower than that during the corn critical period. This is because
sorghum is more resistant to drought than corn. It is important to emphasize that,
since VCI is an integral or cumulative indicator of crop growth, whereas TCI is not 305

because it is driven by both thermal conditions and moisture availability, the critical
period characterized by TCI starts earlier and is shorter than that characterized by
VCI (see figure 4).

Figure 4. Dynamics of the Pearson correlation coefficient () of dY for WW, sorghum and corn AQ12
with (a) and Kansas, USA (small negative values on the Y -axis are not shown).
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Figure 5. Scatter plots of dY with VH indices for the weeks with the highest correlation,
Kansas, USA: (a) WW, (b) sorghum and (c) corn.

Figure 5 shows the scatter plots of dY with VH indices for the weeks with the
highest correlation coefficients. Positive correlation of dY with VCI indicates that the 310

transition from moisture stress to no stress (an increase in vegetation greenness) is
accompanied with dY change from below to above the trend line; positive correlation
with TCI indicates that dY changes from below to above trend when BT has similar
to VCI stress-to-no stress changes (reduced from hot to cool, see equation (4)). Except
for a few cases, extreme deviations in dY are associated with VCI and TCI below 20 315

and above 80. It is important to note that standing water and/or soil saturation reduce
NDVI producing false signal in dY estimation. Such a situation occurred in 1993 when
excessive early spring rainfall produced flood in the USA’s Midwest, including a part
of Kansas. As a result, WW yield was reduced, which is observed in figure 5 (week 15),
where one point showed below trend dY for a very high (90) VCI value. Fortunately, 320

such conditions do not occur frequently and/or rarely cover a large area.
Table 3 shows that the highest correlation of dY with VCI for WW, sorghum and

corn was for weeks 15, 33 and 33 and with TCI for weeks 17, 30 and 31, respectively. If
VCI and TCI for these weeks (see figure 5) are used as the only independent variables
in a simple linear regression model, these would account for 77%, 78% and 77% (VCI) 325

and 54%, 75% and 80% (TCI) of the variation in dY for WW, sorghum and corn,
respectively (figure 5).
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Table 4. Regression of dY on the two independent variables, mean VCI and mean TCI
(model approximated by equation (6)).

Coefficients Parameter estimate SE (t ha–1) t-Value p-Value

Winter wheat∗
a0 −0.7402 0.0993 −7.4524 0.0000
b1 0.0123 0.0024 5.1110 0.0001
b2 0.0013 0.0023 0.5498 0.5896

Sorghum†
a0 −1.6343 0.1515 −10.7905 0.0000
b1 0.0161 0.0035 4.5779 0.0003
b2 0.0144 0.0037 3.9025 0.0011

Corn‡
a0 −1.5873 0.1306 −12.1542 0.0000
b1 0.0154 0.0031 4.9481 0.0001
b2 0.0168 0.0030 5.5801 0.0000

∗Residual SE: 0.1763 on 17 DF. Multiple R2 = 0.8140. F-statistic: 37.19 on 2 and 17
DF, p-value: <0.0001.
†Residual SE: 0.2667 on 17 DF. Multiple R2 = 0.8922. F-statistic: 70.34 on 2 and 17
DF, p-value: <0.0001.
‡Residual SE: 0.2285 on 17 DF. Multiple R2 = 0.9152. F-statistic: 91.78 on 2 and 17
DF, p-value: < 0.0001.

Although there was only a 1–2% difference between the R2 (coefficient of determina-
tion) values, we developed two regression models (a) and (b) using dY as a dependent
variable and VCI and TCI as independent variables. Model (a) uses VCI and TCI for 330

1 week only with the highest correlation coefficient between dependent and indepen-
dent variables (figure 5, equation (5)) and model (b) uses the average VCI and TCI
for several weeks with the highest correlation (equation (6)). Tables 3 and 4 show the
results of fitting an ordinary least squares (OLS) regression model given by equations
(5) and (6) designed to estimate dY . The regression results support our preliminary 335

conclusions from the analyses of figures 4 and 5. Table 3 shows that there is a strong
relationship between dY and the independent variables (weeks with the highest cor-
relation coefficient of each crops’ dY with VCI and TCI, figure 5). The R2 values are
0.79, 0.90 and 0.90 for WW, corn and sorghum, respectively. The tests of the compos-
ite hypothesis showed that all regression coefficients are statistically significant with 340

F-statistic of 32.83, 74.59 and 77.68, respectively.
Similarly, table 4 shows that there is also a strong relationship between dY and the

independent variables (average VCI and TCI for several weeks with significant corre-
lation, table 3). The R2 values are 0.81, 0.89 and 0.92, respectively, for WW, corn and
sorghum. The test of the composite hypothesis showed that all regression coefficients 345

are statistically significant with F-statistic of 37.19, 70.34 and 91.78, respectively. This
is a very important result indicating that VH indices can be applied to many crops
with different physiology and requirements to weather conditions.

Figure 6(a) and (b) display the observed (O) versus the independently simulated
(predicted, P) crop yield. The R2 values of 0.78, 0.87 and 0.87 (equation (5)) and 0.80, 350

0.86 and 0.89 (equation (6)) show that in most years, WW, sorghum and corn yields
in Kansas can be modelled by the VH variables during the critical period (equations
(5) and (6)). These results are slightly better for sorghum and corn, whose growing
seasons start and end in the same year, than for WW, whose growing season spans
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Table 5. Statistics (t ha−1) of an independent testing of simulated (P) versus observed (O) yields
for models approximated by equations (5) and (6), Kansas, USA.

Equation (5) Equation (6)

Crop Ō P MBE Var RMSE P MBE Var RMSE

WW 2.5286 2.5278 −0.0008 0.0425 0.2010 2.5267 −0.0019 0.0389 0.1923
Sorghum 4.2056 4.2041 −0.0015 0.0703 0.2584 4.2072 0.0016 0.0744 0.2658
Corn 8.3767 8.3728 −0.0039 0.0648 0.2482 8.3728 −0.0039 0.0648 0.2275

from autumn to early summer of the following year. Residual values in individual 355

years typically range between 0.12 and 0.23 t ha‘−‘1year‘−‘1 for WW, 0.22 and 0.32 t
ha‘−‘1year‘−‘1 for sorghum and 0.18 and 0.25 t ha‘−‘1year‘−‘1 for corn.

Table 5 shows the statistics of (P) versus (O) fit for models approximated by equa-
tions (5) and (6). We should emphasize first that the difference in the statistics between
the two models for all parameters, MBE, Var and RMSE, is negligible. Therefore, 360

both models can be used for prediction. However, the models where a single-week VH
index is used as a predictor (equation (5)) are preferable, since these have 1–3 weeks
lead time versus multi-week models (equation (6)). Second, corn and sorghum show
larger RMSE and Var compared with WW. However, the error of prediction for WW
is larger (7.95%) (WW is a three-season crop – fall, winter and spring) compared with 365

6.14% and 2.96% for single season crops sorghum and corn (equation (5)). Equation
(6) models show similar results (7.68%, 6.39% and 2.72%).

In summary, the independent cross-validation suggests that WW, sorghum and corn
yields can be forecasted with high accuracy from AVHRR-based VH indices (figure 6).
In general, the models, in addition to correctly predicting the yield values, also cor- 370

rectly predict the direction of yield anomalies (deviation from the trend) for most of
the years.

6. Conclusions

In this research, two AVHRR-based VH indices characterizing vegetation greenness
and vigour (VCI) and also moisture and thermal conditions (TCI) were used as 375

yield predictors of three different crops, WW, sorghum and corn in Kansas, USA.
Modelling and independent testing showed that the yield of all three crops can be
effectively predicted from the indices 2–4 months before harvest, giving farmers and
others in the industry the opportunity to use this information to make more efficient
crop management and market decisions. 380

The current research was limited to three crops of the many grown in the Great
Plains, USA. However, the important fact is that these crops were quite different in
physiology, crop calendar and requirement to environmental conditions. WW, a C3
crop, spans from autumn through early summer, whereas sorghum and corn (C4) are
summer crops. Corn has a low resistance to drought compared with sorghum. Despite 385

the differences, all three crops showed very good results of independent validation
(explaining 80–90% of dY variance). The forecast of the simulated yields was inde-
pendently compared with official agricultural statistics, showing that the errors of the
estimates of WW, sorghum and corn are 8%, 6% and 3%, respectively.

This article also showed that there is potential for VH application in modelling 390

other weather-dependent crops. It is important to state that VCI is an integral and
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Figure 6. Observed and independently predicted average Kansas (USA) crop yields using
models approximated by equations (5) (a) and (6) (b).

cumulative indicator of crop growth, whereas TCI is not because it is driven by thermal
condition and moisture availability; therefore, the critical period characterized by TCI
starts earlier and is shorter than that characterized by VCI. Interestingly, the models
that used independent variables for 1 week only (with the strongest impact on yield) 395

showed similar results as the models that used independent variables for several weeks
with a high correlation. This indicates that single-week models are preferable, since
they have 1–3 weeks lead time versus multi-week models.

The suggested approach can be improved through combining VH indices with
weather parameters, especially those measuring winter conditions (snow cover, min- 400

imum temperature). The potential for improvements can come from addressing the
non-linear statistical methods and alternative statistical approaches to the multiple
linear regression.
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