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Abstract  Weather related crop losses have always been a concern for farmers, governments, traders and policy makers 
for the purpose of balanced food supplies, demands, trade, and distribution of aid to nations in need. This paper discusses 
the utility of Advanced Very High Resolution Radiometer (AVHRR)-based vegetation health (VH) indices as proxies for 
modelling inter annual variation in Aman rice (AR) yield in Bangladesh and for early estimation. We compare annual local 
and hybrid AR yield with VH Indices computed for each week during 1991–2005. A strong correlation was found between 
AR yield and VH during the period of AR development that occurs during one/two months in advance of harvest (early 
October to early November). Stepwise principal components regression (PCR) was used to construct a model to estimate 
yield as a function of critical-period VH indices. The model reduced the yield prediction error variance by 97% and 92% 
compared with a prediction of average local Aman rice (LAR) and hybrid Aman rice (HAR) yield for each year respec-
tively. 
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1. Introduction 
The major rice producing countries are China, India, In-

donesia, Bangladesh, Myanmar, Vietnam and Thailand[1]. 
Bangladesh is a densely populated agriculture-based coun-
try and rice is the major crop of the country. The introduc-
tion of new crop varieties, increased utilization of chemical 
fertilizer, pesticides, exploitation of ground water for irriga-
tion have significantly increased the rice crop yield over the 
country though the rate is still much below the highest at-
tainable value[2]. In Bangladesh, nearly 50% of the cropland 
is double cropped and 13% is triple cropped[3]. As a result, 
much of the country has areas where the fraction of sown rice 
is over 90% of the land area. Rice ecosystems in Bangladesh 
are dominated by rain fed (over 50% of the rice area) and 
irrigation, although significant amounts of upland and 
deepwater rice still exist. Bangladesh produces near 40 mil-
lion ton and imports one million ton rice yearly[4]. This 
paper focuses on rice because it is the largest and most 
widely cultivated food crop in Bangladesh. 150 million 
people of that country obtain 60–70% of their calories from 
rice and its products. Recent floods and cyclones have un-
derscored the need for objective and quantitative informa- 
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tion on crop conditions in a timely manners. Rice growth 
monitoring and yield estimation can provide important in-
formation for government agencies, commodity traders and 
producers in planning harvest, storage, and transportation 
and marketing activities[5].  

Bangladesh has three rice crops/seasons within a year; the 
Boro crop, the Aman crop, and the Aus crop, which account 
for approximately 50%, 43%, and 7% of total annual rice 
production respectively[4]. Monsoon rains are most impor-
tant for the Aman crop, harvested in November/December. 
Two varieties of Aman rice (ie. local and hybrid) are culti-
vated in Bangladesh. It also categorized as two plantings 
type namely broadcast and transplant Aman. This rice re-
quires a special habitat of prolonged flooding. Most Aman is 
transplanted between end June to mid-August; however 
planting can occur as late as the last week of September and 
harvested in November/December (source: FAO).  

Aman rice phenology can be divided into three distinct 
phases: (1) vegetative phase (2) reproductive phase and (3) 
ripening phase. The vegetative phase starts at germination 
and ends at the onset of panicle initiation. The number of 
days in this phase varies in different varieties from 55–85 
days. The reproductive phase is critical for Aman yield. It 
begins at panicle initiation and ends at flowering and char-
acterized by culm elongation (which increases plant height), 
decline in tiller number, emergence of the flag leaf (the last 
leaf), booting, heading, and flowering. At this phase, the 
plant is most sensitive to stresses including low and high 
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temperatures and drought. The ripening phase starts at 
flowering and ends at maturity. Rainy days or low tem-
peratures may lengthen the ripening phase, while sunny and 
warm days may shorten it. The number of days in the re-
productive phase and the ripening phase are the same among 
most rice varieties usually 30–35 days each[4]. 

Higher Aman rice yields are associated with early rainfall 
and a milder flooding pattern. Production of Aman rice has 
suffered in some recent years due to unfavourable weather. 
Agriculture is always vulnerable to unfavourable weather 
events and climatic conditions. Despite technological ad-
vances such as improved crop varieties and irrigation sys-
tems, weather and climate are still key factors in agricultural 
productivity. Often the linkages between these key factors 
and production losses are obvious, but sometimes the link-
ages are less direct. The impacts of climate change on agri-
cultural food production are global concerns, and they are 
very important for a country like Bangladesh. The role of 
temperature and rainfall at different growth stages has been 
investigated for Aman, Aus and Boro rice. Temperature 
seems to have positive effect on the yields of the three types 
of rice[2]. 

Many empirical models have been developed to estimate 
crop yield before harvest. However, most of the methods 
require field data on crop conditions that are not easily 
available. The models’ complexity and their data require-
ments render them impractical for large-scale applications. 
Another approach uses weather data and models based on 
weather parameters[6]. Such techniques also bear a number 
of problems including the spatial distribution of the weather 
stations, incomplete and unavailable timely weather data, 
and weather observations that do not adequately represent 
the diversity of weather over the large areas where crops are 
grown. In particular, the weather station network in Bang-
ladesh is not dense enough for efficient monitoring[2]. A 
crop monitoring system that provided timely and accurate 
information on crop status and yield well before the har-
vesting period and without requiring a dense ground-based 
observation network would be of great value. This paper 
investigates the potential of using remote sensing technol-
ogy in this endeavour. AVHRR-based vegetation health 
indices were found to be very useful for early drought and 
flood detection and monitoring their impacts on crop and 
pasture production around the world[7]. Application of 
AVHRR-based vegetation health indices for characteriza-
tion of the impact of weather conditions on Aman rice yield 
has also been investigated. 

2. Study Area and Data 
The study area is Bangladesh, bounded between 20°34" 

and 26°38" north latitude and 88°01" and 92°41" east longi-
tude (http://www.bangladeshgov.org/bdmaps). Bangladesh 
lies in the Indo-Gangetic plain of South Asia, bordered by 
India to the west, north and north-east, Myanmar to the 
south-east and Bay of Bengal to the south. The territory is 

situated on one of the largest, complex deltas in the world 
where the Ganges, Brahamaputra and Meghna rivers enter 
the Bay of Bengal. Climate of Bangladesh is sub-tropical 
warm, wet and humid[8]. The country experiences natural 
disasters such as excessive rainfall (floods), droughts and 
tropical cyclones, which can negatively impact agricultural 
yield. There are three seasons: a hot or summer season 
(March to June), a warm and humid monsoon season (June 
to September) and a cold and dry season (October to Febru-
ary)[2]. The annual average rainfall varies from 1,500 mm 
to 5,000 mm, temperature and humidity range is 12–30℃° 

and 65–90%[8]; respectively. Bangladesh has 6 administra-
tive Division: Barisal, Chittagong, Dhaka, Khulna, Rajshahi 
and Sylhet. Aman rice is mainly grown on the floodplains 
and deltas of the Meghna, Jamuna, and Ganges river sys-
tems[9]. 

2.1. Aman Rice 

Aman rice production data were collected from the 
Bangladesh Bureau of Statistics, which estimates Aman rice 
production and area sown from sampling surveys. Yield 
was calculated by dividing total Aman production by the 
sown area[4]. 

2.2. Satellite Data 

Satellite sensor data included AVHRR-measured solar 
energy reflected/emitted from the land surface (in 8–bit 
counts) collected from the National Oceanic and Atmos-
pheric Administration (NOAA) Global Vegetation Index 
(GVI) dataset from 1981 through 2005. Spatial data resolu-
tion was 4 square km, sampled to 16 square km, and the 
original temporal resolution of 1 day was sampled to 7–day 
composite[7]. The GVI counts in visible (VIS, 0.58–0.68μm, 
Ch1), near infrared (NIR, 0.72–1.00μm Ch2) and infrared 
(IR, 10.3–11.3μm, Ch4) spectral regions were used in this 
research. Post-launch–calibrated VIS and NIR counts were 
converted to reflectance[9] and used to calculate the nor 
malized difference vegetation index (NDVI= (NIR –VIS)/ 
(VIS+NIR)). The Ch4 counts were converted to brightness 
(radiative) temperature (BT). 

In order to reduce long-term systematic errors in GVI time 
series the following procedure was used: The VIS and NIR 
channel values were post launch calibrated following 
Kidwell[10] and normalized by the cosine solar zenith angle 
(SZA) and corrected for Sun-Earth distance. Quality/cloud 
(QC) masks were developed for each weekly image based on 
climatology of channel 4 temperatures. For data smoothing a 
combination of a compound median filter and the least 
square technique was applied to the weekly time series. This 
smoothing completely eliminates high frequency outliers, 
including random effects and pulled out low-frequency 
weather related fluctuations (valleys and hills in the NDVI 
and BT time series) during the annual cycle. After smoothing, 
inter-annual differences due to weather variations in NDVI 
and BT became more apparent[11].  

Furthermore, previous research showed that when VH 
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indices are correlated with yield anomalies, correlation co-
efficient increases considerably during the critical period of 
crop growth and development. This fact alone indicates that 
VH indices can be used as proxies for assessment of crop 
conditions and productivity [6,11]. 

3. Methodology 
3.1. Aman Rice 

With the development of technology (breeding, mecha-
nization, fertilizer, etc) over long period yield of any crops 
is constantly improving. These improvements of yield can 
be approximated by either linear or non-linear depending on 
longevity of yield series and climate contribution and de-
scribed trend in yield time series. At a general background 
of the technology-related trend, yield fluctuates around the 
trend from year to year due to weather variation. If weather 
is favourable for crop growth yield exceeds the level esti-
mated from the trend and in case of unfavourable weather 
yield drops below the trend. Yield time series were sepa-
rated into two components: technology-related trend and 
yield deviation from the technological trend. The first char-
acterizes long-term yield tendency associated with technol-
ogy change and the second characterizes variation of yield 
around the trend due to year to year weather fluctuations. 
The second component is normally expressed as a ratio of 
actual to trend-estimated yield. 

The research strategy of this paper was to: (1) extract the 
weather component from Aman rice annual yield, NDVI 
and BT values and (2) correlate the weather-related com-
ponent of yield with the corresponding components of 
NDVI and BT. The latter two were expressed in the form of 
VH indices[7]. The goal was to investigate the strength of 
the relationship and determine if the strongest correlation 
coincides with AR's critical period, which is the period 
when AR production is highly sensitive to weather condi-
tions. 

 
Figure 1.  Production of Aman rice per hector in Bangladesh and trend 
line 

Following Brockwell and Davis[12], we first attempted 
to fit a linear trend to model secular, non-weather-related 
variation in the local and hybrid AR yield time series (Fig-
ure 1).We expressed the variations in rice yield following 

equation: 
Yt=Tt + dYtt, t=1, …. , n=15,          (1) 

Where, Tt is a slowly changing function representing the 
deterministic component (trend) which is regulated by ag-
ricultural technology and dYt is a random component regu-
lated by weather fluctuations. 

The deterministic component (Tt) was estimated using 
the least squares method. If the yield time series are longer 
than 30–35 years they might be approximated by a second 
degree polynomial, e.g.  

Tt=a0 + a1t + a 2t2,                (2) 
By choosing the parameters a0, a1 and a2 to minimized

2
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−∑ . For shorter time series, as in our case, linear 

approximation is sufficient to satisfy the minimum criteria. 
The random component (dY) was expressed as a ratio of 

observed to trend-estimated yield. 
dYt = Yt/Tt                   (3) 

Figure 2 shows that both LAR and HAR yield increases; 
this is due to technology improvement. For any year, trend 
estimates that yield level which is associated with the con-
tribution of agricultural technology to crop production line 
provided that the weather was near normal (close to the 
multi-year mean). Yield deviation from the average is asso-
ciated with weather fluctuations. For example, deviation of 
LAR yield from the average value in 1999 and 2001 were 
estimated at 83 and 109, respectively, indicating 17% yield 
reduction in 1999 due to unfavourable and 9% increase due 
to favourable weather in 2001. 

3.2. Vegetation Health Indices 

GVI data set was developed by sampling 4 square km 
Global Area Coverage (GAC) data to 16 square km spatial 
resolution and daily observations to seven-day composite 
[7,10]. The principle for constructing VH indices stems 
from the properties of green vegetation to reflect VIS and 
NIR and emit IR solar radiation. If vegetation is healthy it 
reflects little radiation in the VIS (due to high chlorophyll 
absorption of solar radiation), much in the NIR (due to 
scattering of light by leaf internal tissues and water content) 
and emits less thermal radiation in the IR spectral bands 
(the transpiring canopy is cooler). As a result, for healthy 
vegetation, NDVI is large and BT is small. Conversely, for 
unhealthy vegetation, NDVI is small and BT large [13]. 

The VH indices were calculated from NDVI and BT. 
Here, only important steps are mentioned, which include (a) 
complete elimination of high frequency noise from NDVI 
and BT annual time series, (b) approximation of annual 
cycle, (c) calculation of multi-year climatology and (d) es-
timation of medium-to-low frequency fluctuations during 
the seasonal cycle (departure from climatology) associated 
with weather variations. The Vegetation Condition Index 
(VCI) characterizing moisture and Temperature Condition 
Index (TCI) characterizing thermal conditions were calcu-
lated as: 

VCI=100(NDVI-NDVImin)/(NDVImax-NDVImin)   (4) 
TCI = 100(BTmax - BT)/(BTmax-BTmin)        (5) 
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where NDVI, NDVImax, NDVImin, BT, BTmax and 
BTmin are the smoothed weekly NDVI (BT) and their 
1991–2005 absolute maximum and minimum (climatology), 
respectively. The VH indices range from 0 (severe vegeta-
tion stress) to 100 (favourable conditions)[7]. 

4. Aman Rice and the Environment 
The Aman crop experiences extremes of dry and wet 

conditions over its long growing season. Temperature has 
positive effect on the yields of all three rice seasons in 
Bangladesh. In case of Aman rice, rainfall at the early stage 
seems to be negatively correlated. However, during the 
growing and flowering stages, the rainfall seems to be posi-
tively correlated. 80–90% of the total rainfall occurs within 
four months from June to September. December to mid- 
March is almost rainless. For rain-fed crop Aman, during 
panicle initiation & flowering stage water shortage normally 
occurs. Due to shortage of water, fertilizer cannot be trans-
ferred from soil to leaves for uninterrupted photosynthesis 
during limited daytime. As a result crop yield is reduced and 
more empty grains are produced. Monsoon rains are most 
important for the Aman crop, harvested in November/ De-
cember[1]. 

Satellite data were collected for 6 administrative divisions 
of Bangladesh. In each administrative division spatial aver-
age values of VH were calculated for each week during 
1991–2005. Weekly VH indices for Bangladesh as a whole 
were calculated as average vegetation health indices for the 
six administrative divisions. 

 
Figure 2.  Dynamics of correlation coefficient for dY versus VCI and TCI 

5. Results and Discussion 
Since dY and VH indices were similarly expressed as a 

deviation from climatology (from the mean value for yield 
and from max-min for VH), further examination included 
correlation and regression analysis of these deviations to 
investigate the association between them for LAR and HAR. 
Figure 2 shows dynamics of correlation coefficients for DY 
versus VCI and TCI between weeks 20 (end of May) and 45 

(early November). These results were analyzed first, to in-
terpret the response of AR yield to moisture (VCI) and 
thermal (TCI) conditions expressed by the vegetation health 
indices.  

As seen in Figure 2, for dY for both type AR is highly 
correlated with VCI And TCI during early October to early 
November (weeks 40–43). Correlation coefficients for LAR 
VCI (–0.6–0.69) and TCI (–0.39–0.40) and HAR is VCI 
(–0.53–0.59) and TCI (–0.46–0.53). This period is known 
as very critical for both types of Aman yield, because Aman 
rice yield goes through reproductive phase begins at panicle 
initiation and ends at flowering and ripening phase starts at 
flowering and ends at maturity. 

The observed negative correlation of dY with VCI indi-
cates that above average AR yield is associated with dryer 
conditions (VCI<50 or reduced vegetation greenness, Equa-
tion 2). Oppositely, low yield is associated with moist con-
ditions (VCI>50 or larger vegetation greenness). This con-
firms that in average wet climate excessive rainfall during 
monsoon season negatively affects average Aman yield 
production. The observed negative correlation of yield with 
Vegetation Health Indices indicate that below average AR 
yield is associated with higher TCI (cooler thermal condi-
tion) and VCI (high rainfall) and above average yield is 
associated with lower TCI (hotter) and VCI (lower rainfall) 
during weeks 40–43[14].  

In the statistical analysis we used both bivariate correla-
tions and multiple regressions. The bivariate correlations 
(Figure 2) revealed that dY for LAR and for HAR were 
significantly related to VCI and TCI for weeks 40–43 at 
p<0.05 significance level. Therefore, in multiple regression 
analysis, dY was regressed on the linear combination of 
VCI and TCI (40–43) values. 

The results of fitting the ordinary least squares (OLS) re-
gression model given by equation (6) and (7) to LAR and 
HAR respectively, are shown in Table 1. 

dYL=b0+b1TCI40+b2TCI41+b3TC242+b4TCI43+b5VCI40+b6VC
I41+b7VCI42+b8VCI43                  (6) 

dYH=b0+b1TCI40+b2TCI41+b3TC242+b4TCI43+b5VCI40+b6V
CI41+b7VCI42+b8VCI43              (7) 

A comparison of the relative degree of statistical signifi-
cance of the model with those of the partial regression coef-
ficients reveals multi-collinearity. The overall model is 
highly significant with F values of 34.58 (LAR), 28.15 
(HAR) and p values much smaller than 0.05. The p value 
for some of the partial regression coefficients is not signifi-
cant at 0.05. This type of result is a natural consequence of 
multi-collinearity: the overall model may fit the data quite 
well, but because several independent variables are meas-
urement similar phenomena, it is difficult to determine 
which of the individual variables contribute significantly to 
the regression relationship. However, VH indices of 
neighbouring weeks are highly correlated as seen in Table 2. 
For example the correlation coefficient between TCI40 
(week 40, October) with TCI41 is 0.99.  
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Table 1.  Results of multiple linear regressions (OLS) of DY on the equa-
tion (6) and (7) 

Variable DF 
Parameter Standard 

t Value Pr > |t| 
Estimate Error 

Intercept 1 147.53809 4.55134 32.42 <.0001 
TCI40 1 –3.97004 0.79922 –4.97 0.0025 
TCI41 1 4.31908 1.1261 3.84 0.0086 
TCI42 1 –2.34223 0.71566 –3.27 0.017 
TCI43 1 1.21628 0.27988 4.35 0.0048 
VCI40 1 –0.97634 1.02815 –0.95 0.379 
VCI41 1 –1.03649 1.34535 –0.77 0.4703 
VCI42 1 3.94573 0.89385 4.41 0.0045 
VCI43 1 –2.4063 0.5474 –4.4 0.0046 

Local Aman rice: R2 =0.98, RMSE=2.19, F= 34.58, P<0.002 

Variable DF 
Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| 

Intercept 1 136.61685 3.59466 38.01 <.0001 
TCI40 1 –2.54918 0.63123 –4.04 0.0068 
TCI41 1 2.96006 0.8894 3.33 0.0158 
TCI42 1 –1.91601 0.56523 –3.39 0.0147 
TCI43 1 0.89684 0.22105 4.06 0.0067 
VCI40 1 –0.03211 0.81204 –0.04 0.9697 
VCI41 1 –1.43487 1.06256 –1.35 0.2256 
VCI42 1 1.90951 0.70596 2.7 0.0353 
VCI43 1 –0.76907 0.43234 –1.78 0.1256 

Hybrid Aman rice: R2=0.97, RMSE=1.73, F=28.15, P<0.003 

This high correlation among the independent variables is 
called collinearrity. The existence of multi-collinearity 
tends to inflate the variance of predicted values, that is, pre-
dictions of the response variable for sets of independent 
variables. This inflation may be especially severe when the 
values of the independent variables are not in the example. 
In addition, the OLS estimates of the individual regression 
coefficients tend to be unstable and can affect both infe-
rence and model equation (6) and (7) forecasting. The esti-
mated values of the coefficients will also be very sensitive 
to changes in the sample data and to the addition/deletion of 
a variable in the equation[15]. To avoid this problem, we 
used an alternative method of estimation, principal compo-
nents regression (PCR), which results in estimation and 
prediction better than OLS. This alternative has the poten-
tial to produce more precision in the estimated coefficients 
and smaller prediction errors when the predictions are gen-
erated using data other than those used for estimation[16]. 

Using PCR methodology, the variables in model equation 
(6) and (7) were transformed into new orthogonal or uncor-
related variables called principal components (PCs) of the 
correlation matrices. The first part of Table 3 shows the 
eigenvalues of the correlation matrix for Local Aman rice. 
From the “Eigenvalue” column it is clear that the first prin-
cipal component has a very large variance (5.26), the 
second has much smaller variances (2.62), and the others 
have negligible variances. The “Difference” column gives 
the adjacent eigenvalues. This statistic shows the rate of 
decrease in variances of the PCs. The proportion of total 
variation accounted for by each of the components is ob-

tained by dividing each of the eigenvalues by the total vari-
ation. These quantities are given in the “Proportion” column. 
It is obvious that the first component accounts for 65% of 
the total variation, a result that is typical when a single fac-
tor, the original variables are highly correlated. The cumu-
lative proportions printed in the “Cumulative” column in-
dicate that 99% of the total variation in the eight variables is 
explained by four components. 

The second part of Table 3 (‘Eigenvectors’) shows the 
eigenvectors for each of the PCs. These coefficients, which 
relate the components to the original variables listed on the 
first column, are scaled so that their sum of squares is unity. 
This allows for finding which of the original variables 
dominate a component. The coefficients of the first PC is 
dominated by VCI40 (0.356) and VCI41 (0.362). As expected, 
these components have the highest correlation coefficient 
with dY (Figure 2) and are in the beginning of the critical 
period of LAR. The second component show a positive 
relationship with all variables, with somewhat larger con-
tributions from TCI42 (0.369) and TCI41 (0.360). The final 
yield component, kernel weight, is determined during 
maturation that for LAR occurs in these weeks. It can be 
pointed out that just because the first four PCs explain 99% 
of the variation it does not mean that they form the best 
subset of predictors for dY[17]. 

 
Figure 3.  Plot of predicted (dY) against observed (dY) for LAR and 
HAR 

The stepwise multiple regressions were involves elimi-
nating some of the PCs to get a reduction in variance. Once 
the regression coefficients for the reduced set of orthogonal 
variables were calculated, they were mathematically trans-
formed into a new set of coefficients that correspond to the 
original or initial correlated set of variables in model equa-
tion (6) and (7). These new coefficients are principal com-
ponent estimators[18]. The selected principal components 
for both type of Aman rice are shown in Table 4. 

Hence, following PCR analysis the final set of coeffi-
cients for variables in model equation (6) and (7) are calcu-
lated and presented in Table 5. 
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Table 2.  Product moment correlations among VH (Vegetation Health) of neighbouring weeks for hybrid Aman rice 

Correlation Matrix 
 TCI40 TCI41 TCI42 TCI43 VCI40 VCI41 VCI42 VCI43 

TCI40 1 0.9939 0.9734 0.9562 -0.3675 -0.3788 -0.3433 -0.3056 
TCI41 0.9939 1 0.9904 0.9687 -0.3336 -0.3519 -0.3221 -0.2872 
TCI42 0.9734 0.9904 1 0.9828 -0.2984 -0.3288 -0.3081 -0.2811 
TCI43 0.9562 0.9687 0.9828 1 -0.3224 -0.3598 -0.3499 -0.3311 
VCI40 -0.3675 -0.3336 -0.2984 -0.3224 1 0.9945 0.9787 0.9563 
VCI41 -0.3788 -0.3519 -0.3288 -0.3598 0.9945 1 0.9932 0.9783 
VCI42 -0.3433 -0.3221 -0.3081 -0.3499 0.9787 0.9932 1 0.9944 
VCI43 -0.3056 -0.2872 -0.2811 -0.3311 0.9563 0.9783 0.9944 1 

Table 3.  Principal component results for local Aman rice 

Eigenvalues 
 Eigenvalue Difference Proportion Cumulative 

1 5.25869913 2.63377365 0.6573 0.6573 
2 2.62492548 2.53400572 0.3281 0.9855 
3 0.09091976 0.07731891 0.0114 0.9968 
4 0.01360085 0.00391939 0.0017 0.9985 
5 0.00968147 0.00829069 0.0012 0.9997 
6 0.00139078 0.0008797 0.0002 0.9999 
7 0.00051108 0.00023964 0.0001 1 
8 0.00027144  0 1 

Eigenvectors 
 Prin1 Prin2 Prin3 Prin4 

TCI40 –0.357213 0.342744 –0.426009 0.374731 
TCI41 –0.352384 0.360244 –0.222066 –0.261375 
TCI42 –0.346619 0.369875 0.158997 –0.664 
TCI43 –0.353889 0.34467 0.510155 0.571672 
VCI40 0.35364 0.349249 0.476155 –0.121513 
VCI41 0.362596 0.341033 0.153944 0.045948 
VCI42 0.356139 0.35418 –0.179903 0.065504 
VCI43 0.345645 0.365273 –0.448193 0.048865 

Eigenvectors 
 Prin5 Prin6 Prin7 Prin8 

TCI40 0.458831 0.27487 –0.376111 0.074026 
TCI41 0.207418 –0.52842 0.460576 –0.306665 
TCI42 –0.249811 0.3247 –0.189642 0.270319 
TCI43 –0.388163 –0.06756 0.115539 –0.017725 
VCI40 0.354135 –0.01426 –0.356517 –0.50868 
VCI41 0.30055 –0.27659 0.1467 0.733525 
VCI42 –0.079538 0.600747 0.563922 –0.160729 
VCI43 –0.55795 –0.31245 –0.361198 –0.06665 

Table 4.  Selection of principal components for prediction based on stepwise regression 

Type VarsInModel R2 Adj R2 F Value RMSE 
Local Prin1 Prin2 Prin3 Prin7 0.97 0.96 76.72 2.07 

Hybrid Prin2 Prin7 0.92 0.90 64.70 1.93 

Table 5.  Estimated regression coefficients from stepwise regression selection 

 Intercept TCI40 TCI41 TCI42 TCI43 VCI40 VCI41 VCI42 VCI43 
Local 137.15 –3.81 3.51 –1.45 1.01 –2.25 0.93 3.44 –2.58 

Hybrid 126.68 –1.87 1.84 –0.82 0.36 –1.29 0.43 1.80 –1.25 

Table 6.  Statistics of an independent test for local and hybrid aman rice 

 CC between R2 between   Non  
Type Predicted  Predicted  Bias Systematic RMSE 

 and Observed and Observed  error  
Local 0.98 0.97 0.667e–3 0.028 0.009 

Hybrid 0.94 0.89 0.666 e–3 0.033 0.019 
 

6. Validation of the Predicted Models 
Validation is the step in which the prediction with the 

chosen model is tested independently. Since the training 
data is short, the Leave-One-Out Cross-Validation technique 

was used as a validation tool. The model selected in the 
optimization step (Table 5) was applied to the validation 
data set. Figure 3 shows a scatter plot of observed versus 
predicted LAR and HAR yield. Residual values in individ-
ual years are within acceptable limits (averaged 4 % for 
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LAR and 3% for HAR). Table 6 shows that over all correla-
tion coefficients (0.98 for LAR and 0.94 for HAR) are good. 
R2 value of 0.97 for LAR and 0.89 for HAR show that in 
most years dY can be modelled by variables considered in 
model equation (6) and (7) respectively.  

Table 6 shows the statistics of fit of predicted versus ob-
served LAR and HAR yield. According to Willmott [19] in 
“good” models systematic error should approach zero while 
non-systematic error should approach root mean square 
error (RMSE). 

Therefore, we can conclude from Table 6 that models 
based on equation (6) and (7) with the coefficients esti-
mated using PCR methodology detailed in Table 5 performs 
very well. 

7. Conclusions 
Aman rice is the one of most important rice varieties in 

Bangladesh. The two AVHRR-based VH indices character-
izing moisture (VCI) and thermal (TCI) conditions were 
tested as predictors of local and hybrid Aman rice yield. 
Correlation analysis between LAR and HAR yield devia-
tions from trend (dY) with VH during 1991–2005, showed 
strong correlation during the critical period of LAR and 
HAR growth. Therefore, these indices were used for statis-
tical modelling Aman rice yield. This study shows that 
Aman rice yield can be estimated from VH indices at ap-
proximately four to eight weeks prior to harvest time. This 
information will improve harvest, storage, marketing and 
transportation. These results are complementary to crop 
modelling in other countries.  

Further investigation might include combining satellite 
sensor data with flood and river discharge data specifically 
during monsoon period. The vegetation health indices data 
are delivered in real time to http://orbit.nesdis.noaa.gov/ 
smcd/emcb/vci. They show global and regional vegetation 
health, moisture and thermal conditions, and fire risk poten-
tial. They also demonstrate climate issues and utility of 
vegetation health indices in global observing systems. 
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