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Abstract

Advanced Very High Resolution Radiometer (AVHRR) -based vegetation indices are widely accepted as good indicators for provid-
ing vegetation properties and associated changes for large scale geographic regions. Also, their capability to indicate moisture conditions
makes them an important data source for monitoring climate variations and droughts. The objective of this study was to test the
AVHRR-vegetation conditions indices data set as indicators of the weather variability through the seasonal and interannual responses
of the vegetation and the production of crops. Time-series of AVHRR vegetation condition indices during 1981–2003 were used to
generate the seasonal and interannual vegetation curves for departments (administrative unites) of the Cordoba province in Argentina.
Yield series of corn by departments were analyzed against AVHRR derived indices and corn yield predicting models were developed.
Vegetation condition curves were able to differentiate vegetation responses associated with normal/above normal and below normal
precipitation during the growing season. Corn yield models based on the vegetation condition indices explained up to 80% of the yield
variation of corn, according to departments. Results from the analysis showed that the variability of the indices serves as good proxy for
identifying environmental sources of variations mainly climate, and thus to provide insights for further analysis to understand the
potential of the regional climate for crop production and the effects of the climate variability on vegetation and on corn yield.
� 2006 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Weather variability has been recognized as the main
source of interannual variation of the vegetation and yield
of the agricultural crops (Adams et al., 1990; Rosenzweig
et al., 1993). In Argentina, the province of Cordoba is
not an exception, and important losses of the grain crops
and the consequent damage to the provincial economy
are caused by the weather and climate variability. An
objective evaluation system of the weather variability in
the region as well as the improvement of the crop monitor-
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ing capabilities for yield prediction will provide knowledge
to mitigate weather impacts and to develop policies direct-
ed to improve adaptation capacity to the weather
variability.

Weather data is a fairly good source of information
used traditionally for monitoring crop growth and assess-
ing crop production. However, poor spatial distribution
of weather stations often makes this task difficult to
fulfill. Sometimes weather data is incomplete and/or
not available early enough for timely assessments. In
addition, weather observations are location specific and
do not adequately represents diversity of weather over
the large areas where crops grow. Furthermore, assess-
ment of final crop production requires estimation of
ed.
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cumulative environmental impact, which is only possible
at the end of the harvest. An early crop yield prediction
prior to the harvest is very important for optimizing
agricultural market.

Satellite-based indices have shown to be correlated with
crop production (Hayes and Decker, 1996; Liu and Kogan,
1996; Kogan, 1997; Seiler and Kogan, 2002). Accuracy of
the assessments from satellite data is superior due to much
higher spatial and temporal resolutions. Also, the use of
these data led to delineate more precisely the affected areas
and the period of the highest sensitivity. Besides, compared
to weather data, satellite-based indices combine the contri-
bution of moisture and thermal conditions based on cumu-
lative vegetation responses during the season (Seiler et al.,
2000).

The AVHRR sensor on board of the National Oceanic
and Atmospheric Administration (NOAA) satellites can
serve these goals. NOAA data are widely used by property
managers and regional planners for primary production
estimates, vegetation condition assessments, drought mon-
itoring and other applications (Tucker et al., 1983, 1985;
Justice, 1986; Prince and Justice, 1991; Rasmussen, 1992,
1997; Hobbs, 1995). The objective of this study was to test
the AVHRR-vegetation conditions indices data set as indi-
cators of the weather variability through the seasonal and
interannual responses of the vegetation and the production
of crops.

2. Materials and methods

The studied area covers the province of Cordoba in
Argentina (29�, 35�S; 62�, 66�W) (Fig. 1). The province
is in the center of the country and ranked fifth in size
among all the argentine provinces. It is divided in
administrative units called departments, where each
department is used as the basic unit for the analysis to
represent environmental characteristics in different areas
of the province.
Argentina
Province of Cordoba

Fig. 1. Geographic location of the studied area.
Eighty three percent of its surface is dedicated to different
agricultural activities developed under variable soil–climatic
conditions. The surface of the province is flat except for a
small range of mountains north–south oriented in the west
of the region. The representative soils in the area are Molli-
sols with textures that follow a gradient from finer in the east
to coarser in the west. This province is the second largest
maize producer in the country contributing with 32% of
the total national production (SAGPYA, 2004).

The climate of the region is semiarid-sub-humid with
monsoon type precipitation regime and moderated thermal
conditions during summer and winter. The mild and short
winters, moderated summers and extended length of the
growing season allow for the normal maturity of summer
crops such as corn, sunflower and soybean, which are
extensively cropped in the region. However, due to the
weather variability, the time of occurrence of the climate
variables, their extreme values and frequencies, and their
interaction with other physical variables of the environ-
ment, become very important to determine the potential
production of the region, the interannual yield variability
of the crops and pastures, the quality of the natural
resources and finally the economy of the region. The
normal summer crop growing season of the region is from
September to March.

Satellite data included AVHRR-measured solar energy
reflected/emitted from the land surface (in 8-bit counts)
collected from the NOAA’s Global Vegetation Index
(GVI) data set from 1981 through 2003. Spatial data reso-
lution was 4 km, sampled to 16 km and temporal one day
sampled to seven-day composite (Kidwell, 1997). The
GVI counts in the visible (VIS, Ch1, 0.58–0.68 lm), near
infrared (NIR, Ch2, 0.72–1.1 lm), and infrared (IR,
10.3–11.3 lm, Ch4) spectral regions were used in this
research. The standard data preparation procedure for
the 7-day composite time series includes a correction of
VIS and NIR values for sensor degradation following
Rao and Chen (1995). Post launch calibrated VIS and
NIR counts were converted to reflectance (Kidwell, 1997)
and used to calculate the Normalized Difference Vegetation
Index (NDVI = (VIS � NIR)/(VIS + NIR)). The Ch4
counts were converted to irradiative (brightness) tempera-
ture (BT). A vegetation-oriented technique was used in this
study to reduce noise in NDVI and BT data (Kogan and
Sullivan, 1993). The technique stems from a statistical
approximation of the vegetation and temperature dynam-
ics during the annual cycle, complete suppression of high
frequency noise, and enhancement of low frequency
variations related to weather fluctuations.

NDVI and BT were used to calculate vegetation health
indices: Vegetation (VCI), Temperature (TCI) and Vegeta-
tion–Temperature (VTI) Condition Indices (Kogan, 1990,
1995; Kogan and Sullivan, 1993).
VCI ¼100 � ðNDVI�NDVIminÞ=
ðNDVImax �NDVIminÞ ð1Þ



R.A. Seiler et al. / Advances in Space Research xxx (2006) xxx–xxx 3

ARTICLE IN PRESS
TCI ¼ 100 � ðT max � T Þ=ðT max � T minÞ ð2Þ
VTI ¼ ðVCIþ TCIÞ=2 ð3Þ
The NDVI, NDVImax and NDVImin are the smoothed
weekly NDVI, and the year absolute maximum, and mini-
mum of the series, respectively, while T, Tmax and Tmin are
similar values for the irradiative temperature derived from
Ch4 data. Following these considerations the largest and
the smallest NDVI and BT values during the 1981–2003
were calculated for each of the 52 weeks of the year and
for each 16 km pixel. They change from 0 to 100, reflecting
changes in vegetation conditions from extremely bad to the
optimal. The vegetation condition indices were averaged on
the surface of the departments to get weekly time series by
departments.

Yearly estimations of corn yield, total production and
harvested area were used for the analysis. All the data val-
ues represented average estimates by departments and they
were available from the Crop Reporting Division of the
Secretary of Agriculture in Argentina, for the crop seasons
1981/82 to 2002/03.

Time series of any crop yield can be generally separated
into deterministic and random components (McQuigg,
1975). The first component characterizes long term yield
tendency (trend) associated with the contribution of
agricultural technology and can be approximated by poly-
nomial (linear or non-linear depending on the length of the
time series and climate impacts). The random component
characterizes variations of yield around the trend and is
controlled by year-to-year weather variability. For the
present study, the trend was calculated for each department
as a linear function obtained by correlating the observed
yield to the calendar year. Yield departures, which were
the yield values used for the analysis, were calculated as
percent of the trend.

Monthly precipitation data series were available for the
period 1981/2003 for the cities of Rio Cuarto (33�07 0S,
64�14 0W) and Marcos Juarez (32�42 0 S, 62�09 0W). Both sites
are located in the middle of the departments of Rio Cuarto
(D13) and Marcos Juarez (D9), respectively (Fig. 2a). Data
were processed as the sum of September, October and
November precipitation to obtain spring season precipita-
tion series, and as the sum of December, January and
February for the summer season series. Precipitation anom-
alies for those seasons were calculated from the seasonal
normal of the series 1961/90.

Correlation-regression analysis (Neter and Wasserman,
1974) was used to compare corn yield departures with the
vegetation condition indices by departments and to
develop corn yield prediction models. A set of quantitative
measures were used for models testing (Willmott, 1982).
Correlation of corn yield vs each of the vegetation condi-
tion indices were done for each department and for every
week during the crop growing season. The highest correla-
tion coefficient among all the weeks of the crop season
(peak week) was selected and presented for each
department and for each of the indices.
3. Results and discussion

3.1. Seasonal and interannual responses of the vegetation

Weather variability may be evaluated through the vari-
ability of the vegetation condition indices curves through
the growing season. Two departments are used as an exam-
ple for this analysis, Marcos Juarez (D 9) in the east, and
Rio Cuarto (D 13) in the west (Fig. 2a). The seasonal curves
of VCI in Marcos Juarez during five selected growing
seasons (Fig. 3) show a significant range of interannual var-
iability. Differences are observed either in the magnitude of
the VCI values or in the timing of occurrences during the
seasons. Curves of VCI values above 40%, during the grow-
ing season (September (week 10) to March (week 39)) may
be indicative of around normal and above normal weather
conditions. Indeed, those vegetation conditions were associ-
ated with spring and summer normal or above normal
precipitation conditions (Table 1). Vegetation conditions
below 40% occurred when precipitation for the same
\seasonal periods were below normal for almost all the
cases. For the conditions described by VCI in 1982, 1998
and 2003 (vc_1982; vc_1998; vc_2003, Fig. 3) corn yields
were 65%, 19% and 17% above the trend, respectively, while
for 1989 and 1990 growing seasons, the yields were 71% and
80% below trend, respectively.

The dynamic of the vegetation health during the growing
seasons in Rio Cuarto (Fig. 4), represented by the seasonal
curves of VCI, also show variability between them indicat-
ing interannual weather differences. In addition, weather
differences may be inferred between the two areas when
comparing the same seasonal VCI curve in D13 and D9.
The observed spring and summer seasonal precipitation
for the analyzed growing seasons also show in this area
normal precipitation values or deviations above normal
for vegetation conditions above 40% of VCI. Lower values
of vegetation conditions were associated with below normal
precipitation (Table 1). Corn yield for the crop seasons
1981/82, 1997/98 and 2002/03 was above the yield trend
of the Department in 11%, 12% and 30%, respectively.
VCI during 1988/89 and 1989/90 crop seasons (vc_1989;
vc_1990) indicated poor weather conditions and corn yields
were 38% and 48% below the trend, respectively.

3.2. Correlation of corn yield vs. VCI, TCI and VTI

Figs. 2b–d shows the results of de-trended corn yield
correlation with vegetation indices for those departments
which have significant corn production. Also, the week of
highest correlation between yield and each of the indices
is shown for each department. In general, the correlation
values were around 0.5 and above for those departments
in the east and in the south half of the Province, with the
exception of some lower values for the departments D5
and D12. More consistent seems to be in the area the week
with the highest correlation. A regular curve (not shown) of
weekly correlation values through the season shows an



For CORN;    Week 1 is the First week in July
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Fig. 2. (a) Departments of the province of Cordoba (D1, D2. . .); (b) correlation coefficient and week of the highest correlation (in brackets) between VCI
and corn yield departure (% of trend) for departments; (c) correlation coefficient and week of the highest correlation (in brackets) between TCI and corn
yield departure (% of trend) for departments; (d) correlation coefficient and week of the highest correlation (in brackets) between VTI and corn yield
departure (% of trend) for departments.
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Fig. 3. Seasonal and interannual variability of weekly VCI for the
department of Marcos Juarez (D9). (Weeks 1 is the first week of July of
one year and week 52 is for June of the next year; seasons as an example
are indicated as vc_1982 which stands for weekly VCI during the season
1981/82).
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Fig. 4. Seasonal and interannual variability of weekly VCI for the
department of Rio Cuarto (D13). (Weeks 1 is the first week of July of one
year and week 52 is for June of the next year; seasons as an example, are
indicated as vc_1982 which stands for weekly VCI during the season 1981/
82; I_40 is the level of 40 for VCI).
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increase from pre-planting to approximately the time of
critical period in corn development which is about 2–3
weeks before and after tasseling and then decreases rapidly.
This period happens to occur for corn from the end of
December (week 26) through mid January (week 29),
depending on the planting dates. The results show that
the week of highest correlation for any of the three indices
is located in that period in most of the departments, indi-
cating the time of the vegetation conditions of higher
impact on yields. Positive correlation with VCI, TCI and
VTI also indicate that yields below the trend are associated
with moisture and thermal stress while above trend yields
are associated with no stress.

3.3. Corn yield predicting models

Models for six departments as a sample for the analysis
were developed and tested. The models and their statistical
measures are shown in Table 2. The models predict devia-
tion from the yield trend of each department. Independent
variables for the models are the vegetation indices selected
according to the highest week’s correlation, and the statis-
tical significance indicated for a stepwise procedure used
also to select variables which significantly contribute to
the models. For most of the cases, the selected indices
included in the model explain more than 60% (R2 = 0.60)
of the yield variability around the trend. The error of the
Table 1
Precipitation anomalies, in mm and % from the normal 1961/90, for the spring
Cuarto and Marcos Juarez, for different growing seasons

Season Rio Cuarto

Spring Summer

(mm) (%) (mm) (%)

1981/82 4.3 1.8 �98.3 �28
1988/89 �147.8 �62.0 �180.4 �51
1989/90 �112.2 �47.1 �132.5 �38
1997/98 21.8 9.2 182.4 52
2002/03 143.8 60.4 �67.6 �19
models (MSE) was below 11% (below 15% for department
25) of the respective mean of the observed yield. The testing
of the models is summarized in Table 3. The number of
samples N in the table is the number of years used for mod-
els development which is the same for models testing using
Jacknife independent testing. Some years in the models
development were missing due to wrong or missing satellite
or yield data. Good agreement between observed and pre-
dicted yield is shown by the simple correlation coefficient
values and by the index of agreement for all department
predictions. Prediction errors go from a minimum of 15%
in department 9 to a maximum of 28% in department 1.
Except for departments D6 and D25 where the yield
estimates come close to the harvest, in the rest of the
departments used the estimates can be done about two
months prior harvest.

4. Conclusion

Results from the analysis showed that the seasonal and
interannual variability of the vegetation indices serves as a
good proxy for identifying environmental sources of varia-
tions mainly climate and impacts of climate anomalies on
vegetation and crops production. Vegetation condition
curves were able to differentiate vegetation responses
associated with normal/above normal and below normal
precipitation during the growing season. In addition, the
season (Sep, Oct, Nov) and for the summer season (Dec, Jan, Feb), in Rio

Marcos Juarez

Spring Summer

(mm) (%) (mm) (%)

.2 �22.6 �9.1 8.7 2.5

.7 �124.9 �50.0 �170.2 �48.0

.0 �93.1 �37.3 146.6 41.3

.3 �22.2 �8.9 201.9 56.9

.4 �46.1 �18.5 36.2 10.2



Table 2
Corn yield models for departments and statistics measures for the aptness of the models

Department Yield model R2 MSE F-ratio P-value

1 Dy = 106.38 + 9.26 * VTI_22 � 9.47 * VTI_24 + 0.83 * VTI_31 0.52 358.7 4.00 0.0370
6 Dy = 81.57 + 1.18 * VCI_28 � 0.89 * VCI_36 0.63 404.8 12.66 0.0006
9 Dy = 27.08 + 1.28 * VCI_22 + 0.22 * TCI_28 0.80 240.2 35.40 0.0000

19 Dy = 47.72 + 0.33 * VCI_27 + 0.76 * TCI_27 0.63 345.5 10.80 0.0017
23 Dy = 79.11 + 4.42 * VTI_23 � 9.09 * VTI_24 + 5.38 * VTI_25 0.43 302.0 3.22 0.0570
25 Dy = 76.69 � 0.86 * VCI_15 + 2.14 * VCI_22 � 0.87 * VCI_39 0.75 637.5 15.33 0.0001

Dy: yield departure estimate (%). Numbers which follow the vegetation indices stand for week number.

Table 3
Quantitative measures of yield indication reliability of the crop yield models for corn tested against observed yield (Jacknife independent testing)

Indicator Abbreviates Dept 1 Dept 6 Dept 9 Dept 19 Dept 23 Dept 25

Mean observed yield Mean O (kg/ha) 3729 3813.5 4952 4626.9 4763 4153
Mean predicted yield Mean P (kg/ha) 3990 3839.9 5018 4683.1 4902 4185
Number of samples N 16 20 20 16 16 19
Mean bias error MBE (kg/ha) 261.2 26.4 65.84 56.2 138.2 32.57
Root of mean sq. error RMSE (kg/ha) 1060 811.7 767.68 1065 900.9 1145
Rmse/Mean O R/Mo (%) 28 21 15 23 19 27
Systematic error RMSEs (kg/ha) 361.7 354.7 75.5 248.3 284.8 353.17
Unsystematic error RMSEu (kg/ha) 996.2 730.2 763.9 1035.4 854.7 1089.16
Index of agreement D 0.912 0.937 0.969 0.909 0.945 0.931
Simple corr. coef. R 0.874 0.884 0.94 0.834 0.918 0.870
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vegetation health indices demonstrated to be good predic-
tors of corn yield. Corn yield models based on the vegeta-
tion condition indices explained up to 80% of the yield
variation of corn, according to departments. This integrat-
ed approach applied to the province of Cordoba using
satellite data and statistical models suggests an effective
mean to monitor seasonal and interannual vegetation
responses and to estimate corn yield at regional scales.
Also, it provides insights for further analysis into under-
standing the regional climate potential for crop production
and for the effects of the climate variability on vegetation
and corn yield.
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