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1. Introduction

In the late 1980s, the United Nations called for glo-
bal efforts in minimizing the harm from natural di-
sasters. They declared the last 10 yr of the current
century the International Decade for Natural Disas-
ter Reduction (IDNDR). Natural disasters are part of
the environment in which we live. They adversely
affect the lives of a large number of people and cause
considerable damage to economy, nature, and prop-
erty worldwide. Economic losses and losses of life

from natural disasters are staggering. Moreover, they
are much greater now than 30 yr ago. When fewer
people lived on the earth, incidents of disasters were
much less numerous, and humans were less vulner-
able (Bruce 1994). Developing countries have much
larger losses from disasters compared to the developed
countries (United Nations Department of Humanitar-
ian Aid 1993).

Nearly 85% of all natural disasters are directly re-
lated or associated with extreme weather events
(Obasi 1994). Every day our planet experiences nu-
merous extreme weather-induced disasters: droughts,
floods, hurricanes, tropical cyclones, heat waves, tor-
nadoes, bushfires, insect infestations, and many oth-
ers. Among these, drought is the most damaging
environmental phenomenon. The World Meteorologi-
cal Organization of the United Nations estimated that
in the quarter of a century since 1967, droughts have
affected 50% of the 2.8 billion people who suffered
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from weather-related disasters. Moreover, 1.3 million
of the 3.5 million people killed by disasters between
1967 and 1991 were due to the direct and indirect
cause of drought (Obasi 1994).

Only in the current decade have large-scale inten-
sive droughts been observed on all continents. The
most memorable droughts affected large areas in Eu-
rope, Africa, Australia, South, Central, and North
America (Le Comte 1995, 1994). The impact of the
most recent large-area severe drought (1988) on the
U.S. economy has been estimated at $40 billion,
which is 2–3 times the estimated losses from the 1989
San Francisco earthquake (Riebsame et al. 1990). The
1991–92 growing season in southern and eastern
Africa was the worst since the beginning of the cen-
tury when drought covered 2.6 × 106 mile2 of the area
and affected nearly 24 million people (United Nations
Department of Humanitarian Aid 1993). Intensive
drought occurred over large areas of Kazakhstan (part
of the former Soviet Union) in 1991, devastating the
environment and the agricultural economy. Grain
production dropped nearly 40%. Unfortunately, the
1995 drought held the record and was more severe,
lasted longer, and covered a much larger area than
even the 1991 episode.

Timely information about the onset of drought, its
extent, intensity, duration, and impacts can limit
drought-related losses of life, minimize human suf-
fering, and reduce damage to the economy and envi-
ronment (Wilhite 1993). Weather data is a fairly good
source of information that can be used for drought
assessment. However, the sparsity of weather stations
in some areas makes drought monitoring a daunting
task. Lack of information about a drought becomes
especially acute in areas where the weather station net-
work is limited (e.g., sub-Saharan Africa). Furthermore,
the data is often incomplete for the few available wea-
ther stations and/or not available early enough to en-
able timely drought detection and impact assessment.
In addition, telecommunication problems, economic
disturbances, and political and military conflicts also
limit the availability of weather information.

Use of satellite data avoids most of these problems.
Moreover, observations from space, especially from
the National Oceanic and Atmospheric Administra-
tion (NOAA) operational polar-orbiting satellites,
provide a unique vantage point, synoptic view, per-
manent data archive, extra visual information, cost
effectiveness, and a regular, repetative view of nearly
all of the earth’s surfaces (Johnson et al. 1993). One
of the most serious limitations of using Advanced

Very High Resolution Radiometer (AVHRR) data for
earth surface monitoring is considerable noise.
However, the developed drought-monitoring algo-
rithms consider the application of special processing
tools in order to reduce this noise considerably.

Interest in using observations from operational sat-
ellites for developing numerical estimates of droughts
and other environmental events has received enhanced
attention over the last 10 yr as a substantial amount
of satellite data obtained from the AVHRR has accu-
mulated. The AVHRR-based reflectance in the vis-
ible (VIS) and near-infrared (NIR) wave bands and
the Normalized Difference Vegetation Index [NDVI;
NDVI = (NIR − VIS)/(NIR + VIS)] has been used in
designing drought monitoring techniques (Kogan
1987).

Using multiyear observations, the NDVI was con-
verted into the Vegetation Condition Index (VCI),
which was applied successfully for drought monitor-
ing and assessment of the vegetation condition in the
United States (Kogan 1995a) and some other coun-
tries (Kogan 1994b). The Temperature Condition In-
dex (TCI), developed recently from the AVHRR’s
thermal channels, increased the accuracy of drought
monitoring, helped to explain the temperature con-
tribution to the analysis of drought genesis, and also
provided useful information for monitoring vegeta-
tion stress due to soil saturation (Kogan 1994a,
1995b). This paper describes the global application
of the VCI–TCI indices for drought detection and
monitoring, for the assessment of drought duration,
area coverage, intensity, and impacts on vegetation.
Considerable attention was devoted to collection
and analysis of ground data to validate AVHRR-
derived vegetation stress in different ecological en-
vironments and for various types of drought. The re-
sults presented in this paper show the high potential
VCI–TCI indices have for maintaining a global
drought watch.

2. General climatology of droughts

More than one-half of the terrestrial earth is sus-
ceptible to drought each year. Because drought is a
recurring phenomenon and typical for the majority of
world zones, the most productive lands of all conti-
nents can lose millions of tons of agricultural produc-
tion annually. Social, physical, and economic impacts
of drought can be staggering, especially in the devel-
oping countries. The immediate consequences of
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drought include water-supply short-
ages, destruction of ecological re-
sources, and losses of agricultural
production, resulting in famine, hu-
man suffering, death, and abandon-
ment of whole geographic regions.

The first impression of drought cli-
matology can be obtained from the
global distribution of the surface
moisture balance. Figure 1 shows
the climatological difference be-
tween annual precipitation and annual
potential evaporation as an approxi-
mate measure of estimating vulnara-
bility of territories toward drought
(Gol’dsberg 1972).

The difference between annual
precipitation and potential evapora-
tion characterizes a balance between
the moisture that an area receives in
the form of precipitation and the amount of moisture
that the available thermal resources of the same area
are potentially able to evaporate. A positive or nega-
tive difference characterize correspondingly excessive
or deficient moisture resources. In the areas with a
negative balance, vegetation is likely to be potentially
vulnerable to drought during the year. Although the
farmers often compensate a lack of water irrigating
crops, the resources of such water in agricultural ar-
eas are limited in general, especially in drought years
and on a large area.

As seen in Fig. 1, even if the areas of hot deserts
(water deficit above 800 mm) are dis-
regarded, still there are large areas of
the world that have a deficit of mois-
ture. These are the areas of the big-
gest drought threat. The probability of
droughts in these agricultural areas is
above 25% but in semiarid zones can
reach 75%–80% (Gol’dsberg 1972).
It is important to emphasize, how-
ever, that large areas with a slightly
positive difference (0–200 mm) have
also up to 25% probability of drought
occurrence (Gol’dsberg 1972). Only
in the areas where precipitation ex-
ceeds potential evaporation by more
than 200 mm are droughts extremely
rare.

In summary, even if we discard non-
agricultural areas—such as deserts,

tropical forest, and mountains—and areas with a dif-
ference between annual precipitation and potential
evaporation exceeding 200 mm, the remaining world
area, which is sensitive to droughts, will amount to
nearly 50%. More importantly, almost all major ag-
ricultural lands are located in this area. For example,
as seen in Fig. 2 (Kogan 1986a), major wheat pro-
ducing areas are in zones where annual potential
evaporation is up to 400 mm higher than the amount
of precipitation and are characterized by very frequent
droughts (Gol’dsberg 1972). This supports the notion
that “drought follows the plow” (Glantz 1994).

FIG. 1. Vulnerability of major agricultural areas to drought based on a difference
between annual precipitation and potential evaporation (Gol’dsberg 1972); here, 1
indicates frequent intensive drought (difference −10 to −500 mm); and 2 indicates
infrequent nonintensive drought (difference 0 to 200 mm).

FIG. 2. Global distribution of wheat and production expressed as percentage of
the total wheat production in 1980 (Kogan 1986a).
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In the world’s two largest agriculture-producing
countries, the United States of America and the former
Soviet Union (FSU), which produce nearly one-
quarter of the total world grain, droughts occur almost
every year. The heaviest damage to the economy and
agriculture comes from large area intensive droughts.
In the past century, the U.S. area affected by large-
scale severe drought often exceeds 10% of the entire
United States. Every 10–15 yr, the area exceeds 20%
and, in some years, for example, the 1930s, reaches
65% of the entire country (Wilhite 1993).

Over the past 1000 yr of Russian history, catastrophic
droughts occurred 8–12 times every century. Severe
droughts are more frequent, especially in the areas with
limited climatic and ecosystem resources. In Kazakhstan,
where grain crops occupy nearly one-quarter of the to-
tal FSU grain area, around 35 severe and moderately
large-area droughts occurred in the last 100 yr. In the
Ukraine, where grain share accounts for nearly 20%
of the total FSU grain production and where climate and
soils are more favorable for growth than in Kazakhstan,
droughts affect the area every 4–5 yr (Kogan 1986b).

3. Satellite and ground data

Satellite data were collected from the Global Veg-
etation Index (GVI) dataset (Kidwell 1994), which is

one of the most widely used satellite
products worldwide. The GVI is
produced by sampling and mapping
the 4-km daily radiance in the VIS
(Ch1, 0.58–0.68 µm), NIR (Ch2,
0.72–1.1 µm), and two thermal bands
(Ch4, 10.3–11.3 µm and Ch5, 11.5–
12.5 µm) measured onboard NOAA
polar-orbiting satellites, to a 16-km
map. To minimize cloud effects, these
maps, including the NDVI, solar ze-
nith angle, and satellite scan angle, are
composited over a 7-day period by
saving those values that have the larg-
est difference between VIS and NIR
reflectance for each map cell. The
weekly GVI data from April 1985
through November 1988 for NOAA-
9, from December 1988 through
September 1994 for NOAA-11, and
during most of 1995 and 1996 for
NOAA-14 were used here.

During 1985–94, the performance
of the VIS and NIR channels differed between NOAA-
9 and NOAA-11 satellites and, most importantly, de-
graded over time for each satellite differently.
Therefore, the standard data preparation procedure for
the 7-day composite time series now includes a cor-
rection of VIS and NIR values following Rao and
Chen (1995). The post-launch correction considerably
improves the stability of NDVI over time, especially
for NOAA-9, and almost eliminates the difference
between the level of NDVI for the end of NOAA-9
and beginning of NOAA-11 satellite data (Kogan et al.
1996). The thermal bands’ measurements were con-
verted to brightness temperatures using a look-up table,
and a nonlinear correction was applied following
Weinreb et al. (1990).

Recent advances in computer technology have
stimulated the development of algorithms, the creation
of global datasets and their wide distribution, and,
most importantly, the development of products to
characterize environmental parameters and phenom-
ena (Kidwell 1994; Ohring et al. 1989; NOAA 1992;
Los et al. 1994; Gutman et al. 1995; Goward et al. 1994;
Maiden and Grego 1994; Kogan 1994b). Unfortunately,
most of the products have not been validated against
ground truth measurements. Therefore, in addition to
collecting satellite data, a lot of effort was put in de-
veloping ground datasets in order to validate satellite-
derived drought characteristics.

FIG. 3. Correlation between VCI and density of spring wheat at stations 35376
(49°53′N, 69°31′E), 35884 (46°02′N, 70°12′E), 36819 (44°08′N, 75°51′E), and 28978
(52°32′N, 68°45′E).
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The ground data used in this study included rain-
fall; temperature; the Palmer Drought Index (PDI) and
the Crop Moisture Index (CMI) data; and measure-
ments of vegetation density, biomass, and yield.
Monthly rainfall and temperature anomalies (devia-
tion from the long-term means) for each first-order
weather station were plotted on a map and areas of
intensive weather anomalies were singled out.
Vegetation density was measured by calculating the
number of plants per unit area and expressed as a de-
viation from the multiyear median. Yield of agricul-
tural crops and pastures is very sensitive to weather
fluctuations and is reduced sharply in case of severe
drought. This reduction can be used as an indicator
 of agricultural drought for validation of vegetation
stress derived from the spectral vegetation indices.
Therefore, average yield of grain crops for countries’
administrative regions were used for validation of
satellite-derived droughts.

4. Algorithm development

In the algorithm development, two crucial consid-
erations were set forth: we avoided any aggregation
of satellite data over space and/or time beyond the
original resolution of GVI data. Space aggregation
(average, interpolation) is inappropriate because
areas with different environmental resources could be
combined together. For example, an area of 1° lat
× 1° long in the Sahel of Africa combine such differ-
ent ecosystems as desert, grassland, and semiforest
with differences between annual precipitation up to
1000 mm (Lebedev 1978). Temporal aggregation (bi-
weekly, monthly) based on a compositing technique
is biased because a later time interval is normally se-
lected, giving preference to more developed vegeta-
tion. If the longer term average techniques is used,
the results are quite often biased over space because
neighboring pixels might characterize a different time
interval (start and end of a month). Moreover, a
1-month time frame is too long to describe develop-
ment of vegetation because morphological changes
and leaf appearances occur every 3–7 days (Ulanova
1975). Weather patterns change even faster because
an elementary synoptic period continues for 3–5 days.
In case of severe drought, vegetation can be desicated
in a matter of days. Therefore, drought monitoring
on a monthly basis is inefficient. These consider-
ations do not support more than 1 week’s temporal
aggregation of satellite data if they are to be used for

monitoring vegetation and the related environmental
phenomena.

The VCI and TCI were derived from the NDVI and
Ch4 data, respectively, that were screened in order to
eliminate high-frequency noise. Then NDVI and Ch4
data were stratified over space and time in order to
describe land ecosystems and to enhance the weather-
related component (Kogan 1990, 1995a; Kogan and
Sullivan 1993). Noise in AVHRR data creates funda-
mental constraints to the remote sensing of earth sur-
face. The sources of noise in NDVI data of the GVI
product are summarized in Table 1 (Goward et al.
1991; Goward et al. 1993; Gutman 1991; Townshend
1994; Los et al. 1994; Justice and Townshend 1994).
Clouds and other atmosphere constituents obscure the
land surface, reducing NDVI considerably. In case of
unusual events, such as a sharp increase in aerosols
due to a volcanic eruption, NDVI can be depressed

Clouds

Viewing Geometry
Bias toward off-nadir view
Surface anisotrophy

Atmospheric attenuation
Raleigh scattering
Aerosols
Water vapor

Mapping procedure
Off nadir view
9-day cycle

Changing footprint due to off-nadir view

Satellite orbital drift

Satellite change

Sensor degradation

Truncation

Daily sampling

Random noise
Represantativeness of sample
Human errors
Transmission
Adjustment of satellite parameters

TABLE 1. Source of noise in the Global Vegetation Index
Dataset.
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for a long time (Kogan et al. 1994). Changes in view-
ing geometry can lead to both an increase and decrease
in NDVI, depending on location, type of vegetation,
and illumination. Satellite orbital drift, sensor degra-
dation, and satellite change create long-term noise in
NDVI data, especially after the satellite has been in
service for more than 3 yr.

A few techniques have been designed to reduce
some noise in AVHRR data. Several cloud-screening
algorithms are presently available (Saunders and
Kriebel 1988; Eck and Kalb 1991), although they
have not been validated. Post-launch calibration cor-
rection (Rao and Chen 1995; Kidwell 1995) reduces
the generally upward trend in NDVI time series. Ther-
mal channels are corrected for the nonlinear behav-
ior of the AVHRR sensor (Weinreb et al. 1990).
Regardless of all these achievements, a complete

physically based correction for all
effects (Table 1) over various land
surfaces, able to eliminate most of the
high-frequency noise, is not avail-
able. Unfortunately, up to 90% of all
NDVI and Ch4 annual time series
values experience large fluctuations
(Kogan 1995a), introducing some er-
rors when these data are used for
monitoring purposes. Up to 20% of
these fluctuations are associated with
nonphysical causes, such as method
of data sampling and processing, sat-
ellite navigation and orientation,
observation and communication er-
rors, and other random noise. It is un-
likely that corrections for this type of
random noise will be developed.
Furthermore, the present data im-
provement algorithms discard a pixel
if any clouds are detected (Goward
et al. 1994; Gutman et al. 1995). Since
clouds usually cover a large area, the
number of such pixels can be enor-
mous over both space and time.
Following Gutman (1991), noncon-
servative cloud screening discarded
60% of the pixels in the area with
normal cloud climatology, leaving
large areas without any land surface
information. This put additional con-
straints on the use of AVHRR data.

Alternative techniques for high-
frequency noise reduction in NDVI

and brightness temperature (BT) data have been de-
veloped and widely used in the last 10 yr (van Dijk et
al. 1987; Kogan et al. 1993). The vegetation-oriented
techniques, which are used in this study to reduce
noise considerably, stem from a statistical approxima-
tion of the vegetation and temperature dynamics dur-
ing the annual cycle, complete suppression of
high-frequency noise, and enhancement of low-fre-
quency variations related to weather fluctuations. This
technique considers smoothing the weekly time series
with a combination of a compound median filter and
the least squares technique (Kogan et al. 1993). This
smoothing completely eliminated the high-frequency
outliers, including random effects; approximated ac-
curately the annual NDVI and BT cycles; and, more
importantly, singled out low-frequency weather-
related fluctuations (valleys and hills in the NDVI and

FIG. 4. End of July VCI/T4 in southeastern China.
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BT time series) during the annual cycle (Kogan
1995a).

After smoothing, interannual differences in NDVI
and BT become more apparent. These differences are
due to weather variation. For example, in dry years
the NDVI curve will be lower and the BT curve will
be higher than in normal and wet years. This principle
of comparison of a dry year with other years in our
archive was laid down in the next stage of the algo-
rithm development. However, since the NDVI and BT
quantify both spatial differences between productiv-
ity of ecosystems (ecosystem component) and year-
to-year variations in each ecosystem due to weather
fluctuations (weather component), and because the
weather component values are much smaller than the
ecosystem, the weather component needed to be sepa-
rated from the ecosystem component (Kogan 1994a,
1995a).

This separation procedure consisted of stratifica-
tion of the ecosystems, first, based on the 1985–93
minimum and maximum of NDVI and BT values for
each pixel and week. The assumption was that maxi-
mum amount of vegetation is developed in years with
optimal weather because such weather stimulates ef-
ficient use of ecosystem resources (e.g., increase in
the rate of soil nutrition uptake). Conversely, mini-
mum vegetation amount develops in years with ex-
tremely unfavorable weather (mostly dry and hot),
which suppresses vegetation growth directly and also
through a reduction in the rate of ecosystem resources
use. For example, lack of water in drought years con-
siderably reduces the amount of soil nutrient uptake.
Therefore, the absolute maximum and minimum of
NDVI and BT calculated from several years of data
that contain the extreme weather events (drought and
nondrought years) can be used as criteria for quanti-
fying the extreme conditions (Kogan 1995a).

Following these considerations, the largest and the
smallest NDVI and BT values during 1985–93 were
calculated for each of the 52 weeks of the year and
for each pixel. They were then used as the criteria for
estimating the upper (favorable weather) and the lower
(unfavorable weather) limits of the ecosystem re-
sources. These limits characterize the “carrying capac-
ity” of the ecosystems and the range in which NDVI
and BT fluctuate due to weather changes from year
to year in each ecosystem. These fluctuations were
estimated relative to the maximum and minimum
(max–min) intervals of both NDVI and BT variations
and named the Vegetation (VCI) and Temperature
(TCI) Condition Indices [Eqs. (1), (2), and (3)]. Since

the NDVI and BT interpret oppositely extreme
weather events (e.g., in case of drought, the NDVI is
low and BT is high; conversely, in nondrought years,
the NDVI is high while the BT is low), Eq. (2) was
modified to reflect this opposite response of vegeta-
tion to temperature:

VCI = 100(NDVI − NDVI
min

)/(NDVI
max

 − NDVI
min

), (1)

TCI = 100(T
max

 − T)/(T
max

 − T
min

), (2)

where NDVI, NDVI
max

, and NDVI
min

 are the smoothed
weekly NDVI, its multiyear absolute maximum, and
minimum, respectively; and T, T

max
, and T

min
 are simi-

lar values for BT derived from Ch4 data. The VCI–
TCI approximate the weather component in NDVI and
BT values. They change from 0 to 100, reflecting
changes in vegetation conditions from extremely bad
to optimal. They were also combined in one index
(VCI/T4) in order to express their additive approxi-
mation of vegetation stress:

VCI/T4 = (VCI + TCI)/2. (3)

With the development of the validation dataset,
some weights will be assigned to the VCI–TCI indices.

5. Drought cases and validation

In recent years, the developed indices have been
used successfully in detecting vegetation stress result-
ing from droughts in different part of the globe (Kogan
1994a, 1994b, 1995a, 1995b). The results of drought
monitoring and validation in Asia, Africa, Europe,
North and South America based on ground data are
discussed below.

a. Asia
The following two examples feature Kazakhstan,

part of the FSU, and China. Kazakhstan occupies
nearly 1 × 106 mile2, which is almost one-third of
the size of the United States. The economy of
Kazakhstan is highly dependent on agriculture, which
has a grain and livestock orientation. Only one-tenth
of Kazakhstan’s land is sown to grain crops; the rest
are rangelands, providing feed to large herds of sheep
that graze all year around. A lack of rainfall and its
high variability, frequent droughts, and desiccative
winds are typical of Kazakhstan’s climate, causing a
two–three-fold variation in agricultural production.
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Recently, a cooperative effort (funded by the Agency
for International Development of the United States)
involving the Institute for Space Research, the National
Meteorological Administration (Kazakhstan), the Desert
Research Institute (Israel), and NOAA was directed
toward development and validation of VCI-derived
estimates of drought in Kazakhstan (Gitelson et al.
1996).

The 1991 and 1992 vegetation conditions were es-
timated from the VCI and the anomaly of vegetation
density in Kazakhstan. Weekly VCI data were aver-
aged for 3 × 3 pixel boxes around the area of field
measurements. In an example from the main wheat
area of northern Kazakhstan (Fig. 3), the VCI and
density dynamics had close matching trends for both
the dry (1991) and wet (1992) seasons. It is notice-
able that, in both years, below normal density in early
May (week 18) corresponded to the VCI-derived es-

timates of vegetation stress (VCI
around 20). In early June, both in-
dicators showed that the stress
weakened in 1992 and intensified
in 1991. At the end of June and in
July (weeks 24–30), the conditions
continued to improve in 1992
(density above mean and VCI
above 50). They also improved in
1991, although both parameters
were below 50. In the rangeland
area of central (Akmola) and south-
ern (Almaty) Kazakhstan, the VCI
and density anomaly also showed
strong correlation (Fig. 3b).

In 1994, China, which is the
world leader in cotton production,
unexpectedly purchased a large
amount of cotton on the international
market. The imports of cotton in
1994–95 exceeded by almost two-
fold the largest purchases since
1981. These purchases were pre-
ceded by a cotton yield reduction
3 yr in a row: 22% in 1992–93,
11% in 1993–94, and 7% in 1994–
95 [the reduction was estimated
relative to the average yield in a
highly productive 1990–91 and
1991–92; United States Depart-
ment of Agriculture (1994)]. The
AVHRR data showed that the yield
reduction can be attributed to veg-

etation stress in the main cotton-growing areas
(Fig. 4). Of all 3 yr, 1992 had the most severe veg-
etation stress. Moreover, both VCI and TCI contrib-
uted to the stress that was typical for severe drought.
These results were supported by below normal rain-
fall and above normal temperature during summer,
particularly in July (United States Department of
Commerce 1992).

Drought-related vegetation stress in the principal
cotton-farming area was also observed in 1994
(Fig. 4). But the unusual weather feature of 1994 was
the intensive preseason drought (Fig. 5a), which re-
sulted in a deficient water supply for irrigated cotton.
Fortunately, this deficit was partially offset by a near-
normal summer rainfall (Fig. 5b). Therefore, the 1994
stress was much less intensive, over a smaller area,
and resulted in an insignificant cotton yield reduction
compared to 1992. Unlike 1992 and 1994, the 1993

FIG. 5. Percent of normal precipitation (a) December 1993–May 1994 and (b) June–
August 1994 (United States Department of Commerce 1994a–f); (c) 1993 cumulative
daily rainfall, Hunan province (United States Department of Commerce 1993); (d) main
cotton areas (United States Department of Agriculture 1994), southeastern China. For
(a) and (b) rainfall, 1 is below normal, 2 is near normal, and 3 is above normal.
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AVHRR-derived vegetation stress in
the cotton-growing area was esti-
mated to be nondrought related be-
cause the values of the VCI were very
low and those of the TCI very high.
Weather data support this finding,
showing a two-fold greater than nor-
mal rainfall during the critical period
of cotton growth in July and August
(Fig. 5c). Meanwhile, in 1993, veg-
etation was stressed over a larger area
than in 1994, although the intensity of
this stress was less than in 1992, con-
sistent with cotton yield reduction.

b. Europe
The Ukraine (part of the FSU) is

the largest country in southeastern
Europe. Agriculture is one of the ma-
jor sectors of the Ukrainian economy
and it is very climate dependent. The
most typical climatic feature limiting
agricultural production is a deficit of
precipitation, which increases toward
the south and east. Water shortages
are usually accompanied by hot and dry weather, and
the usually light snow cover does not make up the
summer moisture deficit. Droughts are very typical for
the Ukrainian climate. They can occur anytime dur-
ing the vegetation cycle but are most frequent in late
spring and summer. Since 1872, droughts of various
intensity occurred 57 times in the Ukraine (Selianinov
1958; Kogan 1986b). Catastrophic droughts happen
in the area once every 60–80 yr. Moderate and severe
droughts occur about 20% and 10% of the time, re-
spectively. As a rule, droughts cover from 20% to 60%
of the Ukrainian area and cause a 20%–50% decline
in yield overall.

In the past 10 yr, the Ukraine has had several large-
area intensive droughts. One of them occurred in
1986, covering most of southern and eastern Ukraine
and the adjacent regions to the east, and reduced ag-
ricultural production (United States Department of
Agriculture 1994). Figures 6 and 7 compare the 1986
drought and the 1989 nondrought years. As seen, the
1986 late spring and summer rainfall was much be-
low normal (in some areas less then 50%) during the
4-month period, specifically in the eastern part of the
area (Fig. 6a), leading to a considerable reduction in
grain yield (Fig. 6b). AVHRR data (Fig. 7) show very
severe vegetation stress in the areas of rainfall deficit

and yield reduction in 1986. In contrast to 1986,
AVHRR-based estimates show mostly good condi-
tions in 1989. These results were supported by an
above normal rainfall and grain yield (Fig. 6b).

c. Africa
Across most of Africa, drought is a major natural

disaster affecting nations’ economies. Early drought
detection, tracking, mapping, and severity assessment
has been considerably constrained by incomplete
meteorological data. Because of military and political
conflicts and also economic deterioration in some of the
regions, the rain gauge network density and the com-
munications infrastructure have been steadily declining
over the years, making drought detection and moni-
toring solely from rainfall data not always reliable.
The AVHRR-based monitoring tool was tested in two
countries, Zimbabwe in southern Africa and Ethiopia
in east-central Africa. The agriculture of these coun-
tries is very important for food self-sufficiency, and
food production is highly dependent on drought.

Droughts in Zimbabwe are associated with rainfall
deficits depending mostly on the time of arrival and
position of the intertropical convergence zone. In gen-
eral, the climate of the northeast of the country is the
wettest with 800 mm and the climate of the south is the

FIG. 6. (a) May–August precipitation anomaly and (b) grain yield departure from
10-yr mean, Ukraine; here, 1 is below normal, 2 is above normal, and 3 is no data.
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driest with less than 400 mm annual rainfall. Maize is
the most important food crop and is grown virtually
everywhere. The northern provinces are considered to
be a “bread basket,” having the best soils and water sup-
plies for intensive corn production (Kay 1976). Droughts
can occur anywhere in the country, mostly during the
growing season, causing significant crop failures. This
is shown in Fig. 8 for one of the central provinces, which
normally receives 630 mm of precipitation per year.

To test the spectral indices as a tool for drought
monitoring, the weekly VCI–TCI values were aver-
aged over each of the 54 administrative provinces of
Zimbabwe and correlated with 9-yr corn yield anoma-
lies (departure from the mean) during 1986–94.1

Weather conditions in these years varied from favor-

able in 1988–89 to extremely unfa-
vorable in 1991–92. As Fig. 9 shows,
in most of the 54 provinces correlation
between corn yield and weekly
indices, when the weather is critical
for crop growth, is very strong, 0.75–
0.95. The correlation degrades in re-
gions where corn area is small and/or
environmental resources are very lim-
ited for successful farming. Thus, when
crop yield is used as a validation tool
in marginal areas, VCI–TCI spatial ag-
gregation should be done only for the
areas of intensive farming.

Moisture resources of Ethiopia are
generally more favorable for agricul-
ture than in Zimbabwe. Ethiopian cli-
mate provides an adequate amount of
annual rainfall (500–1200 mm) in the
areas of intensive farming, and nu-
merous rivers have enough water for
irrigation. The unusual feature of the
Ethiopian environment that deter-
mines zoning is its rugged topogra-
phy, which affects the distribution of
rainfall, considerable runoff, and soil
erosion. The main zones include a
very dry pastoral one in the east,
mixed farming area in the favorable
plateau area (central), and high-
altitude, extremely wet forest in the
west. Although Ethiopia has a suffi-
cient amount of rainfall, weather vari-

ability, especially dry and hot weather, is crucial and
decisive in labor-intensive farming. Since the early
1970s, a series of very intensive droughts have af-
fected Ethiopia, causing considerable damage to crops
and the economy, which depends mostly on agricul-
ture. The most memorable droughts, such as 1972,
1984, and 1991 (Yeshanew and Apparao 1989;
Hellden and Eklundh 1981) resulted in the loss of
natural resources, property, livestock, and thousands
of human lives (Wodajo 1984; United Nations De-
partment of Humanitarian Aid 1993).

An interesting case of dryness occurred during
1987 in Ethiopia. As reported by Yeshanew and
Apparao (1989), that year is considered as extremely
dry because precipitation for the entire country was
the lowest since 1969, and eleven out of 14 adminis-
trative regions had more than a 10% deficit in rain-
fall during May–September (Figs. 10a,c). Contrary to

FIG. 7. End of July vegetation stress derived from VCI–TCI data, Ukraine.

1This work was done with Mr. Unganai from the Drought Moni-
toring Center, Zimbabwe.
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the rainfall-derived intensive dryness (Fig. 10a),
VCI/T4 data did not show significant vegetation
stress. As seen in Fig. 11a, only slightly below normal
vegetation conditions (VCI/T4 values 40–50) at the
end of June 1987 were observed in southwestern
Ethiopia, mostly due to temperature stress (see TCI4
image). Conditions in the southeastern pastoral zone
were very favorable (VCI/T4, VCI, and TCI4 above
75), although severe rainfall deficits were reported
there (Yeshanew and Apparao 1989). Only small ar-
eas in the farming zone of central Ethiopia indicated
vegetation stress (VCI/T4 values 10–
30) at the end of June 1987. However,
the situation changed drastically by
the end of August (Fig. 11b) when a
large area of intensive vegetation
stress appeared (both VCI and TCI4
below 30). This area coincided with
the area of 19% reduction in corn
yield (Fig. 10d). In other regions
of Ethiopia, the yield anomaly was
also in good agreement with VCI/T4
estimates of vegetation stress at the
end of August: in the southeastern
pastoral zone, corn yield was above
normal and VCI/T4 estimated fa-
vorable conditions; in the western
regions, mostly near-normal yield
and conditions (around 50) were
observed.

The discrepancies between weather
and satellite data in interpreting the
1987 main season rainfall deficit in

Ethiopia appeared because a very
intensive meteorological drought
(Yeshanew and Apparao 1989) did
not turn into agricultural drought.
This happened because abundant pre-
season (February–April) rainfall in
1987 (Fig. 10b) partially compensated
for the precipitation deficit during the
main season. Vegetation stress did not
occur in the majority of regions and
vegetation productivity was not re-
duced. This example emphasizes the
value of the VCI/TCI tool for identi-
fying agricultural drought.

d. North America
In 1988, the United States experi-

enced unusually intensive, long, and
extensive drought, which caused severe vegetation
stress on about 25% of the total U.S. area. The most
severe drought impacts were centered in the most pro-
ductive agricultural land. This drought and its impacts
have been evaluated based on both satellite and
ground data (NOAA 1988; Riebsame et al. 1990;
Kogan 1995a). However, one interesting case was dis-
covered recently. In Iowa, which was in the epicenter
of the 1988 drought, satellite data detected a large area
where vegetation was stressed much less than in the
neighboring areas (Fig. 12a). This case was investi-

FIG. 8. Corn yield vs precipitation anomaly (departure from long-term mean) in
Masvingo province, Zimbabwe.

FIG. 9. Spatial distribution of correlation coefficients between corn yield departure
from 9-yr mean and VCI–TCI for provinces of Zimbabwe, Africa: (a) 0.75–0.95; (b)
0.40–0.74.
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gated with the Food and Agricultural Policy Research
Institute of Columbia, Missouri, which provided corn
yield data (A. Womack 1996, personal
communication). Figure 12b shows the
1988 corn yield in each of Iowa’s 99
counties, which belong  to nine Crop
Reporting Districts (CRD), in com-
parison with the average yield before
and after the 1988 drought. Although
Iowa’s yield in 1988 was lower than in
other years, it is seen that CRDs 1, 2,
4, and 7 had much higher average
corn yield [20–30 bushels per acre
(bu ac−1)] compared to CRDs 3, 5, 6,
8, and 9 (50–70 bu ac−1). This twofold
difference is explained by much more
intensive vegetation stress in the
southern and eastern third of Iowa, as
the AVHRR data in Fig. 12a shows
(VCI/T4 below 20). To our surprise, the
PDI, which is used widely as a drought
indicator, did not show the same pat-
tern of drought/nondrought area and

intensity (Fig. 12c) as the corn yield
reduction and VCI/T4 data. The CMI
was in a better agreement with yield
and AVHRR data.

e. South America
Argentina is the second largest agri-

cultural producer in South America.
The complete agricultural crop statistics
were collected for Cordoba, one of the
main agricultural provinces in Argen-
tina, to test the drought monitoring tool.2

The weekly VCI–TCI were calculated
for 26 departments of the Cordoba area
(as a mean value for the area) and com-
pared with the average for each
province’s crop yield anomaly (de-
parture from the 9-yr mean) from
1985–86 to 1993–94. The analysis was
done for corn, which is the major crop
in central and eastern Cordoba. Corn
yield anomalies were correlated with
weekly VCI–TCI starting from the
first week in July (winter in Southern
Hemisphere) and ending with the last
week in June of the next calendar year

FIG. 10. Variability of the 1987 cumulative rainfall (mm) in Ethiopia during
(a) May–September and (b) February–April. (c) Area with more than 10% rainfall
deficit during May–September in administrative regions (after Yeshanew and Apparao
1989). (d) 1987 corn yield anomaly (departure from the 1979–83 mean yield).

FIG. 11. Assessment of vegetation condition based on VCI/T4, VCI, and TCI4
at the end of June (week 26) and at the end of August (week 36) 1987.

2This work was done in cooperation with
Dr. R. Seilers, professor at the University of Rio Cuarto, and my
colleague Dr. J. Sullivan.
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(total 52 weeks). Two main crop
growing departments, Juarez Celmon
(34% of Cordoba total crop area)
and Rio Cuarto (nearly 10%) were se-
lected for analysis. Corn is the prin-
cipal crop in these departments,
occupying 90% and 50% corre-
spondingly, of the area under main
crops.

Figure 13 shows a strong and posi-
tive correlation between corn yield
anomaly and VCI–TCI, indicating an
increase in yield anomaly for the
higher VCI–TCI. This relationship is
the strongest during the critical period
of corn growth (January–February),
and the correlation coefficient is
slightly larger for VCI than for TCI,
for example, in Rio Cuarto, 0.92 ver-
sus 0.85. In addition, the time of the
highest VCI correlation occurs 2–3
weeks earlier than for TCI, mid-
January versus early February, corre-
spondingly. Also, the VCI and TCI
value of around 60 is a breaking point,
identifying corn yield to be above or
below multiyear mean. If both VCI
and TCI are below 35–40 for a few
weeks, more than 50% of corn yield
reduction can be expected. The cor-
relation analysis over time can be used
to outline the critical period during the
growing season where VCI and TCI
have the highest information about
corn yield fluctuation. For example,
in Rio Cuarto, this period covers
December through February.

6. Conclusions

The validation results clearly indi-
cate the utility of VCI–TCI as a sole
source of information about vegetation stress and con-
sequently drought as a major cause of the stress. More-
over, they were also useful for real-time assessments
and diagnosis of vegetation condition and weather im-
pact on vegetation. This information is especially
beneficial if weather data is not available and/or non-
representative due to sparsity of a weather-observing
network. If real-time weather information is reliable,

FIG. 12. VCI/T4-based vegetation condition at the end of June 1988 in Iowa.
(a) Here, 1 represents stressed, 2 represents fair, and 3 represents favorable. (b) County
mean corn yield (bushels per acre); counties grouped in 1–9 CRDs. (c) PDI at the
beginning of July 1988 (United States Department of Commerce 1988); here, 1 is
severely dry, 2 is excessively dry, and 3 is abnormally dry.

it should be combined with the AVHRR-derived char-
acteristics and used as a comprehensive tool for moni-
toring vegetation stress, drought estimates, and
weather impact assessment.

Since February 1995, the AVHRR sensor on the
newly launched NOAA-14 operational polar-orbiting
satellite has provided information about vegetation
stress. After some adjustments made to Ch1, Ch2, and
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Ch4 in order to correct for post-
launch degradation and also for
the application of the algorithms
discussed, we continued to
use VCI–TCI for vegetation
monitoring, particularly for the
analysis of drought-related
stress. Preliminary results indi-
cated that the VCI/T4 index
identified areas of the world that
experienced drought in 1995,
for example, the drought in
Kazakhstan discussed in this
paper.

In 1996, VCI–TCI data indi-
cated early season severe vegeta-
tion stress on the Great Plains of
the United States. Preliminary
data analysis showed (Fig. 14)
that the 1996 stress at the end of
April surpassed the 1988 dry spell
in the heart of the winter wheat
growing areas of Kansas, Okla-
homa, Missouri, and Texas.
However, in 1989, the vegeta-
tion stress was resulted from a
much more intensive, long dry-
ness, especially in central and
eastern Kansas and northern and
southern Texas. In contrast,
most of Oklahoma was severely
affected by the 1996 drought.
These results were validated by
in situ data and this analysis will
be continued using new ground-
truth data and new areas.
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FIG. 14. VCI/T4-derived droughts of 1996, 1989, and 1988 at the end of April (week 16)
in the winter wheat area of the United States.

FIG. 13. Correlation of corn yield (departure from mean) with VCI and TCI in
two departments of Cordoba province, Argentina.
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