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Cross-evaluation of sea surface temperature (SST) algorithms was undertaken using split-window channels
of Meteosat Second Generation Spinning Enhanced Visible and Infrared Imager (SEVIRI) as a proxy for the
Geostationary Operational Environmental Satellites-R (GOES-R) Advanced Baseline Imager (ABI). The goal
of the study was to select the algorithm which provides the highest and the most uniform SST accuracy with-
in the area observed by the geostationary sensor. The previously established algorithms, such as Non-Linear
Regression (NLR) and Optimal Estimation (OE) were implemented along with two new algorithms, Incre-
mental Regression (IncR) and Corrected Non-Linear Regression (CNLR), developed within preparations for
the GOES-R ABI mission. OE, IncR and CNLR adopt the first guesses for SST and brightness temperatures
(BT) and retrieve deviations of SST from the first guess (increments). OE retrieves SST increments with inver-
sion of the radiative transfer model, whereas CNLR and IncR use regression equations. The difference be-
tween CNLR and IncR is that CNLR uses NLR coefficients, whereas IncR implies optimization of coefficients
specifically for incremental formulation. Accuracy and precision of SST retrievals were evaluated by compar-
ison with drifting buoys. The major observations from this study are as follows: 1) all algorithms adopting
first guesses for SST and BTs are capable of improving SST accuracy and precision over NLR; and 2) IncR de-
livers the highest overall SST precision and the most uniform distributions of regional SST accuracy and pre-
cision. This paper also addresses implementation and validation issues such as bias correction in simulated
BTs; preserving sensitivity of incremental SST retrievals to true SST variations; and selection of criteria for op-
timization and validation of incremental algorithms.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Sea surface temperature (TS, SST; see Tables 1 and 2 for list of abbre-
viations and notations used in the paper), derived from satellite obser-
vations of top-of-the atmosphere thermal infrared radiation, is used in
many environmental applications. SST retrievals from geostationary
platforms such as Meteosat Second Generation (MSG — e.g., Schmetz
et al., 2002) and Geostationary Operational Environmental Satellites
(GOES— e.g., Maturi et al., 2008;Wu et al., 1999) benefit from continu-
ous observations of a vast ocean area over the full diurnal cycle. Another
aspect of a geostationary sensor is that each individual element on the
earth's surface within the observed area is viewed at a nearly constant
view zenith angle (VZA, θ). This emphasizes the need for taking special
care to ensure uniformity of accuracy and precision of SST retrievals
within a wide range of VZA, compared with polar-orbiting sensors.

SSTwill be one of the key products of the Advanced Baseline Imager
(ABI, e.g., Schmit et al., 2005) scheduled for launch in 2015 onboard the
new generation GOES-R series. In 2005, NOAA formed theGOES-R Algo-
rithmWorking Group (AWG) to ensure that a full suite of algorithms is
developed and tested on proxy data and is available for product gener-
ation from ABI shortly after the launch. The SST Application Team,
which is a part of the GOES-R AWG, has proposed implementation
and cross-evaluation of prospective SST algorithms within a consistent
framework, using the Advanced Very High Resolution Radiometer
(AVHRR) onboard polar-orbiting NOAA and MetOp satellites and the
Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the
geostationary MSG satellites as ABI proxies. This study began with im-
plementation of existing SST algorithms, such as regression (e.g.,
McClain et al., 1985; Walton et al., 1998) and radiative transfer model
(RTM) — based Optimal Estimation (OE — e.g., Rodgers, 1976) and
eventually has led to development of theHybrid or Incremental Regres-
sion (IncR) algorithm, which is aimed at combining the advantages of
both approaches (Ignatov et al., 2010; Petrenko et al., 2010b). This
paper describes the results of implementation and cross-evaluation of
SST algorithms using Meteosat-9 SEVIRI data.
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At present, the majority of operational SST products are generat-
ed using regression algorithms. Although the forms of regression SST
equations are devised to decouple SST variations from variations in
atmospheric transmission and emission, residual atmospheric ef-
fects can cause significant regional biases in retrieved SST. For
SEVIRI, these biases were explored by Merchant et al. (2009a) and
Le Borgne et al. (2011). The OE and IncR algorithms represent an al-
ternative approach to SST retrieval, which can be defined as “incre-
mental”. This approach implies adopting the first guesses for SST,
TS
0, from SST analysis fields and first guesses TB0 for observed bright-
ness temperatures (BT, TB) from RTM simulations. Given TS

0 and TB
0,

the task of the incremental algorithms is to retrieve SST increments,
TS−TS

0, from BT increments, TB−TB
0, rather than TS from TB. Along

with selection of the algorithm which provides the highest and
most uniform SST accuracy and precision within the area observed
by a geostationary sensor, the objective of this study was to gain ex-
perience in implementation and validation of incremental SST
algorithms.
The SST algorithms were implemented within the Advanced

Clear-Sky Processor for Oceans (ACSPO), initially developed at the
National Environmental Satellite Data and Information Service (NES-
DIS) to generate clear-sky radiances, SST, and aerosols from the
AVHRR sensors onboard NOAA and MetOp satellites (Liang & Ignatov,
in press; Liang et al., 2009; Petrenko et al., 2010a) and later adopted
for MSG SEVIRI (Shabanov et al., 2009, 2010). The regression-based
ACSPO SST algorithms are trained against buoy measurements with-
out correction for the thermal skin effect. ACSPO enables on-line sim-
ulations of clear-sky BTs using the Community Radiative Transfer
Model (CRTM, Han et al., 2005; Liang et al., 2009) with analysis SST
and Numerical Weather Prediction (NWP) atmospheric fields as
input. In this study, CRTM version 1.1 is used in conjunction with
the AVHRR-based 0.25° Daily High-Resolution Blended SST analysis
(DSST, Reynolds et al., 2007) and the 6-hour 1° atmospheric forecast
fields from the National Centers for Environmental Prediction (NCEP)
Global Forecast System (GFS, available at http://nomad3.ncep.noaa.
gov/pub/gfs/rotating/). The DSST field is anchored to buoy and ship
SST, and thus it is expected to be consistent with ACSPO regression al-
gorithms, which are also trained against in situ measurements. CRTM
BTs, TBCRTM, are computed on the GFS grid and interpolated in space
and time to the sensor's pixels. Similar interpolation is applied to se-
lected GFS atmospheric variables, such as Total Precipitable Water
Vapor Content in the atmosphere (TPW, W). The pixel-level first
guess SST is produced by spatial interpolation of DSST. The ACSPO
also incorporates Clear-Sky Mask (ACSM) — the module that iden-
tifies clear-sky ocean pixels suitable for SST retrieval (Petrenko et
al., 2010a). The ACSPO infrastructure allows implementation and
testing, in a real-time setting, of SST algorithms based both on regres-
sion and on CRTM simulations.
Split-window SEVIRI Channels 9 and 10, centered at 10.8 μm and

12 μm, were used in this study as the proxies of the ABI channels 14
and 15, centered at 11.2 μm and 12.3 μm. Note that since the spectral
responses for SEVIRI and ABI channels are different, the performance
of SST algorithms reported in this study for SEVIRI can be different
from that for the future ABI sensor. The SEVIRI Channel 4, centered
at 3.9 μm, was not used because our initial analyses (Shabanov et
al., 2009), consistent with Le Borgne et al. (2011), have shown that
this SEVIRI channel does not improve the accuracy of nighttime SST
retrievals but introduces inconsistency between daytime and night-
time retrievals.

2. SST algorithms

In this Section, the SST algorithms implemented for this study are
briefly reviewed.More implementation details are provided in Sections 5
and 6.

Table 1
List of abbreviations.

ABI Advanced Baseline Imager
ACSM ACSPO Clear-Sky Mask
ACSPO Advanced Clear-Sky Processor for Oceans
AVHRR Advanced Very High Resolution Radiometer
AWG Algorithm Working Group
BT Brightness temperature
CNLR Corrected Non-Linear Regression
CRTM Community Radiative Transfer Model
MDB Matchup Database
DSST Daily High-Resolution Blended SST
ESD Estimated SST Error Standard Deviation
ECMWF European Center for Medium-range Weather Forecasting
GFS Global Forecast System
GOES Geostationary Operational Environmental Satellites
iQuam In situ SST Quality Monitor
IncR Incremental Regression
LUT Lookup table
MSG Meteosat Second Generation
NCEP National Centers for Environmental Prediction
NESDIS National Environmental Satellite, Data and Information Service
NLR Non-Linear Regression
NOAA National Oceanic and Atmospheric Administration
NWP Numerical Weather Prediction
ODSF Optical Depth Scaling Factor
OE Optimal Estimation
OSTIA Operational Sea Surface Temperature and Sea Ice Analysis
RTM Radiative transfer model
RTTOVS Radiative Transfer for TIROS Operational Vertical Sounder
SD Standard deviation
SEVIRI Spinning Enhanced Visible and Infrared Imager
SNR Signal-to-Noise Ratio
SST Sea surface temperature
TPW Total Precipitable Water Vapor Content
VZA View zenith angle

Table 2
List of notations.

TS SST
TS
0 First guess SST

TS
i SST measured in situ

TB Observed BT
TB11 Observed BT in 11 μm channel
TB12 Observed BT in 12 μm channel
TB
0 First guess brightness temperature

TB11
0 First guess BT in 11 μm channel

TB12
0 First guess BT in 12 μm channel

TB
CRTM BT simulated with CRTM

a0 NLR offset
a=[a1, a2, a3]T Vector of NLR coefficients
b0 IncR offset
b=[b1,b2, b3]T Vector of IncR coefficients
b0LS IncR offset
bLS Vector of IncR coefficients calculated with the

least-squares method
Y Vector of regressors, constructed from observed BTs
Y0 Vector of regressors, constructed from first guess BTs
θ Satellite view zenith angle
W Total column water vapor content in the atmosphere
M Bias in retrieved SST
σ Standard deviation of retrieved SST
r Incremental correlation coefficient
MB Bias in TB−TB

CRTM

τ Optical depth of water vapor absorption
τ0 A priori estimate of water vapor absorption
β ODSF
z Vector of variables retrieved with OE
z0 A priori value of z
S A priori covariance matrix of z
Δ Covariance matrix of radiometric noise
K Jacobian
η Multiplication factor at S−1 in OE equation
σSST A priori SD of SST
σβ A priori SD of ODSF
σcell Regional average SD of retrieved SST minus DSST
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2.1. Non-Linear Regression (NLR)

The split-window Non-Linear Regression (NLR, Walton et al.,
1998) was implemented for SEVIRI in the same form as used in
ACSPO for operational processing of AVHRR data (e.g., Petrenko et
al., 2010a):

TS ¼ a0 þ aTY; ð1Þ

Y ¼ TB11; TB11−TB12ð Þ T 0S −273:15
� �

; TB11−TB12ð Þ sec θ−1ð Þ
h iT

: ð2Þ

Here, Y is a vector of regressors, a0 is an offset, and a=[a1, a2, a3]T

is a vector of regression coefficients, [*]T denotes vector transposition.
TB11 and TB12 are BTs observed at 10.8 μm and 12 μm. The regression
coefficients are derived frommatchups of TBwith in situ SST, TSi . Alter-
native implementations of NLR may use different forms of equations
and use coefficients derived from RTM simulations (e.g. Brisson et
al., 2002; Le Borgne et al., 2011).

2.2. Corrected Non-Linear Regression (CNLR)

Ignatov et al. (2010) and Le Borgne et al. (2011) suggested estima-
tion of regional bias in NLR SST by subtracting TS

0 from Eq. (1), in
which observed BTs are replaced with their simulated first guesses:

M ¼ a0 þ aTY0−T0S ; ð3Þ

Y0 ¼ T0B11; T0B11−T0B12
� �

T0S−273:15
� �

; T0B11−T0B12
� �

secθ–1ð Þ� �T
: ð4Þ

Here, TB110 and TB12
0 are first guesses for TB11 and TB12. Subtracting

Eq. (3) from Eq. (1) produces the Corrected NLR (CNLR) SST estimate:

TS ¼ T0S þ aT Y−Y0Þ:
�

ð5Þ

CNLR SST deviates less from TS
0 and fits TSi more precisely than NLR

SST (e.g., Le Borgne et al., 2011). Given the NLR coefficients, the CNLR
does not require further adjustment. CNLR can be considered an inter-
mediate algorithm between conventional and incremental approaches
because it retrieves SST increments, but does so with NLR coefficients
derived from matchups of TB with TS

i. However, NLR coefficients can
be suboptimal for incremental retrieval.

2.3. Incremental Regression (IncR)

The Incremental Regression (IncR) algorithm, developed during
preparations for the GOES-R ABI mission (Ignatov et al., 2010; Petrenko
et al., 2010b), implies optimization of regression specifically for retriev-
al of SST increments. In general, the IncR can involve selection of regres-
sorsmost suitable for incremental retrieval and derivation of regression
coefficients from matchups of TB−TB

0 with TS
i−TS

0. In this study, we
have chosen to focus on the effect of optimization of coefficients, keep-
ing for IncR the incremental form of the NLR Eq. (1):

TS ¼ T0S þ b0 þ bT Y−Y0Þ:
�

ð6Þ

Here, b0 is an offset, and b=[b1,b2,b3]T is a vector of regression co-
efficients. Eq. (6) is similar to Eq. (5) with the exception that Eq. (6)
includes an offset and its coefficients are derived from matchups of
(TB−TB

0) with (TSi−TS
0). Cross-evaluation of NLR, CNLR and IncR algo-

rithms thus allows sequential demonstration of the effect of replacing
conventional NLR Eq. (1) with its incremental analog Eq. (5) and the
effect of replacing NLR coefficients in CNLR with optimized coeffi-
cients in IncR.

2.4. Optimal Estimation (OE)

OE (e.g., Rodgers, 1976) was the first incremental technique ap-
plied to SST retrieval from AVHRR (Gemmill et al., 2007; Merchant
et al., 2008) and from SEVIRI (Merchant et al., 2009a). Being based
on inversion of RTM, OE performs the atmospheric correction in a dif-
ferent way than regression algorithms. While regression accounts for
atmospheric effects in some “global average” sense, by selecting re-
gressors and deriving coefficients from the full Matchup Database
(MDB), OE attempts to account for local deviations of atmospheric
transmission and emission from those simulated with RTM and
NWP data, by simultaneous retrieval of SST and atmospheric state
variables. Since the number of simultaneously retrieved variables
cannot exceed the number of channels used, only one atmospheric
variable can be retrieved along with SST from two split-window
channels. Implementation of OE for SST involves low-dimensional pa-
rameterization of RTM, calculation of RTM Jacobian, explicit specifica-
tion of a priori statistical distribution for unknown variables, and
inversion of a set of RTM equations in each pixel. As a result, OE is
more computationally expensive than regression-based algorithms,
and its implementation is more ambiguous and less straightforward.
One of the goals of OE implementationwithin this study was to verify
that the increased volumes of computations and implementation
complexities are justified by improvement in SST accuracy and
precision.

3. Criteria for optimization and validation of SST algorithms

Every SST algorithm exploits specific approximation of the inverse
relationship between SST and observed BTs. Accuracy and precision of
these approximations can vary for different algorithms. In addition,
the performance statistics can degrade in time due to long-term cali-
bration trends and non-uniform accuracy of auxiliary data. Here, we
explore the intrinsic capabilities of SST algorithms to fit in situ SST
using the sameMDB of SEVIRI and buoy observations for both optimi-
zation and validation of SST algorithms. This way, we leave aside pos-
sible effects of instability of the sensor and variable accuracy of NWP
atmospheric data used as input for CRTM. The long-term trends in
SST retrieval accuracy and precision will be a subject of a future
work.
The SST algorithms were optimized and cross-evaluated using

SEVIRI observations taken at 30-minute intervals during 1–30 June
2008 within the geographical area (retrieval domain) from 60°S to
60°N and 60°W to 60°E excluding the region from 10°N to 30°N and
10°W to 30°W, in which SEVIRI SST retrievals often show significant
negative biases due to the effect of Saharan dust (e.g., Merchant et
al., 2006). Although in general Saharan dust can spread over much
wider area (e.g., Swap et al., 1996), this 20°×20° region was excluded
from consideration based on visual analyses of nighttime SEVIRI SST
images taken in June 2008. Only nighttime pixels with solar zenith
angle greater than 90° and identified as “clear-sky” by the ACSM
were used in this study. Daytime observations were excluded from
the analysis to avoid distortions of BTs and SST by non-uniform diur-
nal warming patterns (e.g., Kawai & Wada, 2007; Minnett, 2003) and
potential sun glint contamination (e.g., Khattak et al., 1991) on the
ocean surface. Another reason to exclude daytime observations from
consideration is that the difference between “skin” SST within the
upper ~10 μm layer, to which the SEVIRI observations are sensitive,
and in situ SST, measured at ~1 m depth, is largest in the daytime
(e.g., Donlon et al., 2002). The MDB was formed by matching SEVIRI
data with quality-controlled drifting buoy measurements selected
with the in situ SST Quality Monitor (iQuam, Xu & Ignatov, submitted
for publication; the description of iQuam is also available at http://
www.star.nesdis.noaa.gov/sod/sst/iquam). Additional criteria for se-
lection of drifters were that the time difference between the SEVIRI
image and in situ measurements is ≤15 min and that the distance
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of a buoy from the nearest clear-sky pixel on the SEVIRI image, closest
in time, ≤10 km (note that the size of the SEVIRI pixels is 4.8 km at
nadir). The total number of matchups in the database is N=30,398.
In situ SST increments TS

i−TS
0 within the MDB show near-Gaussian

distribution with a mean bias of −0.058 K and standard deviation
(SD) of 0.338 K (recall that ACSPO produces the first guess SST TS

0 by
interpolation of 0.25° spatial resolution DSST to SEVIRI pixels). The
fact that TS0 fits TSi more precisely than satellite SST retrievals (typical
SD of retrieved SST with respect to TS

i is ~0.5 K), is consistent with
other analyses (e.g., Le Borgne et al., 2011; O'Carroll et al., 2008; Xu
& Ignatov, 2010). Fig. 1 shows number of matchups within 10° bins
of VZA and 10 kg/m2 bins of TPW. The number of matchups varies
from 102 to 104 per bin, thus allowing analysis of statistics of re-
trieved SST as functions of VZA and TPW.
The criteria used for optimization and validation of SST algorithms

deserve special consideration. Customarily, accuracy and precision of
regression SST retrieval are characterized with bias and SD of re-
trieved SST with respect to in situ SST:

M TS−Ti
S

� �
¼ bTS−Ti

SN; ð7Þ

σ TS−Ti
S

� �
¼ TS−TS

i
–D TS−TS

i
� �h i2� 	
 �0:5

: ð8Þ

Here, bxN denotes averaging within the MDB — either over the
entire retrieval domain or over specific geographical regions, or
within VZA or TPW bins. Another important quantity which will be

used in evaluation of incremental SST algorithms is SD of retrieved
SST increment:

σ TS−T 0S
� � ¼ bb TS−T 0S −M TS−T 0S

� �� �2
NN

n o0:5
; ð9Þ

M TS−T0S
� �

¼ bbTS−T0S NN: ð10Þ

bbxNN denotes averaging over clear-sky nighttime SEVIRI pixels
from 1 to 30 June 2008.
Given the first guess SST TS0, the performance of SST algorithms can

be also compared in terms of correlation r between retrieved and in
situ SST increments:

r TS−T0S ; T
i
S−T0S

� �
¼ TS−T0S−M TS−T0S

� �h i
Ti
S−TS

0
–M Ti

S−TS
0

� �h iD E

= σ TS−TS
0

� �
σ TS

i−TS
0

� �h i
; ð11Þ

M TS
i−TS

0
� �

¼ Ti
S−T0S

D E
; ð12Þ

σ Ti
S−T0S

� �
¼ Ti

S−T0S−M TS
i−TS

0
� �h i2� 	
 �0:5

: ð13Þ

In the regression analysis, the square of correlation r2 (called coef-
ficient of determination) represents “the proportion of the variability
in the dependent variable that is explained by the independent vari-
able” (e.g., Ostle & Malone, 1988). In our case, r2 characterizes a con-
tribution of variations in in situ SST increments to variations in
retrieved SST increments, which are additionally disturbed by noise
from factors such as variations in atmospheric transmission, radio-
metric noise, etc. Note that correlation between absolute TS and TS

i

typically exceeds 0.99 and only slightly varies for different algorithms
due to an overwhelming contribution of variations in TS

0 to both TS
and TS

i . In contrast, the correlation between the increments TS−TS
0

and TS
i−TS

0 (incremental correlation) is relatively low but distinguish-
ably different for different SST algorithms. In this study, the incre-
mental correlation is used as an additional measure of the relative
performance of the SST algorithms.
Alternatively, a characteristic similar to r2 can be obtained using

RTM-based sensitivities of TS to true SST, TPW, and other variables.
These sensitivities can be calculated by substituting corresponding
RTM derivatives into the algorithm's equation (Merchant et al.,
2009b). However, this approach requires setting a joint statistical distri-
bution of SST and other RTM variables, and calculation of RTM Jacobian
with accuracy high enough to resolve the differences between the
algorithms.

4. Correction of biases in first guess brightness temperatures

BTs simulated with CRTM, TBCRTM, may be significantly biased with
respect to observed BTs, TB, due to modeling errors and incomplete
(e.g., missing aerosol) or not fully accurate GFS or SST input fields.
Observed BTs are also affected by uncertainties in calibration, spectral
response functions, and residual cloud. Analyses of AVHRR observa-
tions (e.g., Liang et al., 2009; Petrenko et al., 2010a) have shown
that the differences, TB−TB

CRTM, systematically deviate from zero and
change in space and time. The dependencies of TB−TB

CRTM biases on
TPW, VZA and other variables are monitored for AVHRR on a daily
basis at http://www.star.nesdis.noaa.gov/sod/sst/micros/ (Liang &
Ignatov, in press). Similar monitoring for SEVIRI is currently under
development. To prevent propagation of BT biases into estimated
SST increments, these biases are usually corrected for, prior to using
simulated BT as the first guess TB0. For the purpose of correction, BT
bias is represented as a function of either geophysical variables,
such as SST, TPW, and VZA, (e.g., Gemmill et al., 2007; Merchant et

Fig. 1. Number of matchups in the database as a function of (a) VZA, binned at 10° and
(b) TPW, binned at 10 kg/m2.
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al., 2008) or geographical coordinates (e.g., Le Borgne et al., 2011;
Merchant et al., 2009a). Considering that BT bias is expected to be pri-
marily a function of geophysical variables and that BT bias at any geo-
graphical point is sensitive to variations in local geophysical
conditions, we adopted the former approach. The biases in TB−TB

CRTM

in channels 10.8 μm and 12 μmwere represented as two-dimensional
functions of (θ, W) by averaging TB−TB

CRTM over all clear-sky night-
time SEVIRI pixels within 5°×5°kg/m2 bins in June 2008. Because of
essential nonlinearities, these functions were approximated with
lookup tables (LUT). For any combination of θ and W, the value of
bias, MB(θ,W), was obtained by interpolation between the nearest
LUT entries. The de-biased first guess BT was found for each pixel as:

T0B ¼ TCRTM
B þMB θ;Wð Þ: ð14Þ

Fig. 2 shows that biases in TB−TB
CRTMmay exceed 1 K, and can sig-

nificantly vary with VZA and TPW. Fig. 3 shows biases in TB−TB
CRTM

and TB−TB
0 averaged over nighttime clear-sky pixels within

10°×10° latitudinal/longitudinal cells in June 2008. Fig. 4 demon-
strates TPW and VZA values averaged over the same cells. The most
significant minima of TB−TB

CRTM biases in Fig. 3, left panels, correspond
to the lowest TPW values and the smallest VZA values consistently
with dependencies shown in Fig. 2. Table 3 presents mean and SD of re-
gional biases for TB−TB

CRTM and TB−TB
0 averaged over all 10°×10° cells

shown in Fig. 3. Fig. 3 and Table 3 suggest that the bias-corrected differ-
ences, TB−TB

0, are centered at zero and more uniform in space. The re-
sidual BT bias correction errors, which are likely due to regional
variations in parameters other than TPW and VZA (e.g., residual cloud,
aerosols, vertical profiles of water vapor and temperature), show them-
selves in still significant SD of TB−TB

0 in Table 3 and in noticeable

variations in regional TB−TB
0 biases in Fig. 3, right panels. The SST algo-

rithms are compared within this study and checked for sensitivity to a
combination of various disturbing factors including the residual bias
correction errors.

5. Derivation of NLR and IncR coefficients

NLR coefficients are derived from matchups of observed BTs and in
situ SST using the least-squares method, by unconstrained minimiza-
tion of the variance of retrieved SST from in situ SST over the full MDB:

a0−aTY−Ti
S

� �2� 	
¼ min: ð15Þ

A straightforward way to derive IncR coefficients for Eq. (6) would
also be tofind the “least squares” vector of coefficients bLS and the offset
b0LS as a solution of the following unconstrainedminimization problem:

Ti
S−T0S−b0LS−bTLS Y−Y0Þ

� i2� 	
¼ min:

�
ð16Þ

However, the least-squares method, which works reasonably well
for NLR, is not fully adequate for calculation of IncR coefficients. The
least-squares method guarantees that biases in estimated regression
coefficients are small only if errors in regressors are small compared
with variations of the regressors (e.g., Ostle & Malone, 1988) — in
other words, if Signal-to-Noise Ratio (SNR) for regressors is large
enough. The SNR for incremental regressors Y−Y0 is much smaller
than for NLR regressors Y. Under clear-sky conditions, the global
RMS variation in TB is ~8 K, whereas the range of variations in TB−
TB
0 is on the order of 0.5 K (e.g., Liang & Ignatov, in press; Liang et
al., 2009; Petrenko et al., 2010a). Because of small SNR of incremental
regressors, the least-squares method underestimates IncR coeffi-
cients. As a result, the IncR SST TS(bLS), produced by substituting
b0LS and bLS into Eq. (6), underestimates SST increments: SD of TS
(bLS)−TS

0 averaged over the full retrieval domain during June 2008,
σ[TS(bLS)−TS

0], appears to be as small as 0.12 K. At the same time, TS
(bLS) also precisely fits TSi , with SD σ[TS(bLS)−TS

i ]=0.32 K, consistent-
ly with the fact that TS0 fits TS

i with SD of ~0.34 K (cf. analyses in
Section 3). For comparison, these numbers for de-biased CNLR SST
estimate TS(a), produced using Eq. (5), are much greater: σ[TS(a)−
TS
0]=0.54 K and σ[TS(a)−TS

i ]=0.49 K. Two observations can be
made here. First, low SNR typical for incremental regressors prevents
obtaining a realistic measure of SST variability from incremental con-
siderations alone. Therefore, an external measure of SST variability is
needed to adjust the IncR coefficients. Second, precision of fitting in
situ SST cannot be taken as an ultimate measure of the performance
of any incremental SST algorithm because small value of σ[TS−TS

i ]
can be achieved by simply using small coefficients in the algorithm
equation (or even zero coefficients, which is equivalent to taking TS

0

as a solution). This conclusion is important for validation and espe-
cially for intercomparison of incremental SST algorithms.
Within the scope of this study, the most reliable external measure of

variability in SST increments can be obtained fromCNLR SST. To preserve
sensitivity of IncR SST to true SST increments, we scale bLS in such a way
as to equalize SD of IncR SST minus TS0, σ[TS(b)−TS

0], with similar SD for
the CNLR SST, σ[TS(a)−TS

0] (note that σ[TS(b)−TS
0] and σ[TS(a)−TS

0] are
produced according to Eq. (9), by averaging over all clear-sky SEVIRI ob-
servations in July 2008 within the entire retrieval domain):

b ¼ αbLS; ð17Þ

α ¼ σ TS að Þ−TS
0

h i
=σ TS bLSð Þ−T0S

h in o
: ð18Þ

Here, α≈4.48 is the scaling factor, TS(a) is CNLR SST estimate,
according to Eq. (5). The scaling increases variability of IncR SST

Fig. 2. Biases of SEVIRI−CRTM BT in (solid line) channels 10.8 μm and (dashed line)
12 μm as functions of (a) VZA and (b) TPW.
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increments, while preserving their correlation with in situ SST
increments.
Table 4 compares the NLR and scaled IncR coefficients, appearing

in front of similar regressors in Eqs. (1) and (6). (Recall that the
CNLR algorithm uses the NLR coefficients.) Unlike the NLR equa-
tion (1), in which the offset a0 is significant, the offset b0 in the IncR

Eq. (6) is small, suggesting that TS≈TS
0 when TB11=TB11

0 and
TB12=TB12

0 . The scaled IncR coefficients b1 and b2 compare well with
the corresponding NLR coefficients a1 and a2, whereas the coefficient
b3 in front of the VZA-dependent regressor in Eq. (6) significantly de-
viates from the NLR coefficient a3. The relatively large positive value
of a3 indicates a pronounced sensitivity of NLR (and CNLR) SST to

Fig. 3. Biases of (left panels) SEVIRI BT−CRTM and (right panels) SEVIRI BT-first guess, averaged over 10°×10° lat/lon cells for all nighttime clear-sky measurements in June 2008.
(See also statistical summaries in Table 3).

Fig. 4. The values of (a) TPW and (b) VZA averaged over 10°×10° lat/lon cells in June 2008.
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variations in BT increments at large VZA, whereas the sensitivity of
IncR SST is suppressed as manifested by a significantly smaller value
of b3. The difference between a3 and b3 values can be due to the fact
that the angular dependence of IncR regressors is reduced by sub-
tracting first guess BTs from observed BTs. This reduces the load on
the VZA-dependent term in Eq. (6) compared to Eq. (1). Note also
that the sign of b3 is negative and opposite to the signs of b1 and b2.
The method of calculation of IncR coefficients, described in this Sec-

tion, suggests that, despite relatively low SNR, the incremental regres-
sors still carry enough information to provide significant correlation
between retrieved and in situ SST increments. Future development of
the IncR approach can include further specification of the IncR coeffi-
cients using, for example, RTM considerations.

6. Implementation of the OE algorithm

The OE solution is produced by inverting a set of equations, which
combines RTMand a priori information (e.g., Rodgers, 1976). To retrieve
SST from two split window channels, OE requires two-dimensional
parameterization of RTM with SST and one additional variable to ac-
count for variations in the atmospheric transmission. In our implemen-
tation of OE with SEVIRI channels 10.8 and 12 μm, the second retrieved
variable is the Optical Depth Scaling Factor (ODSF), β, defined as a ratio
of optical depth of water vapor absorption τ to its a priori estimate τ0,
computed from GFS data:

β ¼ τ=τ0: ð19Þ

The OE solution is constructed as:

z ¼ z0 þ KTΔ−1 Kþ S−1
� �−1

KTΔ−1 TB−TB
0Þ:

�
ð20Þ

Here, z=[TS, β]T is a vector of unknown variables; z0=[TS0, 1]T is
the first guess for z; TB=[TB11, TB12]T is a vector of observed BTs;
TB0=[TB110 , TB120 ]T is a vector of first-guess BTs; K is Jacobian (i.e., the
matrix of derivatives of the CRTM function at 10.8 and 12 μmwith re-
spect to TS and β); S is a covariance matrix of a priori distribution of z;
Δ is a covariancematrix of radiometric noise in BTs. The elements of K
are numerically computed along with TB

CRTM on the GFS grid and inter-
polated to SEVIRI pixels. When computing BT derivatives with respect
to β, profiles of atmospheric humidity are scaled proportionally at all
atmospheric levels. The OE algorithm requires specifying the second

moments of a priori statistical distributions for instrumental noise
(Δ) and retrieved variables (S). To simplify the process of OE adjust-
ment, we followed Merchant et al. (2009a) and assumed that radio-
metric noise in both channels is independent, with equal RMS
values, which corresponds to a diagonal matrix Δ, with equal diago-
nal elements η. Under this assumption, Eq. (20) is rewritten as:

z ¼ z0 þ KTKþ ηS−1
� �−1

KT TB−TB
0Þ:

�
ð21Þ

The only term in Eq. (21), which depends on the second moments
of a priori statistical distributions of noise and unknown variables, is
ηS−1. This allows fixing η at a certain value (we set η to 0.04 K2, as-
suming that RMS noise value is 0.2 K) and adjusting only S elements.
The non-diagonal elements of Swere set to zero, assuming that TS and
β increments are statistically independent.
The most challenging part of OE implementation is the selection of

diagonal elements of S, σSST and σβ, which are squares of a priori SD
for TS and β. The OE theory (e.g., Rodgers, 1976) suggests setting
σSST and σβ from a priori information. The DSST data set includes
the Estimated SST Error Standard Deviation (ESD), which does not
exceed 0.3 K for most of the area observed by SEVIRI. In the initial
OE version, σSST was set to ESD interpolated to the sensor's pixels,
and σβ was set to 0.2. Similar to SST produced with the NLR using
least-squares estimates of coefficients, the SST produced with this ini-
tial OE version fit in situ SST quite precisely, with σ(TS−TS

i)=0.37 K
and only slightly deviated from TS

0, with σ(TS−TS
0)=0.23 K. (Note

Table 3
Mean and SD of regional biases of SEVIRI−CRTM BTs (TB−TB

CRTM) and SEVIRI−first-
guess BTs (TB−TB

0) in channels 10.8 and 12 μm (from Fig. 3).

10.8 μm 12 μm

Mean (K) SD (K) Mean (K) SD (K)

TB−TB
CRTM −0.665 0.220 −0.580 0.265

TB−TB
0 −0.043 0.168 −0.044 0.166

Table 4
Coefficients for Non-Linear Regression (NLR) and Incremental Regression (IncR).

Coefficient Regressor Value

NLR
a0 Offset 11.121
a1 TB11 0.96687
a2 (TB11−TB12)(TS0−273.15) 0.069788
a3 (TB11−TB12)(secθ−1) 0.80178

IncR
b0 Offset −0.032284
b1 TB11−TB11

0 0.97533
b2 [(TB11−TB11

0 )−(TB12−TB12
0 )](TS0−273.15) 0.084647

b3 [(TB11−TB11
0 )−(TB12−TB12

0 )](secθ−1) −0.13250

Fig. 5. (a) SD of OE−in situ SST and (b) correlation between increments (OE SST−
DSST) and (in situ SST−DSST) as functions of a priori SD of ODSF. The curves corre-
spond to different SD of a priori SST errors: 1 — spatially variable SD is taken from
the DSST dataset (typically less than 0.3 K), 2 — 1 K; 3 — 2.14 K; 4 — 2.5 K.
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that a similar underestimation of true SST variations by OE was earlier
reported by Merchant et al., 2009a.) An additional indication of the
insufficiency of this initial OE version is a relatively low average
correlation of retrieved SST increments with in situ SST increments,
r(TS−TS

0,TSi−TS
0)=0.205. In order to increase the range of retrieved

SST increments, and to improve their correlation with in situ SST
increments, in the final OE version σSST and σβ were set to constant
values, selected from the following consideration. Fig. 5a shows
σ(TS−TS

i) as a function of σβ for the initial OE version and for three
constant values of σSST. For σSSTN2 K and σβb0.2, σ(TS−TS

i) decreases
as σβ increases until it stabilizes itself at σβ≈0.2. Fig. 5b additionally
shows that the correlation between TS−TS

0 and TS
i−TS

0 reaches its

maximum near the same value of σβ=0.2, within a wide range of
σSST. Based on this result, the value of σβ in the final OE version was
set to 0.2. The value of σSST was set to 2.14 K to equalize σ(TS−TS

0)
for OE and CNLR.

7. Comparison of SST algorithms

Statistics of retrieved SST, averaged over the full retrieval domain
in June 2008, are shown in Table 5 for four algorithms. SD of retrieved
SST minus DSST, σ(TS−TS

0), characterizes variability of retrieved SST
increments. Recall that for IncR and OE, σ(TS−TS

0) was equalized to
that of CNLR. For CNLR SST, σ(TS−TS

0) is smaller than for NLR, due
to subtraction of regional biases, according to Eq. (3). Removal of re-
gional biases from CNLR SST also reduces SD of retrieved minus in situ
SST, σ(TS−TS

i) (consistent with Le Borgne et al., 2011) and increases
incremental correlation, r(TS−TS

0, TSi−TS
0), compared with NLR. The

IncR further reduces σ(TS−TS
i) and increases r(TS−TS

0, TSi−TS
0) due

to optimization of regression coefficients specifically for incremental
retrieval. The OE demonstrates higher σ(TS−TS

i) and lower r(TS−TS
0,

TS
i−TS

0) than CNLR and IncR. Recall that this result is the best case sce-
nario for the OE, which was adjusted to maximize r(TS−TS

0, TSi−TS
0).

Fig. 6 shows maps of retrieved SST minus DSST, produced from a
single SEVIRI image, taken at 00:00 UTC on June 2, 2008 with four
SST algorithms. The CNLR, IncR, and OE SST images reproduce similar
large-scale SST anomalies whereas NLR SST is noticeably subject to
the effect of large regional biases.

Table 5
Statistics of SSTs retrieved with Non-Linear Regression (NLR), Corrected Non-Linear
Regression (CNLR), Incremental Regression (IncR) and Optimal Estimation (OE) with
respect to DSST and in situ SST. The statistics were averaged over the entire retrieval
domain in June 2008.

Statistics NLR CNLR IncR OE

Retrieved SST−DSST
M(TS−TS

0) (K) −0.058 0.011 −0.021 0.003
σ(TS−TS

0) (K) 0.569 0.538 0.538 0.538
Retrieved SST−in situ SST

M(TS−T S
i ) (K) 0.000 0.038 0.000 0.021

σ(TS−T S
i ) (K) 0.571 0.489 0.467 0.504

Incremental correlation
r(TS−TS

0, TSi−TS
0) 0.291 0.336 0.348 0.326

Fig. 6. Maps of SEVIRI SST−DSST produced with four algorithms from the SEVIRI image taken at 00 UTC on June 2, 2008.
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Fig. 7 demonstrates statistics of retrieved SST minus in situ SST as
functions of VZA and TPW, averaged over nighttime clear-sky SEVIRI
pixels in June 2008. NLR biases in Fig. 7a–b vary with greater magni-
tudes compared to all incremental algorithms. Negative bias in NLR
SST is especially pronounced at TPWN40 kg/m2. At the same time,
SST biases for CNLR, IncR, and OE algorithms vary within ±0.1 K.
Therefore, one concludes that any type of incremental SST algorithm,
which uses debiased first guesses for BTs, allows efficient correction
of regional biases typical for NLR SST.
Fig. 7c–d show σ(TS−TS

i) as functions of VZA and TPW. The values
of σ(TS−TS

i) are largest and the dependencies are most non-uniform
for the NLR. The IncR SST provides the most uniform σ(TS−TS

i) within
the full range of VZAs and the lowest σ(TS−TS

i) at VZAN40°, where
the number of matchups is largest (cf. Fig. 1a). As a result, σ(TS−TS

i)
for IncR SST is lowest at all TPWs in Fig. 7d. The fact that the IncR im-
proves SST precision at large VZAs is especially important because it

extends the domain in which accurate SST retrievals are possible.
Note that the IncR algorithm shows relatively small σ(TS−TS

i) at larg-
er VZAs and TPWs, where the atmospheric absorption grows and ob-
served BTs become more sensitive to variations in the atmospheric
transmission rather than in SST (e.g., Aoki, 1979). For CNLR SST, supe-
rior performance in high atmospheric absorption conditions is also
observed, although the improvement is less pronounced. For the OE
SST, σ(TS−TS

i) at VZAN50° and especially at TPWN40 kg/m2 is greater
than for CNLR and IncR. However, at near-nadir VZAb40°, σ(TS−TS

i)
of OE SST is smallest of all algorithms, but this improvement is
achieved at the expense of the most non-uniform angular depen-
dence of σ(TS−TS

i) among the three incremental algorithms.
The incremental correlations as functions of VZA and TPW

are shown in Fig. 7e–f. For all four algorithms, maximum values of
r(TS−TS

0,TSi−TS
0) and minimum values of σ(TS−TS

i) take place within
the range of VZA from 10° to 30° and within the range of TPW from

Fig. 7. (a,b) Biases of retrieved— in situ SST, (c,d) SD of retrieved— in situ SST, (e,f) correlations (retrieved SST−DSST) and (in situ SST−DSST) as functions of (a,c,e) VZA and (b,d,f) TPW.
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10 kg/m2 to 30 kg/m2. Correlations for NLR SST are generally lower
than for incremental algorithms. Overall, the IncR algorithm shows
a small yet statistically significant increase of incremental correlation
compared with CNLR and OE within VZA range N40o and
10 kg/m2≤TPW≤40 kg/m2, which correspond to the maximum
number of matchups (cf. Fig. 1a–b).
Fig. 8 shows geographical distributions of regional biases in re-

trieved SST minus DSST, averaged over 10°×10° latitudinal/longitudi-
nal cells in June 2008. Themagnitude of variations in regional NLR SST
biases is greater than for the incremental algorithms. Locations and
signs of major NLR SST biases in Fig. 8a (negative bias north of the
Equator and positive biases at the southwest African coast, in the
Mediterranean, and in the South Atlantic) are consistent with those
reported by Le Borgne et al. (2011), who implemented the CNLR
using a different form of the NLR equation, RTM, and input fields. In
particular, they used Operational Sea Surface Temperature and Sea
Ice Analysis (OSTIA, Stark et al., 2008) as a reference SST field,
RTTOVS-9 (Saunders et al., 2008), and atmospheric profiles from the
European Center for Medium-range Weather Forecasting (ECMWF).
The consistency of our results with results by Le Borgne et al.
(2011) can be considered as an independent verification of the supe-
rior performance of the CNLR over the NLR. Fig. 8a also demonstrates
greater NLR SST biases (mainly negative) at larger VZAs. The regional
biases for all the incremental algorithms in Fig. 8b–d are more uni-
form in space. Table 6 additionally quantifies data shown in Fig. 8.
For all four algorithms, the mean values of regional biases are be-
tween −0.1 K and 0 K. Variability of regional biases is characterized

with their SD averaged (in a root-mean-square sense) within the re-
trieval domain. This SD is lowest for the IncR algorithm (~0.20 K) and
highest for NLR (~0.35 K). Note that the DSST field itself may include
regional biases with respect to true SST, thus contributing to the var-
iability of regional biases in retrieved SST minus DSST. For reference,
Table 6 also shows mean and SD of regional differences between
two analysis fields, OSTIA and DSST, averaged during June 2008
over the retrieval domain. The latter SD, which can be viewed as an
upper estimate of uncertainty of regional biases in DSST minus true
SST, is much lower than that for NLR SST and somewhat higher than
for any of the incremental algorithms. This suggests that the incre-
mental SST algorithms are capable of reducing the a priori uncertainty
in the first guess SST field.
Regional variability of retrieved SST increments is characterized in

Fig. 9 with SDs of TS−TS
0, σcell(TS−TS

0), averaged within each 10°×10°
cell. Consistently with Fig. 7c–d, the geographic distribution of σcell(TS−
TS
0) is least uniform for NLR SST and most uniform for IncR SST. The

Fig. 8. Biases of SEVIRI SST−DSST, averaged over 10°×10° lat/lon cells, as produced with four SST algorithms. (See also statistical summaries in Table 6.).

Table 6
Top two rows: mean and SD regional SST biases with respect to DSST averaged over
10°×10° cells (from Fig. 8). Bottom row: mean (in root-mean-square sense) regional
SDs of retrieved SST minus DSST (from Fig. 9).

NLR CNLR IncR OE OSTIA

Mean regional bias −0.051 −0.048 −0.085 −0.083 −0.033
SD of regional biases 0.348 0.216 0.199 0.234 0.248
Mean regional SD 0.675 0.570 0.517 0.612 –
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bottom row in Table 6 shows average (in a root-mean-square sense)
values of σcell(TS−TS

0) over all 10°×10° cells. The average σcell(TS−TS
0)

is smallest for the IncR algorithm, suggesting that the IncRminimizes av-
erage regional variability of retrieved SST increments.

8. Conclusion and future work

All tested incremental SST algorithms are capable of reducing re-
gional SST biases typical for split-window Non-Linear Regression,
provided that regional biases in simulated first-guess BTs with re-
spect to observed BTs are removed prior to SST retrieval. In this
study, correction of BT biases was performed consistently and uni-
formly for all incremental algorithms, allowing comparison of their
performance. The incremental algorithms also reduce SD of retrieved
minus in situ SST over the NLR. The CNLR significantly improves SST
accuracy and precision compared with NLR due to correction for re-
gional biases (Eq. 3) in the conventional NLR SST. The adjustment of
regression coefficients within the IncR resulted in further improve-
ment of overall SST precision and in more uniform dependencies of
SST precision on VZA and TPW. This also minimized variability of re-
gional IncR SST biases. The OE, as it was implemented in this study,
underperformed CNLR and IncR in terms of overall statistics of re-
trieved SST, as well as the magnitude of regional SST biases. It is pos-
sible, that the performance of the OE can be further improved by a
different parameterization of RTM, further specification of the inverse
operator, or more accurate calculation of the RTM Jacobian. However,

adjustment of OE is evidently a more ambiguous and uncertain pro-
cess than calculation of IncR coefficients.
An important result of this study is that adjustment and validation

of incremental SST algorithms require methodology different from
the conventional approach, in which SD of fitting in situ SST is consid-
ered as the only and ultimate criterion of the performance of an SST
algorithm. An additional constraint should be imposed on variability
of retrieved SST increments based on certain a priori information on
true SST increments. In the case of IncR, this information is needed
to scale initial estimates of regression coefficients, which are biased
due to low SNR of incremental regressors. In the case of OE, this infor-
mation allows balancing observations and a priori information — the
problem similar to choosing a regularization parameter in ill-posed
inverse problems (e.g., Tikhonov & Arsenin, 1977). When it comes
to validation of incremental SST algorithms, it should be taken into
account that precise fitting of in situ SST with retrieved SST can be
achieved simply by forcing the solution to the first guess. Therefore,
comparison of incremental algorithms in terms of precision of fitting
in situ SST also requires controlling variability of retrieved SST incre-
ments. It appears to be useful to compare incremental SST algorithms
in terms of correlation of retrieved and in situ SST increments. As
shown in Section 7, incremental correlation is capable of showing
the difference in real contributions of true SST variations to variations
in SST retrieved with different algorithms.
Based on the algorithm comparisons documented here, the Incre-

mental Regression was recommended as the baseline SST algorithm

Fig. 9. SDs of SEVIRI SST−DSST, averaged over 10°×10° lat/lon cells, as produced with four SST algorithms. (See also statistical summaries in Table 6.).
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for GOES-R ABI. Future work on the IncR algorithm will include opti-
mization of the retrieval equation, exploring alternative ways of BT
bias correction and derivation of IncR coefficients and their testing
using independent datasets, and during extended time periods.
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