NOAA NESDIS
CENTER for SATELLITE APPLICATIONS
and RESEARCH (STAR)

STAKEHOLDER GUIDELINE

SG-9
RESEARCH SCIENTIST
GUIDELINES
Version 3.0
TITLE: SG-9: RESEARCH SCIENTIST GUIDELINES VERSION 3.0

AUTHORS:

Ken Jensen (Raytheon Information Solutions)

VERSION HISTORY SUMMARY

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
<th>Revised Sections</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>No version 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>No version 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>New Stakeholder Guideline adapted from CMMI</td>
<td>New Document</td>
<td>12/31/2009</td>
</tr>
<tr>
<td></td>
<td>guidelines by Ken Jensen (Raytheon Information</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solutions)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>5</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>5</td>
</tr>
<tr>
<td>LIST OF ACRONYMS</td>
<td>6</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>8</td>
</tr>
<tr>
<td>1.1. Objective</td>
<td>8</td>
</tr>
<tr>
<td>1.2. Version History</td>
<td>9</td>
</tr>
<tr>
<td>1.3. Overview</td>
<td>9</td>
</tr>
<tr>
<td>2. REFERENCE DOCUMENTS</td>
<td>10</td>
</tr>
<tr>
<td>2.1. Process Guidelines</td>
<td>10</td>
</tr>
<tr>
<td>2.2. Stakeholder Guidelines</td>
<td>10</td>
</tr>
<tr>
<td>2.3. Task Guidelines</td>
<td>11</td>
</tr>
<tr>
<td>2.4. Peer Review Guidelines</td>
<td>12</td>
</tr>
<tr>
<td>2.5. Review Check Lists</td>
<td>12</td>
</tr>
<tr>
<td>2.6. Document Guidelines</td>
<td>12</td>
</tr>
<tr>
<td>3. REVIEWS</td>
<td>14</td>
</tr>
<tr>
<td>3.1. Gate 1 Review</td>
<td>14</td>
</tr>
<tr>
<td>3.2. Gate 2 Review</td>
<td>15</td>
</tr>
<tr>
<td>4. PROJECT ARTIFACTS</td>
<td>17</td>
</tr>
<tr>
<td>5. TASK DESCRIPTION</td>
<td>19</td>
</tr>
<tr>
<td>5.1 Basic Research Tasks</td>
<td>19</td>
</tr>
<tr>
<td>5.1.1 Expected BEGIN State</td>
<td>20</td>
</tr>
<tr>
<td>5.1.2 Task Inputs</td>
<td>20</td>
</tr>
<tr>
<td>5.1.3 Desired END State</td>
<td>20</td>
</tr>
<tr>
<td>5.1.4 Task Outputs</td>
<td>20</td>
</tr>
</tbody>
</table>
5.1.5 Stakeholder Activities .. 21

5.2 Focused R&D Tasks .. 22
 5.2.1 Expected BEGIN State ... 22
 5.2.2 Task Inputs ... 22
 5.2.3 Desired END State .. 23
 5.2.4 Task Outputs .. 23
 5.2.5 Stakeholder Activities .. 24

5.3 Project Proposal Tasks ... 25
 5.3.1 Expected BEGIN State ... 26
 5.3.2 Task Inputs ... 26
 5.3.3 Desired END State .. 27
 5.3.4 Task Outputs .. 27
 5.3.5 Stakeholder Activities .. 28
LIST OF FIGURES

Page

Figure 5.1 – STEP 1 Process Flow ... 19
Figure 5.2 – STEP 2 Process Flow ... 22
Figure 5.3 – STEP 3 Process Flow ... 25

LIST OF TABLES

Page

Table 2.3.1 – Relevant Task Guidelines .. 11
Table 2.4.1 – Relevant Peer Review Guidelines .. 12
Table 2.5.1 – Relevant Review Check Lists ... 12
Table 2.6.1 – Relevant Document Guidelines .. 13
Table 4.1 – Relevant Artifacts .. 17
LIST OF ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATBD</td>
<td>Algorithm Theoretical Basis Document</td>
</tr>
<tr>
<td>BB</td>
<td>Baseline Build</td>
</tr>
<tr>
<td>CI</td>
<td>Cooperative Institute</td>
</tr>
<tr>
<td>CICS</td>
<td>Cooperative Institute for Climate Studies</td>
</tr>
<tr>
<td>CIMSS</td>
<td>Cooperative Institute for Meteorological Satellite Studies</td>
</tr>
<tr>
<td>CIOSS</td>
<td>Cooperative Institute for Oceanographic Satellite Studies</td>
</tr>
<tr>
<td>CIRA</td>
<td>Cooperative Institute for Research in the Atmosphere</td>
</tr>
<tr>
<td>CL</td>
<td>Check List</td>
</tr>
<tr>
<td>CLI</td>
<td>Check List Item</td>
</tr>
<tr>
<td>CoRP</td>
<td>Cooperative Research Program</td>
</tr>
<tr>
<td>CM</td>
<td>Configuration Management</td>
</tr>
<tr>
<td>CMMI</td>
<td>Capability Maturity Model Integration</td>
</tr>
<tr>
<td>CREST</td>
<td>Cooperative Remote Sensing and Technology Center</td>
</tr>
<tr>
<td>DG</td>
<td>Document Guidelines</td>
</tr>
<tr>
<td>DPR</td>
<td>Development Project Report</td>
</tr>
<tr>
<td>EPG</td>
<td>Enterprise Process Group</td>
</tr>
<tr>
<td>EPL</td>
<td>Enterprise Product Lifecycle</td>
</tr>
<tr>
<td>G1R</td>
<td>Gate 1 Review</td>
</tr>
<tr>
<td>G1RR</td>
<td>Gate 1 Review Report</td>
</tr>
<tr>
<td>G2R</td>
<td>Gate 2 Review</td>
</tr>
<tr>
<td>G2RR</td>
<td>Gate 2 Review Report</td>
</tr>
<tr>
<td>NESDIS</td>
<td>National Environmental Satellite, Data, and Information Service</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>PAR</td>
<td>Process Asset Repository</td>
</tr>
<tr>
<td>PG</td>
<td>Process Guidelines</td>
</tr>
<tr>
<td>PP</td>
<td>Project Proposal</td>
</tr>
<tr>
<td>PRG</td>
<td>Peer Review Guidelines</td>
</tr>
<tr>
<td>QA</td>
<td>Quality Assurance</td>
</tr>
<tr>
<td>R&D</td>
<td>Research & Development</td>
</tr>
<tr>
<td>RCOD</td>
<td>Research Code</td>
</tr>
<tr>
<td>RTEST</td>
<td>Research Test Data</td>
</tr>
<tr>
<td>SC</td>
<td>Steering Committee</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------</td>
</tr>
<tr>
<td>SEI</td>
<td>Software Engineering Institute</td>
</tr>
<tr>
<td>SG</td>
<td>Stakeholder Guideline</td>
</tr>
<tr>
<td>SPSRB</td>
<td>Satellite Products and Services Review Board</td>
</tr>
<tr>
<td>STAR</td>
<td>Center for Satellite Applications and Research</td>
</tr>
<tr>
<td>SWA</td>
<td>Software Architecture Document</td>
</tr>
<tr>
<td>TD</td>
<td>Training Document</td>
</tr>
<tr>
<td>TG</td>
<td>Task Guideline</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

The NOAA/NESDIS Center for Satellite Applications and Research (STAR) develops a diverse spectrum of complex, often interrelated, environmental algorithms and software systems. These systems are developed through extensive research programs, and transitioned from research to operations when a sufficient level of maturity and end-user acceptance is achieved. Progress is often iterative, with subsequent deliveries providing additional robustness and functionality. Development and deployment is distributed, involving STAR, the Cooperative Institutes (CICS\(^1\), CIMSS\(^2\), CIOSS\(^3\), CIRA\(^4\), CREST\(^5\)) distributed throughout the US, multiple support contractors, and NESDIS Operations.

NESDIS/STAR is implementing an increased level of process maturity to support the development of these software systems from research to operations. This document is a Stakeholder Guideline (SG) for users of this process, which has been designated as the STAR Enterprise Product Lifecycle (EPL).

1.1. Objective

The STAR Enterprise is comprised of a large number of organizations that participate and cooperate in the development and production of environmental satellite data products and services. Individual project teams are customarily composed of personnel from these organizations, supplemented by contractor personnel. These organizations and project teams are referred to as the STAR Enterprise stakeholders.

The objective of this Stakeholder Guideline (SG-9) is to provide a detailed description of the standard tasks of a Research Scientist. The intended users of this SG are those who have been assigned to provide science activities on a research project.

A Research Scientist is a scientist located at a research organization who has been assigned by the Research Lead to one or more of the tasks of developing new or improved algorithms, reviewing algorithm development, and preparing a STAR/SPSRB project proposal to develop a product for transition to operations.

1 Cooperative Institute for Climate Studies
2 Cooperative Institute for Meteorological Satellite Studies
3 Cooperative Institute for Oceanographic Satellite Studies
4 Cooperative Institute for Research in the Atmosphere
5 Cooperative Remote Sensing and Technology Center
Stakeholder satisfaction is a critical component of the process. The intention is for the process to be more of a benefit that a burden to stakeholders. If stakeholders are not satisfied that this is the case, the process will require improvement.

Comments and suggestions for improvement of the process architecture, assets, artifacts and tools are always welcome. Stakeholders can provide feedback by contacting:

Ken.Jensen@noaa.gov

1.2. Version History

This is the first version of SG-9. It is identified as version 3.0 to align it with the release of the version 3.0 STAR EPL process assets.

1.3. Overview

This SG contains the following sections:

 Section 1.0 - Introduction
 Section 2.0 - Reference Documents
 Section 3.0 - Reviews
 Section 4.0 - Project Artifacts
 Section 5.0 - Task Descriptions
2. REFERENCE DOCUMENTS

All of the reference documents for the STAR EPL process are STAR EPL process assets that are accessible in a Process Asset Repository (PAR) on the STAR website. http://www.star.nesdis.noaa.gov/star/EPL_index.php.

Process assets include:

- Process Guidelines
- Stakeholder Guidelines
- Task Guidelines
- Peer Review Guidelines
- Review Check Lists
- Document Guidelines
- Training Documents

2.1. Process Guidelines

Process Guideline (PG) documents describe STAR's standard set of practices and guidelines for tailoring them to specific projects.

- STAR EPL Process Guidelines (PG-1)
- STAR EPL Process Guidelines Appendix (PG-1.A)

PG-1 and PG-1.A apply generally to each EPL step. Each stakeholder performing tasks during each step can benefit from a familiarity with these documents.

2.2. Stakeholder Guidelines

A Stakeholder Guideline (SG) is a description of how to perform all STAR EPL standard tasks assigned to a given type of stakeholder. For each type of stakeholder, the appropriate SG provides that stakeholder with a complete description of the standard tasks for that stakeholder role, along with references to all appropriate process assets and project artifacts. This functions as a complement to the Task Guidelines (TGs), which provide a
completion description of all stakeholder tasks for a specific process step. The relevant SG for Research Scientists is SG-9 (this document).

2.3. Task Guidelines

The STAR EPL is designed as a sequence of 11 process steps that take a product from initial conception through delivery to operations. These steps are:

- Step 1 - Basic Research
- Step 2 - Focused R & D
- Step 3 - Project Proposal
- Step 4 - Resource Identification
- Step 5 - Project Plan
- Step 6 - Project Requirements
- Step 7 - Preliminary Design
- Step 8 - Detailed Design
- Step 9 - Code & Test Data Development
- Step 10 - Code Test And Refinement
- Step 11 - System Integration and Test

A Task Guideline (TG) is a description of how to perform the tasks of a STAR EPL process step. There is one Task Guideline for each step in the STAR EPL. Table 2.3.1 lists the Task Guidelines that are relevant for Research Scientists.

<table>
<thead>
<tr>
<th>ID</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>TG-1</td>
<td>Basic Research</td>
</tr>
<tr>
<td>TG-2</td>
<td>Focused R&D</td>
</tr>
<tr>
<td>TG-3</td>
<td>Project Proposal</td>
</tr>
</tbody>
</table>
2.4. Peer Review Guidelines

For each review (c.f. Section 4), there is a Peer Review Guideline (PRG) that describes the objectives of the review, the required artifacts, standards for reviewers, requirements for approval, and options other than approval. Table 2.4.1 lists the Peer Review Guidelines that are relevant for Research Scientists.

TABLE 2.4.1 – Relevant Peer Review Guidelines

<table>
<thead>
<tr>
<th>ID</th>
<th>Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRG-1</td>
<td>Gate 1 Review</td>
</tr>
<tr>
<td>PRG-3</td>
<td>Gate 2 Review</td>
</tr>
</tbody>
</table>

2.5. Review Check Lists

For each review (c.f. Section 4), there is a Review Check List (CL) that captures all the objectives for a review as a set of check list items. Each item in the check list should have a "Disposition" column that contains "Pass", "Conditional Pass", "Defer", "Waive", or "N/A" (Not Applicable). Each item will also have columns for Risk Assessment and for Actions generated. Table 2.5.1 lists the Review Check Lists that are relevant for Research Scientists.

TABLE 2.5.1 – Relevant Review Check Lists

<table>
<thead>
<tr>
<th>ID</th>
<th>Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL-1</td>
<td>Gate 1 Review</td>
</tr>
<tr>
<td>CL-3</td>
<td>Gate 2 Review</td>
</tr>
</tbody>
</table>

2.6. Document Guidelines

There is a Document Guideline (DG) for each standard STAR EPL document. Each DG includes a description of the purpose for the document, a standard document outline (table of contents), a brief description of each subsection in the outline, and an Appendix containing an example document.

Table 2.6.1 lists the Document Guidelines that are relevant for Research Scientists.
<table>
<thead>
<tr>
<th>ID</th>
<th>Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>DG-0.1</td>
<td>Document Style Guideline</td>
</tr>
<tr>
<td>DG-1.1</td>
<td>Algorithm Theoretical Basis Document (ATBD)</td>
</tr>
<tr>
<td>DG-1.2</td>
<td>Software Architecture Document (SWA)</td>
</tr>
<tr>
<td>DG-1.3</td>
<td>Gate 1 Review Report (G1RR)</td>
</tr>
<tr>
<td>DG-3.1</td>
<td>Project Proposal (PP)</td>
</tr>
<tr>
<td>DG-3.2</td>
<td>Gate 2 Review Report (G2RR)</td>
</tr>
</tbody>
</table>
3. REVIEWS

The relevant reviews for **Research Scientists** are:

- Gate 1 Review (G1R)
- Gate 2 Review (G2R)

3.1. Gate 1 Review

Gate 1 is an internal review of Basic Research by the research organization. Its purpose is to determine whether organization funds and resources should be expended on Focused R&D of a new/improved algorithm, leading to a Project Proposal to develop a product for transition to operations.

Standard Gate 1 Review objectives:

- Review the algorithm theoretical basis, software architecture, research code and research test results to determine whether the algorithm should be developed to support a STAR/SPSRB Project Proposal.

Standard Gate 1 Review entry criteria:

- Entry # 1 - An Algorithm Theoretical Basis Document (ATBD) has been written.
- Entry # 2 - A Software Architecture Document (SWA) has been written.
- Entry # 3 – Research code to implement the algorithm has been written.
- Entry # 4 – Test data for the basic research code has been produced.

Standard Gate 1 Review exit criteria:

- Exit # 1 – Algorithm and ATBD are satisfactory
- Exit # 2 – Software architecture and SWA are satisfactory.
- Exit # 3 – Basic research code is satisfactory.
- Exit # 4 – Research test results, documented in the ATBD, demonstrate that the algorithm has operational potential.
- Exit # 5 - Project is ready for the Exploratory phase
Refer to PRG-1 for a more detailed description of the Gate 1 Review. The standard Gate 1 Review Check List Items (CLI) are documented in the process asset CL-1 (c.f. Section 2).

Note that the standard Gate 1 Review objectives, entry criteria, and exit criteria are only recommendations. The research organization is completely free to determine objectives, entry criteria, and exit criteria unique to the organization and/or project. In fact, there is no requirement for the organization to even conduct a Gate 1 Review.

3.2. Gate 2 Review

Gate 2 is a STAR review of a Project Proposal (PP). Its purpose is to determine whether the proposal is compatible with the NESDIS mission and strategic plan, and is technically feasible for development into an operational product. Resource issues are not considered at this time. If a project passes Gate 2, the PP is forwarded to SPSRB for consideration in accordance with the SPSRB process.

Standard Gate 2 Review objectives:

- Review the project proposal and supporting artifacts (algorithm theoretical basis, software architecture, R&D code and R&D test results) to determine whether the algorithm has operational potential.
- Identify a STAR Division and Branch to implement Development

Standard Gate 2 Review entry criteria:

- Entry # 1 - An Algorithm Theoretical Basis Document (ATBD v1r1) has been written.
- Entry # 2 - A Software Architecture Document (SWA v1r1) has been written.
- Entry # 3 – Research code to implement the algorithm has been written.
- Entry # 4 – A Project Proposal (PP) has been submitted to STAR
- Entry # 5 – A User Request has been attached to the PP

Standard Gate 2 Review exit criteria:

- Exit # 1 – Algorithm and ATBD are satisfactory
- Exit # 2 – Software architecture and SWA are satisfactory.
- Exit # 3 – Research test results, documented in the ATBD, demonstrate that the algorithm has operational potential.
- Exit # 4 – Proposed operational products support the NESDIS mission and strategic plan
- Exit # 5 - A STAR Division and Branch has been identified to implement Development
- Exit # 6 - Project is recommended for Development

Refer to PRG-3 for a more detailed description of the Gate 2 Review. The standard Gate 2 Review Check List Items (CLI) are documented in the process asset CL-3 (c.f. Section 2).
4. PROJECT ARTIFACTS

Project Artifacts are a set of items that must be produced by the appropriate stakeholders during the product life cycle to support the reviews. They are established and maintained under Configuration Management (CM) by an Enterprise Process Group (EPG) under the direction of a Steering Committee (SC).

The project artifacts are maintained in a project artifact repository. This is a complete set of configuration-managed artifacts developed by each project in accordance with STAR standards. When a project artifact has been approved at a Technical Review or Gate Review, it is placed in the project artifact repository under CM.

Responsibility for producing project artifacts is assigned to stakeholders during the Plan phase, and may be tailored from the standard assignment. The project artifacts that are usually the responsibility of **Research Scientists** are listed in Table 4.1.

<table>
<thead>
<tr>
<th>Artifact</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm Theoretical Basis Document</td>
<td>Document</td>
</tr>
<tr>
<td>Software Architecture Document</td>
<td>Document</td>
</tr>
<tr>
<td>Basic Research Test Data</td>
<td>Test Data</td>
</tr>
<tr>
<td>R&D Test Data</td>
<td>Test Data</td>
</tr>
<tr>
<td>Project Proposal</td>
<td>Document</td>
</tr>
</tbody>
</table>

Algorithm Theoretical Basis Document: The Algorithm Theoretical Basis Document (ATBD) provides a theoretical description (scientific and mathematical) of the algorithm that is used to create a product that meets user requirements. Refer to DG-1.1 for detailed ATBD guidelines.

Software Architecture Document: The Software Architecture Document (SWA) complements the ATBD by providing the software architecture for the processing code that will implement the algorithm. Refer to DG-1.2 for detailed SWA guidelines.
Basic Research Test Data: Basic Research Test Data (RTEST v1) are the data files used to test the Basic Research code, including the input data and output data identified in the ATBD and SWA.

R&D Test Data: R&D Test Data (RTEST v2) are the data files used to test the R&D code, including the input data and output data identified in the ATBD and SWA. They may be upgraded from the Basic Research Test Data, if the upgraded R&D code requires this.

Project Proposal: The Project Proposal (PP) is produced for the Gate 2 Review. SPSRB and STAR will review the project proposal to determine whether the project should be approved for transition from research to operations. SPSRB requires a User Request to initiate this review. STAR standards call for the project proposal to include this User Request, and describe the supporting artifacts (research code and test data, ATBD, SWA). The PP should provide the information needed for a Technical Assessment and Cost Assessment. Refer to DG-3.1 for detailed PP guidelines.
5. TASK DESCRIPTION

Research Scientists participate in the following process steps:

- Step 1 - Basic Research (TG-1)
- Step 2 - Focused R & D (TG-2)
- Step 3 - Project Proposal (TG-3)

The standard tasks for each of these steps are described below. Research Scientists may also refer to the relevant TGs for a complementary task description.

5.1 Basic Research Tasks

Figure 5.1 shows the process flow for step 1.
5.1.1 Expected BEGIN State

- Research Scientists are prepared to perform basic research to develop an algorithm that may have operational potential.
- Research Management is aware of this effort, and has provided the resources needed for basic research coding and testing
- A Research Lead has been identified.
- If needed, Research Testers and Research Programmers have been identified
- Step 1 stakeholders understand and accept their tasks

5.1.2 Task Inputs

None

5.1.3 Desired END State

- An algorithm has been developed and documented in an ATBD.
- A software architecture has been developed and documented in a SWA.
- Research code has been written that implements the algorithm well enough to produce prototype data products.
- Research code has been run with research test data to produce data products.
- Research code test results, documented in the ATBD, demonstrate whether or not the algorithm has operational potential.
- A Gate 1 Review decision has been made and documented in a G1RR.

5.1.4 Task Outputs

- Algorithm Theoretical Basis Document v1.0
- Software Architecture Document v1.0
- Basic Research Code
- Basic Research Test Data
- Gate 1 Review Report
5.1.5 Stakeholder Activities

The Basic Research algorithm may be developed in one of three venues:

- **STAR.** Research Managers include STAR Division Chiefs and Branch Chiefs. Research Lead is a STAR scientist. Research Scientists are STAR scientists. Research Testers are STAR scientists. Research Programmers may be STAR scientists, or Research Managers may designate contractor personnel for these tasks.

- A Cooperative Institute (CI). Research Managers are provided by the CI. Research Lead is a CI Scientist. Research Scientists are CI scientists. Research Testers are CI scientists. Research Programmers may be CI scientists, or Research Managers may designate contractor personnel for these tasks.

- A research organization other than STAR and the CIs (PUSH User). Compliance with STAR EPL standards is at the discretion of the research organization, but the organization should understand that Gate 2 approval shall depend on a demonstration that the algorithm can be developed according to STAR EPL standards.

In this step, the Research Lead and Research Scientists begin the development of new or improved algorithms that may have operational potential. The objective is to develop the algorithm theoretical basis to a maturity sufficient for reviewers at the algorithm developer’s organization to make an assessment that its operational potential warrants additional research and development.

At a minimum, initial versions of an Algorithm Theoretical Basis Document (ATBD) and a Software Architecture Document (SWA) should be produced for the Gate 1 Review. The purpose is to demonstrate to the Gate 1 reviewers that the algorithm has operational potential and should be further developed. ATBD v1r0 should include results of limited testing of the algorithm, using prototype code and a number of regional scenes. SWA v1r0 should document the algorithm inputs and outputs and at least one level of processing flow. The Research Lead and Research Scientists should produce these documents, using DG-1.1 and DG-1.2 as assets.

Each stakeholder who performed activities during step 1 is encouraged to document an assessment of the experience in a personal record. This assessment should include: what was good, what was bad, what worked, what did not work, what can be improved, how it can be improved. At the conclusion of Development (step 11), the Development Lead will collect the final edited personal stakeholder records and incorporate them into a Development Project Report (DPR).
5.2 Focused R&D Tasks

Figure 5.2 shows the process flow for step 2.

![Figure 5.2 – STEP 2 Process Flow](image)

5.2.1 Expected BEGIN State

Algorithm and supporting artifacts have passed a Gate 1 Review.

5.2.2 Task Inputs

Algorithm Theoretical Basis Document v1.0: The Algorithm Theoretical Basis Document (ATBD) provides a theoretical description (scientific and mathematical) of the algorithm that is used to create a product that meets user requirements. For v1.0, the algorithm is at a “concept” stage and its operational potential has not been assessed. The purpose of ATBD v1.0 is to demonstrate that the algorithm has operational potential and should be further developed to demonstrate operational capability. Refer to DG-1.1 for detailed ATBD guidelines.
Software Architecture Document v1.0: The Software Architecture Document (SWA) complements the ATBD by providing the software architecture for the processing code that will implement the algorithm. Refer to DG-1.2 for detailed SWA guidelines.

Basic Research Code: Basic Research Code (RCOD v1) is research code that implements the algorithm. It should use input data and produce output data that is described in the ATBD and SWA. It should include the processing functionality described in the ATBD and SWA.

Basic Research Test Data: Basic Research Test Data (RTEST v1) are the data files used to test the Basic Research code, including the input data and output data identified in the ATBD and SWA.

Gate 1 Review Report: Gate 1 Review Report (G1RR) is the report of the Gate 1 Reviewers. The G1RR should consist of an assessment of the Gate 1 Review artifacts and a yes/no decision on proceeding to the next phase of the EPL. Refer to DG-1.3 for G1RR document guidelines.

5.2.3 Desired END State

- The research algorithm has been matured and documented in ATBD v1r1
- A software architecture has been matured and documented in SWA v1r1
- R&D code has been written that implements the algorithm well enough to produce proxy data products to support a PP to STAR and the SPSRB.
- R&D code has been run with research test data to produce the proxy data products
- R&D code test results, documented in ATBD v1r1, demonstrate whether or not the algorithm's operational potential warrants the submission of a PP.

5.2.4 Task Outputs

- Algorithm Theoretical Basis Document v1.1
- Software Architecture Document v1.1
- R&D Code
- R&D Test Data
5.2.5 Stakeholder Activities

The Focused R&D algorithm may be developed in one of three venues:

- **STAR.** Research Managers include STAR Division Chiefs and Branch Chiefs. Research Lead is a STAR scientist. Research Scientists are STAR scientists. Research Testers are STAR scientists. Research Programmers may be STAR scientists, or Research Managers may designate contractor personnel for these tasks.

- **A Cooperative Institute (CI).** Research Management is provided by the CI. Research Lead is a CI Scientist. Research Scientists are CI scientists. Research Testers are CI scientists. Research Programmers may be CI scientists, or Research Managers may designate contractor personnel for these tasks.

- **A research organization other than STAR and the CIs (PUSH User).** Compliance with STAR EPL standards is at the discretion of the research organization, but the organization should understand that Gate 2 approval shall depend on a demonstration that the algorithm can be developed according to STAR EPL standards.

In this step, Research Scientists continue algorithm development under the direction of the Research Lead with the goal of producing an algorithm of sufficient maturity and operational potential to satisfy Gate 2 Reviewers that the project meets NOAA mission goals and is technically feasible for development into an operational product.

The Research Lead and Research Scientists should consult the Gate 2 Review guidelines (PRG-3) and Check List (CL-3) to help them understand what must be done to prepare the algorithm for the Gate 2 Review.

The Research Lead and Research Scientists should revise and refine the ATBD and SWA documents. The purpose is to demonstrate to the Gate 2 reviewers that the algorithm should be developed as a STAR research project. ATBD v1r1 should include operational application(s) and algorithm test results, using research-grade code and a TBD number of regional scenes. The set of regional scenes should be sufficiently diverse to demonstrate global operational feasibility. SWA v1r1 should document the algorithm inputs and outputs and at least two levels of processing flow. The Research Scientists should take the lead in producing these documents, using DG-1.1 and DG-1.2 as assets.

The Research Lead determines when the algorithm is sufficiently developed for Gate 2 review, using PRG-3 and CL-3 as guides. Research Scientists may assist in this determination.
Each stakeholder who performed activities during step 2 is encouraged to document an assessment of the experience in a personal record. This assessment should include: what was good, what was bad, what worked, what did not work, what can be improved, how it can be improved. At the conclusion of Development (step 11), the Development Lead will collect the final edited personal stakeholder records and incorporate them into a Development Project Report (DPR).

5.3 Project Proposal Tasks

Figure 5.3 shows the process flow for step 3.

Figure 5.3 – STEP 3 Process Flow
5.3.1 Expected BEGIN State

- The research algorithm has been matured and documented in ATBD v1r1
- A software architecture has been matured and documented in SWA v1r1
- R&D code has been written that implements the algorithm well enough to produce proxy data products to support a Project Proposal (PP) to STAR.
- R&D code has been run with research test data to produce the proxy data products
- R&D code test results, documented in ATBD v1r1, demonstrate whether or not the algorithm's operational potential warrants the submission of a PP.

5.3.2 Task Inputs

Algorithm Theoretical Basis Document v1.1: The Algorithm Theoretical Basis Document (ATBD) provides a theoretical description (scientific and mathematical) of the algorithm that is used to create a product that meets user requirements. The ATBD is typically updated from the v1.0 version, as R&D provides additional maturity. At this step, the algorithm's operational potential has been demonstrated to the satisfaction of the Research organization and is now being further developed to support a research to operations development proposal. The purpose of ATBD v1.1 is to demonstrate that the algorithm should be developed for transition to operations. Refer to DG-1.1 for detailed ATBD guidelines.

Software Architecture Document v1.1: The Software Architecture Document (SWA) complements the ATBD by providing the software architecture for the processing code that will implement the algorithm. The SWA may be updated from the v1.0 version, if the additional algorithm maturity warrants additional and/or more detailed software architecture. Refer to DG-1.2 for detailed SWA guidelines.

R&D Code: Research & Development (R&D) Code (RCOD v2) is research code that implements the algorithm. It should use input data and produce output data that is described in the ATBD and SWA. It should include the processing functionality described in the ATBD and SWA. R&D code is expected to be an upgrade over Basic Research code. Code may include additional functionality to reflect upgraded software architecture and may be revised to comply with SPSRB coding standards. If the project is approved for development, this version of the code will be built into the initial project baseline. It is
therefore expected that SPSRB coding standards will begin to be applied to the code. Currently, coding standards exist for Fortran, C, and C++ code, and general programming standards exist for all code. These standards are found on the SPSRB web site at http://projects.osd.noaa.gov/spsrb/standards_prog.htm

R&D Test Data: R&D Test Data (RTEST v2) are the data files used to test the R&D code, including the input data and output data identified in the ATBD and SWA. They may be upgraded from the Basic Research Test Data, if the upgraded R&D code requires this.

Note that these artifacts are typically included in the first STAR Baseline Build (BB 1.0). BB 1.0 provides the artifacts for the STAR/SPSRB Gate 3 Review. In determining the step 23 artifacts to be developed, and consequently the step 3 activities to authorize, Research Managers should consider how the step 3 activities and artifacts support the STAR EPL objectives for the Gate 3 Review. Refer to PRG-5 for Gate 3 Review objectives.

Gate 1 Review Report: Gate 1 Review Report (G1RR) is the report of the Gate 1 Reviewers. The G1RR should consist of an assessment of the Gate 1 Review artifacts and a yes/no decision on proceeding to the next phase of the EPL. Refer to DG-1.3 for G1RR document guidelines.

5.3.3 Desired END State

- A Project Proposal (PP) has been submitted to STAR.
- A User Request has been attached to the PP.
- A Gate 2 Review of the PP has been conducted.
- A Gate 2 Review Report (G2RR) has been written.
- If the project has been recommended for Development, a STAR Division and Branch has been selected to implement Development, and a Development Lead has been identified. This information is included in the G2RR.
- The PP and G2RR have been submitted to the SPSRB for its assessment.

5.3.4 Task Outputs

- Project Proposal
- User Request
- Gate 2 Review Report
5.3.5 Stakeholder Activities

Research Lead and Research Scientists prepare a Project Proposal (PP), using the step 2 artifacts as references and DG-3.1 for guidance.

PUSH Users, who may be the Research Scientists, prepare a User request, using SPSRB standards for guidance. The User Request is attached to the PP.

Gate 2 Reviewers will determine whether the PP demonstrates that the project is compatible with the NESDIS mission and strategic plan, and is technically feasible for development into an operational product. If so, the project is recommended to the SPSRB for Development. If not, the project is either terminated or returned to the research organization with recommendations for improvement and re-submittal.

Each stakeholder who performed activities during step 3 is encouraged to document an assessment of the experience in a personal record. This assessment should include: what was good, what was bad, what worked, what did not work, what can be improved, how it can be improved. At the conclusion of Development (step 11), the Development Lead will collect the final edited personal stakeholder records and incorporate them into a Development Project Report (DPR).

END OF DOCUMENT