

SNPP VIIRS Reflective Solar Bands On-Orbit Calibration and Performance

Introduction

- > VIIRS is one of five instruments onboard the Suomi National Polar-Orbiting Partnership (S-NPP) satellite that launched from Vandenberg Air Force Base, Calif., on Oct. 28, 2011.
- > The VIIRS is a whiskbroom radiometer that provides ±56.28 degree scans of the Earth view (EV) covering a 12 km (nadir) along track by 3060 km along scan swath each scan using a rotating telescope assembly and a doublesided half-angle mirror (HAM).
- ▶ VIIRS has 22 spectral bands, among which 14 reflective solar bands (RSB) ranging from 0.41 to 2.25 µm, with spatial resolution of 375 m (bands I1-I3) and 750 m (bands M1-M11).
- RSB are calibrated on-orbit using a Solar Diffuser (SD) with a Solar Diffuser Stability Monitor (SDSM) and nearmonthly lunar observations.

VIIRS Instrument **Separately Mounted Electronics Module** MODIS Solar Diffuser MODIS Blackbody **MODIS** derived Solar Diffuser **3-Mirror Anastigmat Stability Monitor** TMA) All reflective (SDSM) **Rotating telescope 4-Mirror Anastigmat** (FMA) All Reflective Aft Optics Imager Flat-panel Cryoradiator **Cold FPA** Half-angle Mirror Dewar Assemb

Focal Plane Assemblies

Key Specifications

		Single Gain		Dual Gain				
					High Gain		Low Gain	
Band	Center Wavelength (nm)	Gain Type	Lmin	Lmax	Lmin	Lmax	Lmin	Lmax
M1	412	Dual	-	-	30	135	135	615
M2	445	Dual	-	-	26	127	127	687
M3	488	Dual	-	-	22	107	107	702
M4	555	Dual	-	-	12	78	78	667
M5	672	Dual	-	-	8.6	59	59	651
M6	746	Single	5.3	41.0	-	-	-	-
M7	865	Dual	-	-	3.4	29	29	349
M8	1240	Single	3.5	164.9	-	-	-	-
M9	1378	Single	0.6	77.1	-	-	-	-
M10	1610	Single	1.2	71.2	-	-	-	-
M11	2250	Single	0.12	31.8	-	-	-	-
11	640	Single	5	718	-	-	-	-
12	865	Single	10.3	349	-	-	-	-
13	1610	Single	1.2	72.5	-	-	-	-

Facto

Jungiang Sun^{1,2} and Menghua Wang¹ ¹NOAA/NESDIS/STAR; ²Global Science and Technology, Inc.

