

NOAA Satellites and Information

Evaluation of Suomi NPP VIIRS Imagery

Curtis J. Seaman, Steven D. Miller Colorado State University/CIRA Donald W. Hillger, Daniel T. Lindsey NOAA/NESDIS/Satellite Applications and Research

1st STAR JPSS Annual Science Team Meeting, College Park, MD, May 2014

VIIRS Imagery: SDRs and EDRs

- VIIRS: <u>V</u>isible <u>I</u>nfrared <u>I</u>maging <u>R</u>adiometer <u>S</u>uite
- All 22 bands are available as <u>Sensor Data Records</u> (SDRs)
- Bands highlighted in red are available as <u>Environmental Data</u> <u>Records (EDRs)</u>
- <u>Day/Night Band</u> (DNB) SDRs are converted to <u>Near</u> <u>Constant Contrast</u> (NCC) EDRs

VIIRS Band	Central Wavelength (µm)	Band Explanation	Spatial Resolution (m) @ nadir
M1	0.412	Visible/ Reflective	750 m
M2	0.445		
M3	0.488		
M4	0.555		
M5	0.672		
M6	0.746	Near IR	
M7	0.865		
M8	1.240	Shortwave IR	
M9	1.378		
M10	1.61		
M11	2.25		
M12	3.7	Medium-wave IR	
M13	4.05		
M14	8.55	Longwave IR	
M15	10.76		
M16	12.01		
DNB	0.7	Visible /	750 m across full
(NCC)		Reflective	scan
I1	0.64	Visible / Reflective	
I2	0.87	Near IR	
I3	1.61	Shortwave IR	375 m
I4	3.74	Medium-wave IR	
15	11.45	Longwave IR	

SDRs and EDRs: What's the difference?

FILL VALUE LEGEND

SOUB VDNE N/A MISS ERR ELINT PIXEL TRIM ONBOARD ONGROUND

Unmapped SDR and EDR granules from 08:14 UTC 24 October 2013

SDRs and EDRs: Apparent Rotation

Scan lines in SDR data are not orthogonal to the satellite ground track, due to the constant motion of the satellite. Mapping the data to the Ground Track Mercator (GTM) grid restores orthogonality. This is the cause of the apparent rotation between SDRs and EDRs.

4

The Case of the Missing Triangles

The brown outline shows where a SDR granule matches up with a given EDR granule. It takes three SDR granules to produce one EDR granule. If an SDR granule is missing when the EDR is created, you get a "missing triangle"...

FILL VALUE LEGEND

The Case of the Sawtoothed Eye

I-5 SDR image of the eye of Typhoon Jelawat (25 September 2012) produced using McIDAS-v

The Case of the Sawtoothed Eye

The unmapped image of the typhoon eye (left) shows artifacts caused by the bowtie effect. These artifacts disappear when the same data was correctly mapped to the Earth's surface using IDL.

The "sawtooth pattern" was caused by improper mapping. It is a display issue, not a problem with the data!

NOTE: McIDAS-v does have the ability to properly map VIIRS data to avoid this issue.

Geolocation Evaluation: I-band SDR

Geolocation Evaluation: I-band SDR

Geolocation Evaluation: I-band EDR

Geolocation Evaluation: I-band EDR

Terrain Correction Evaluation: SDR

SDR – I-1, I-2, I-3, displayed with GITCO geolocation

EDRs are not Terrain Corrected!

Mt. Logan (6050 m MSL)

Mt. St. Elias (5489 m MSL)

DNB (SDR) vs. NCC (EDR)

It is difficult to display DNB images near the day/night terminator, as radiance values vary by 7-8 orders of magnitude from day to night, and many displays only have 256 colors.

The NCC EDR converts DNB radiance to a "reflectance" to reduce the dynamic range of the data, improving the display across the terminator.

Stray Light and Striping

Stray light and striping were an issue with DNB and NCC imagery until 20 August 2013, when a correction was applied. Problem solved!

Bug? Or Feature?

Nighttime DNB image of Alaska, 11:37 UTC 9 February 2014

Bug? Or Feature? Part 2

Nighttime DNB images of Antarctica with aurora, 00:22 UTC 1 October 2012

Bug? Or Feature? Part 3

Summary

JPSS

- VIIRS Imagery is alive and well!
 - Geolocation has been accurate and stable since mid-2012
 - "Missing Triangle" problem eliminated (mid-2012)
 - Striping reduced or eliminated (August 2013 for DNB and NCC imagery)
 - Stray Light in DNB reduced or eliminated (August 2013)
 - NCC imagery available at night throughout the lunar cycle
 - All Imagery EDR products have achieved Validation Stage 3 (April 2014)
- Many "bugs" are actually features of the data
 - Moon glint
 - Aurora motions
- Others are attributed to "user error"
 - Incorrect mapping of SDR data by users, e.g.
- For the future:
 - Anomalously dark/light areas in NCC near terminator
 - Terrain correction for the EDR geolocation
 - Make EDRs from all 16 M-bands
 - Make M-band EDRs more readily available

Resources

Geolocation evaluation tests:

http://rammb.cira.colostate.edu/projects/npp/calval/

JPSS Imagery and Visualization Team blog:

http://rammb.cira.colostate.edu/projects/npp/blog/

High-latitude applications of VIIRS Imagery:

http://rammb.cira.colostate.edu/projects/alaska/blog/