

JPSS SST Products

Alexander Ignatov, John Stroup, Yury Kihai, Xingming Liang, Boris Petrenko, Prasanjit Dash, Irina Gladkova, Marouan Bouali, Karlis Mikelsons, John Sapper, Feng Xu, Xinjia Zhou

NOAA; CIRA; GST Inc; CUNY

JPSS SST Team

Name	Affiliation	Funding	Tasks	
Ignatov	STAR	NOAA	Lead, JPSS Algorithm & Cal/Val	
Stroup, Kihai, Dash, Liang, Petrenko, Xu, Bouali, Zhou, Gladkova, Mikelsons	STAR/CIRA STAR/STG STAR/GST STAR/GST	JPO, NOAA ORS, GOES-R, NASA	Monitoring , VAL, comparison of SSTs (SQUAR Radiances (MICROS), in Situ SSTs (<i>i</i> Quam) Users support; IDPS SST code, ACSPO code an products (L2, L3); Match ups w/iQuam; Destrip and other L1b fixes; Algorithms improvements: Clear-Sky Mask, SST	M), Id ving
<mark>May</mark> , Cayula, McKenzie, Willis	NAVO	Navy, NJO	NAVO SEATEMP SST & Cal/Val VIIRS Cloud Mask evaluation in IDPS and comparisons with NAVO Cloud Mask	
Minnett Kilpatrick	U. Miami	JPO, U. Miami	Uncertainty & instrument analyses; RTM; VAL drifters & radiometers; skin to sub-skin conversi- high-latitude and full swath focus	vs. ion;
Arnone Fargion	USM/NRL UCSD	NJO, USM	SST Algorithm Analyses, SST improvements at slant view zenith angles/swath edge; SST consistency from multiple passes	
LeBorgne Roquet	Meteo France	EUMETSAT	Processing VIIRS and Cal/Val using O&SI SAF heritage; Comparisons with AVHRR/SEVIRI	7
13 May 2014		JPSS SS	T Products	2

Acknowledgements

ACSPO Users

- NOAA: CRW, NOS, CW, geo-polar blend, NCDC
- (Inter)national Users CMC, BoM, UK MO, JMA, DMII, JPL
- JPSS Program Mitch Goldberg, Kathryn Schontz, Bill Sjoberg
- NASA SNPP Project Scientist Jim Gleason
- NOAA NDE Team Tom Schott, Dylan Powell, Bonnie Reed
- JPSS DPA Eric Gottshall, Janna Feeley, Bruce Gunther
- VIIRS SDR & GSICS Changyong Cao, Frank DeLuccia, Jack Xiong, Mark Liu, Fuzhong Weng
- NESDIS/STAR JPSS Team Ivan Csiszar, Lihang Zhou, Paul DiGiacomo, many others
- NOAA CRTM Team Yong Han, Yong Chen, Mark Liu

VIIRS SST Products

IDPS – NOAA Interface Data Processing Segment (IDPS)

- ✓ Official NPOESS SST EDR, Now owned by NOAA JPSS PO
- ✓ Developed by NGAS; Operational at Raytheon; archived at NOAA CLASS
- ✓ Jan 2014: JPO recommends to "discontinue the IDPS EDR, concentrate on ACSPO sustainment, development, and Cal/Val"
- ✓ IDPS will be phased out as soon as ACSPO SST is archived at JPL/NODC

ACSPO – NOAA Advanced Clear-Sky Processor for Ocean (ACSPO)

- ✓ NOAA heritage SST system
- ✓ Operational with global AVHRR 4km-GAC & 1km-FRAC
- ✓ Terra/Aqua MODIS & S-NPP VIIRS experimental Jan'2012
- ✓ SNPP VIIRS operational Mar 2014, GDS2 archival at JPL/NODC underway

- ✓ Builds on NAVO AVHRR & NOAA pre-ACSPO heritage
- ✓ Transitioned from NOAA to NAVO in 1994, "Shared Processing Agreement"
- ✓ Operational with S-NPP since Mar 2013
- ✓ GDS2 archived at JPL/NODC since May 2013

JPSS SST Products

Objective & Methodology

- Objective: Compare ACSPO and NAVO SSTs to advise users on the specifics of the two products
- Methodology: Compare ACSPO/NAVO <u>SST domain</u> <u>& performance</u> against two global reference SSTs
 - L4 SST (Canadian Met Centre CMC0.2 Analysis. Note that VIIRS data are not assimilated in CMC0.2)
 - in situ SST (QCed drifting buoys in iQuam <u>www.star.nesdis.noaa.gov/sod/sst/iquam/</u>)

Data: one <u>representative</u> day of global data – 23 April 2014 – in SST Quality Monitor (SQUAM) <u>www.star.nesdis.noaa.gov/sod/sst/squam/</u>

NIGHT: ACSPO L2 minus CMC L4 23 April 2014

NIGHT: NAVO L2 minus OSTIA L4 23 April 2014

NIGHT: ACSPO L2 minus CMC L4 23 April 2014

NIGHT: NAVO L2 minus CMC L4 23 April 2014

NIGHT: ACSPO L2 minus in situ SST 23 April 2014

10

NIGHT: NAVO L2 minus in situ SST 23 April 2014

NIGHT: ACSPO L2 minus *in situ* SST 23 April 2014

Performance Stats well within specs (Bias<0.2K, STD<0.6K)

NIGHT: NAVO L2 minus *in situ* SST 23 April 2014

Performance Stats well within specs (Bias<0.2K, STD<0.6K)

NIGHT – Summary

	ΔT = "VIIRS minus CMC" SST (expected ~0)			
	NODS (%ACSPO)	Min/ Max	Mean/ STD	Med/ PSD
IDPS	116.8M (101%)	-13.1/+12.6	-0.04/0.46	-0.00/0.31
ACSPO	115.9M (100%)	- 4.6/+7.6	-0.02/0.38	-0.02/0.30
NAVO	39.5M (34%)	- 8.9/+7.1	+0.04/0.37	+0.06/0.28
• IDPS: SST domain is +1% larger than ACSPO. All stats degraded				

NAVO: SST domain is factor of ×3 smaller than ACSPO, stats improved

	ΔT = "VIIRS minus in situ" SST (expected ~0)			
	NCBS (%ACSPO) Min/ Max	Mean/ STD	Med/ RSD
IDPS	2,082 (113%)	-2.9/+5.6	-0.06/0.43	-0.01/0.26
ACSPO	1,846 (100%)	-1.7/+1.3	-0.02/0.28	-0.00/0.24
NAVO	678 (37%)	-2.3/+1.0	+0.02/0.29	+0.07/0.24

• IDPS: SST domain is +13% larger than ACSPO, All stats degraded

• NAVO: SST domain is factor of ×3 smaller than ACSPO, stats comparable

DAY – Summary

	ΔT = "VIIRS minus CMC" SST (expected ~0)				
	NODS (%ACSPO)) Min/ Max	Mean/ STD	Med/PSD	
IDPS	120.4M (100%)	- 28.7/+10.4	+0.20/0.77	+0.24/0.45	
ACSPO	121.0M (100%)	- 5.4/+ 9.2	+0.29/0.59	+0.21/0.41	
NAVO	41.3M (34%)	- 8.2/+ 7.5	+0.28/0.56	+0.22/0.40	

IDPS: SST domain is comparable with ACSPO, All stats degraded

• NAVO: SST domain is factor of ×3 smaller than ACSPO, stats comparable

	ΔT = "VIIRS minus in situ" SST (expected ~0)				
	NCBS (%ACSPO)) Min/ Max	Mean/ STD	Med/ RSD	
IDPS	1,758 (105%)	-5.3/+2.7	-0.06/0.77	+0.10/0.48	
ACSPO	1,680 (100%)	-1.4/+2.8	+0.07/0.42	+0.06/0.37	
NAVO	510 (30%)	-1.2/+2.1	+0.12/0.35	+0.07/0.35	

• IDPS: SST domain is +5% larger than ACSPO, All stats degraded

• NAVO: SST domain is factor of x3 smaller than ACSPO, stats improved

ACSPO_V2.30b01_NPP_VIIRS_2014-01-18_1440-1450_20140314.174252_NAVO

ACSPO_V2.30b01_NPP_VIIRS_2014-01-18_1810-1819_20140314.184153_NAVO

ACSPO_V2.30b01_NPP_VIIRS_2014-01-18_2030-2039_20140314.192134_NAVO

ACSPO_V2.30b01_NPP_VIIRS_2014-01-18_0440-0450_20140314.145310_NAVO

Conclusion and Near-Future Work

ACSPO and NAVO are two VIIRS SST choices for users

- ✓ Both are GDS2, available (or shortly to be) via JPL/NODC
- ✓ ACSPO retrieval domain is larger than NAVO, by a factor of ~3, due to NAVO narrow swath VZA<54°, conservative cloud mask</p>
- ✓ NAVO STDs are smaller than ACSPO by a narrow margin

Near-Term ACSPO tasks

- ✓ Work with users, solicit feedback, improve ACSPO
- ✓ Implement destriping operationally (Karlis Mikelsons)
- ✓ Pattern recognition ACSPO Clear-Sky Mask (Irina Gladkova)
- ✓ Focus on high-latitudes
- ✓ Focus on improved Quality Flags and Levels
- ✓ Generate L3 ACSPO product many users requests
- ✓ Establish reprocessing and back-fill ACSPO VIIRS to Jan'2012