2014 STAR JPSS Science Team Annual Meeting

OMPS CONOPS

2014-May-14

T.J. Kelly & G. Jaross
S-NPP & J-1 Data Rate Comparison

SNPP: 12/32NC
- “12” is rate (in Hertz) of number of S/C bus polls for OMPS TLM
- “32” is the max number of 64-byte buffers per polling interval
- “NC” is No Compression
- Data Rate:
 - Net TLM rate: $12 \times 32 \times 64 = 24576$ Bytes/sec, or
 - 196608 bits/sec (196.6 kb/s)

J1: 10/80C
- “10” is rate (in Hertz) of number of S/C bus polls for OMPS TLM
- “80” is the max number of 64-byte buffers per polling interval
- “C” is lossless Compression
- Data Rate:
 - Net TLM rate: $10 \times 80 \times 64 = 51200$ Bytes/sec, or
 - 409600 bits/sec
- Above is an “NC” rate
- Compression estimate: a factor of approximately 2, so
- Effective, estimated data throughput:
 - Net TLM rate: 2 x 51 kBps
 - = 100000 Bytes/sec, or
 - 820000 bits/sec (820 kb/s)
Reduced-Frame: New Capability

S-NPP: (a first way to run a TPG...)
• Read entire contents of CCD into memory
• Corresponds to area inside the blue frame
• Apply ST binning & Gain correction

J1: (a second way to run a TPG...same H/W)
• Read a select subset of pixels of CCD, shown as 2 red boxes, into memory
• Apply ST binning & Gain correction
• This is Reduced-Frame

Benefits of a Reduced-Frame:
• No time is spent reading out pixels that will only be discarded later
• Saves CCD read-out time
• Shortens along-track sampling for NM when NM and NP are read out together (every 6th frame)
• Apply mainly to Earth-View (Science Data)
• Other observations employ regular read-out

Caveats:
• Sample and Gain correction Tables must be sized for reduced-frame
• Reduced-Frame TPG is tied to ST and GT

APID will tell you whether Compressed &/or Reduced-Frame applies

On the Ground:
• Reduced-Frame looks no different in raw data
• Nothing needed in Ground SW to account for it
Interchangeability: Product Sets

- In all, BATC created 4 Data Rate/Compression packages, known as “Product Sets”
 - Not all OMPS tables are affected
 - Tables included are CBM, Image Profile, Gain, ST & TP, and a Global Config

- KEY POINT: Each Product Set works with the **same version** of FSW
 - A Product Set essentially configs just the necessary FSW parms

- Reason: Kind of a *Plug ‘n Play* approach
 - Minimize risk in case S/C couldn’t handle max data rate, etc.
 - 2 with compression, 2 without
 - Same polling rate (10 Hz)
 - Lower numbers of 64 byte buffers per S/C poll
Data Compression Testing

• Compression Studies
 – Tested several compression methods
 • COTS products
 • Included the “zlib” & “szip” packages
 • Tested on actual data from S-NPP/OMPS: EV, SCAL, LED and Darks
 • General Compression Results:
 – zlib compression of ~ 2.0X
 – szip compression of ~2.5X
 – Selected “szip”, which uses extended Rice compression algorithm

• FYI: On-board CPU demand for data compression is ~3%
 – Plenty of CPU resources available
 – No problems expected to perform data compression in existing H/W

• 2x compression is conservative for EV HiRes
 – Even though results suggests 2.5X
 – Only accounts for register under-utilization (14 bits for one coadd vs. 32-bit word/pixel).

• Dark Current data achieve up to 10x compression.

• Use LEO&A to improve compression estimates
 – And improve/refine ST too
 – Enhance wavelength selection in EV ST
J1 Flight ConOps: Calibration Plans

- Solar Cals: 2 methods
 - 1-orbit and 3-orbit varieties, as with S-NPP/OMPS
 - TP and IT characteristics convey
 - Evaluate new QVD Diffuser
 - Less diffuser features than Aluminum Diffuser on S-NPP/OMPS
 - Compare performance diffs of 2 types of Solar Cals (1 vs 3-orb)
 - Desire is to utilize 3-orb solars
 - Reduces effect of Goniometry errors, incl. diffuser features
 - However ... need to factor in Mech. moves over lifetime of mission

- Dark Cals with door closed
 - Performed weekly
 - Much like S-NPP/OMPS: Full-Frame (FF) images
 - Separate Image and Storage Region Darks
 - Include short-IT and medium-IT darks

- LED Cals with door closed
 - Performed every 4 weeks
 - Upgraded: FF images due to data compression
 - Collect LED Warm-up, Linearity and FF image data
J1 Flight ConOps: Special EV Plans

- Special EV data collection activities
 - Door open Dark Cals
 - Just like door closed Darks
 - Provides orbit-by-orbit updates
 - EV FF data collection for NM & NP
 - Separate orbits for each, as with S-NPP
 - ~4X increase in number of images
 - Good for straylight obs., very-fine imaging, etc.
 - PNRU obs. for NM
 - Increased wavelength range
 - over Antarctica & Greenland
 - In season: Centered on a Summer Solstice
 - EV_360
 - Essentially an extended version of EV_Hi_Res
 - NOM APIDs: Compressed & reduced-frames
J1 Flight ConOps: Science Data Plans

- **EV_Hi_Res default Science Data (EV) activity**
 - **Timing pattern enhancements**: No coadds
 - **Was** 6 coadds (of 1.25 s) for NM and 3 coadds (of 12.5 s) for NP on S-NPP/OMPS
 - **Will be**
 - NM: IT = 1.25 sec
 - Shorter than 1.76 sec that’s run on S-NPP/OMPS with CBM: EV_HiRes_O3
 - NP: IT = 7.5 sec
 - as was tested on S-NPP/OMPS with CBM: EV_TCres_NP
 - **Better along-track resolution**
 - NM resolution = ~10 km "6X"
 - NP resolution = ~49 km "5X"
 - **Wavelength range enhancements**:
 - J1 NM available wavelength range increased
 - 298 to 423 nm
 - Marginal sensitivity from 392 to 413 nm
 - J1 NP wavelength range unchanged
 - 252.0 nm to 305.87 nm
• EV_Hi_Res (continued)
 – Sample Table enhancements: Finer Binning
 • For NM: How best to distribute?
 • Option 1: BATC delivered an NM ST with BF=5
 – 210 spectral pixels (170 + 40)
 – The 170: Spectral range covers PRD wavelengths from 307.6 to 378.2 nm
 – Extra 40: 407.0 to 423.4 nm
 • Option 2: May reduce to BF=4 with 170 wavelengths
 – Done on S-NPP: Early version of ST for EV_HiResO3
 • Option 3: May use variable binning
 – Done on S-NPP: EV_HiResO3 run on Saturdays
 – Reduces off-nadir swell
 – If select BF=4:3:2, can collect 80 to 100 wavelengths

 • For NP: BATC-delivered ST
 – 5X spatial resolution
 – Has been tested on S-NPP: EV_Tcres_NP & nomEV_Tcres_NP
 – 150 spectral pixels (as mentioned on prior slide)

 – FOVs of BATC delivered J1 EV STs:
 • NM: approximately 13 km wide x 10 km along-track at nadir “4X x 6X”
 • NP: approximately 50 km wide x 55 km along-track “5X x 5X”
J1 Flight ConOps:
Routine Data Collection

• EV_Hi_RES is default activity
• Solar Working Cal every other week
• LED Cal every 4th week
• Dark Cals
 – Door closed once a week
 – Door open is default nightside activity
• Solar Ref Cal approx’ly semi-annually
 – Maintain constant Solar Azimuth/β Angles as S-NPP
J1 Routine Science Data: BATC NM Test ST

Sample/Bin TC “Hi-Res” EV
J1 Routine Science Data: NP Test ST

- J1 NP Test EV ST
 - 5X spatial resolution
Planned NPP Improvements

• Load J1 FSW6.0 on S-NPP
 – After all ... same hardware!
 – LP inactive during test
 – Concurrent with Block2.0 changes
 – Must wait due to changes in OMPS header
 – Incremental Approach: Operate under a 12/32NC ConOps
 • Duplicate existing S-NPP config
 • Need new product set (can’t re-use J1)
 – Next Increment: 12/32C ConOps
 • Supports Reduced-Frames
 • Expect performance to be similar to J1’s 10/80NC ConOps
 – OMPS-to-S/C data rate is a “32” and not an “80”
 – Lessen ST loads if necessary, i.e, adjust wavelength range
 • Science Data Options:
 – EV_LOW_RES CBM (same as currently on S-NPP)
 – EV_MED_RES: Enhanced resolution
 » NM: 2X cross-track and 3X along-track (25 km x 16 km Nadir FOV, resp)
 » NP: 5X5

• Table changes needed:
 – FSW, Global_Config, Mech_Options, Fault, CBM, CSM, ProfileID, Gain, ST, TPGs
 – Need a day to get all uploaded

• BATC would outline and test all transition steps in advance
• Provide data for ground system use
Back-Up Slides
• The addition of both Data Compression and Reduced-Frame is built into the Flight Software (FSW)
• Hardware for S-NPP and J1 are identical
 – Except for omission of LP
 – Better “same-ness” between S-NPP and J2!
• Upshot: Data Compression and Reduced-Frame could work for S-NPP too
 – Not impossible to test on S-NPP
Facts & Info

• OJ1 is capable of producing at a 40X rate greater than the OMPS 1553 bandwidth allocation.
• Not J1 High-Res EV ST, but ...
 • Similar spatial resolution (horizontal)
 • S-NPP case has reduced wavelength coverage (data rate limit)