

#### **SNPP VIIRS Vegetation Index EDR**

#### Marco Vargas<sup>1</sup>, Tomoaki Miura<sup>2</sup>, Nikolay Shabanov<sup>3</sup>, Javzan Azuma<sup>2</sup>, Alfredo Huete<sup>4</sup>, Alain Sei<sup>5</sup>, Al Danial<sup>5</sup>, Leslie Belsma<sup>6</sup>, Mike Ek<sup>7</sup>, Ivan Csiszar<sup>1</sup>, Walter Wolf<sup>1</sup>

<sup>1</sup>NOAA Center for Satellite Applications and Research, College Park, MD,
<sup>2</sup>Department of Natural Resources & Environmental Management University of Hawaii at Manoa,
<sup>3</sup>IM Systems Group, Inc., @NOAA/STAR, College Park, MD,
<sup>4</sup>University of Technology Sidney, Australia,
<sup>5</sup>Northrop Grumman Aerospace Systems, Redondo Beach, CA,
<sup>6</sup>The Aerospace Corporation, El Segundo, CA,
<sup>7</sup>NOAA National Centers for Environmental Prediction (NCEP), Environmental Modeling Center (EMC), College Park, MD

#### STAR JPSS 2014 Science Team Annual Meeting, May 12-16, NCWCP College Park, MD



# Outline



- Overview
  - Team Members, Users, Accomplishments
- Algorithm Evaluation:
  - Product Requirements, Algorithm Description,
     Validation Approach, Product Improvements
- Future Plans
  - Plan for JPSS-1 Algorithm Updates and Validation Strategies, Schedule and Milestones
- Summary



# **VI EDR Team Members**



- Marco Vargas (NOAA/STAR) STAR VI EDR algorithm lead
- Tomoaki Miura (University of Hawaii) VI Cal/Val lead
- Nikolay Shabanov (STAR/IMSG) Product monitoring, algorithm development and validation
- Javzan Azuma (University of Hawaii) Cal/Val Team Member
- Alfredo Huete (UTS) Cal/Val Team Member
- Leslie Belsma (Aerospace) Land JAM
- Alain Sei (NGAS) External Partner, Consultant
- Al Danial (NGAS) External Partner, Consultant
- Michael Ek (NOAA/NCEP) User readiness
- Walter Wolf (NOAA/STAR) AI&T Team Lead





- NCEP
- STAR
- CLASS
- USDA
- USGS
- University of Hawaii at Manoa
- The Climate Corporation
- University of Technology Sydney



## **VI EDR Accomplishments**



- Maturity Reviews
  - Beta Maturity: February 2012
  - Provisional Maturity: August 2013
- Product Improvements: Additional Quality Flags for the VI EDR will be implemented in Mx8.4

#### Peer reviewed publications

Vargas, M., T. Miura, N. Shabanov, and A. Kato (2013), <u>An initial assessment of Suomi NPP VIIRS</u> vegetation index EDR, J. Geophys. Res. Atmos., 118, 12,301–12,316, doi:10.1002/2013JD020439.
 Obata, K., T. Miura, Y. Yoshioka, and A. Huete (2013), <u>Derivation of a MODIS-compatible EVI from VIIRS</u> spectral reflectance using vegetation isoline equations, J. Appl. Remote Sens. 7, 073467.

#### TOA NDVI May 01, 2013

VIVIO\_npp\_d20130501\_t2006109\_e2007351\_b07824\_c20140509022958972057\_noaa\_ops.h5 VIVIO\_npp\_d20130501\_t2007363\_e2009005\_b07824\_c20140509022958972057\_noaa\_ops.h5







### TOA NDVI April 30, 2014

VIVIO\_npp\_d20140430\_t2127130\_e2128372\_b12989\_c20140501040121992031\_noaa\_ops.h5 VIVIO\_npp\_d20140430\_t2128385\_e2130026\_b12989\_c20140501040121992031\_noaa\_ops.h5









#### TOC EVI 16-day composite





### TOA NDVI 16-day composite

ND ATMOSA

NOAA

ARTMENT OF CO







#### VI EDR Product Requirements



| Table 5.5.9 - Vegetation Indices (VIIRS)           |                                              |                                  |                 |  |  |  |  |
|----------------------------------------------------|----------------------------------------------|----------------------------------|-----------------|--|--|--|--|
| EDR Attribute                                      | Thresheld                                    |                                  | Objective       |  |  |  |  |
| Vegetation Indices Applicable Conditions           |                                              | New for                          |                 |  |  |  |  |
| 1. Clear, land (not ocean),day time only           |                                              | JPSS1                            |                 |  |  |  |  |
| a. Horizontal Cell Size                            | 0.4 km                                       |                                  | 0.25 km         |  |  |  |  |
| b. Mapping Uncertainty, 3 Sigma                    | 4 km                                         |                                  | 1 km            |  |  |  |  |
| c. Measurement Range                               |                                              |                                  |                 |  |  |  |  |
| 1. NDVITOA                                         | -1 to +1                                     |                                  | NS              |  |  |  |  |
| 2. EVI (1)                                         | -1 to +1                                     |                                  | NS              |  |  |  |  |
| 3. NDVITOC                                         | -1 to +1                                     |                                  | NS              |  |  |  |  |
| d. Measurement Accuracy - NDVI <sub>TOA</sub> (2)  | 0.05 NDVI units                              |                                  | 0.03 NDVI units |  |  |  |  |
| e. Measurement Precision - NDVI <sub>TOA</sub> (2) | 0.04 NDVI units                              |                                  | 0.02 NDVI units |  |  |  |  |
| f. Measurement Accuracy - EVI (2)                  | 0.05 EVI units                               |                                  | NS              |  |  |  |  |
| Massarement Precision - EVI (2)                    | U.U4 L. I. mits                              |                                  | NS              |  |  |  |  |
| h. Measurement Accuracy - NDVI <sub>TOC</sub> (2)  | 0.05 NDVI units                              |                                  | NS              |  |  |  |  |
| Measurement Precision - NDVI <sub>TOC</sub> (2)    | 0.04 NDVL unit                               |                                  | NS              |  |  |  |  |
| j. Refresh                                         | At least 90% coverage<br>every 24 hours (mon | ge of the globe<br>thly average) | 24 hrs.         |  |  |  |  |

Notes:

1. EVI can produce faulty values over snow, ice, and residual clouds (EVI > 1).

2. Accuracy and precision performance will be verified and validated for an aggregated 4 km horizontal cell to provide for adequate comparability of performance across the scan.

Source: Level 1 Requirements Supplement - Final Version: 2.9 June 27, 2013



### SNPP VIIRS VI EDR Algorithm Description



- The SNPP VIIRS
   Vegetation Index EDR
   consists of two vegetation
   indices:
  - 1. <u>Normalized Difference</u> <u>Vegetation Index (NDVI)</u> from top-of-atmosphere (TOA) reflectances
  - 2. <u>Enhanced Vegetation</u> <u>Index (EVI)</u> from top of canopy (TOC) reflectances.
- These indices are produced at the VIIRS image channel resolution on a daily basis

#### **VI EDR Algorithm**

$$NDVI = (\rho_{12}^{TOA} - \rho_{11}^{TOA}) / (\rho_{12}^{TOA} + \rho_{11}^{TOA})$$

$$EVI = (1+L) \cdot \frac{\rho_{12}^{\text{TOC}} - \rho_{11}^{\text{TOC}}}{\rho_{12}^{\text{TOC}} + C_1 \cdot \rho_{11}^{\text{TOC}} - C_2 \cdot \rho_{M3}^{\text{TOC}} + L}$$

 $ho_{\mathrm{M3}}^{\mathrm{TOC}}$  Surface reflectance band M3 (488 nm )

- $\rho_{\rm II}^{\rm TOC}$  Surface reflectance band I1 (640 nm)
- $ho_{
  m I2}^{
  m TOC}$  Surface reflectance band I2 (865 nm)
- $P_{I1}^{TOA}$  Top of the atmosphere reflectance band I1 (640)
- $ho_{\mathrm{I2}}^{\mathrm{TOA}}$  Top of the atmosphere reflectance band I2 (865 nm)

 $C_1$ ,  $C_2$  and *L* are constants



### VI EDR Validation Approaches



- Validation Using Aqua MODIS as a Reference
  - a) Regional Global Mosaic Analysis
  - b) Subset Time Series Analysis
- Validation Using Aeronet-based Surface Reflectance (Matchup analysis) (see poster #23 by Shabanov and Vargas)
- Validation Using Tower Reflectance Data (see poster #22 by Wang, Miura, Kato and Vargas)



#### VIIRS vs. MODIS Global Comparison



13

- Radiometric accuracies of VIIRS TOA NDVI and TOC EVI have been evaluated by comparison with Aqua MODIS
  - Using observation pairs along overlapping orbital tracks
    - Four view zenith (VZ) angle bins: VZ < 7.5°, 20° < VZ < 27.5°, 40° < VZ < 47.5°, 55° < VZ < 62.5°</li>
  - Three days of data for global coverage
    - e.g., DOY 120, 122, and 125, 2014 to complete global coverage
  - APU metrics computed using MODIS as a reference
    - <u>Exclusion conditions</u>: confidently cloudy, solar zenith angle > 65°, ocean, AOT > 1.0; <u>Additional screening</u>: thin cirrus, inland water, cloud adjacency, high aerosol quantity, snow/ice, shadow



Figures indicating VIIRS-MODIS overlapping orbital tracks ( $VZ < 7.5^{\circ}$ ) (Red = forward scattering geometry; Blue = backward scattering geometry)



#### VIIRS vs. MODIS APU Metrics (DOY 056, 058, & 061, 2014)







-0.06

0.14

0.20 0.26 0.32 0.37

VIIRS TOC-EVI (G=2.0)







15





- VIIRS TOA NDVI and TOC EVI showing seasonal patterns comparable to those from the MODIS counterparts
- Higher cloud mask quality in 2013 than in 2012







- VIIRS TOA NDVI and TOC EVI showing seasonal patterns comparable to those from the MODIS counterparts
- Higher cloud mask quality in 2013 than in 2012







#### Global TOC EVI VIIRS minus MODIS (February 28, 2014)



VIIRS and MODIS TOC EVI match each other on a global scale.





#### Global TOA NDVI VIIRS minus MODIS (February 28, 2014)



While VIIRS and MODIS TOA NDVI match on a global scale (overall bias is close to 0 in time series), for most typical pixels (highest density in scatterplots), VIIRS tends to underestimate TOA NDVI.





## VI EDR Validation Matchup Analysis



#### Surface Reflectance and VI cutouts collected daily at 229 Aeronet sites: North America Example





## VI EDR Validation Matchup Analysis



Example of Cutouts of TOA NDVI at Barcelona. First three weeks in April, 2014





## VI EDR Validation Matchup Analysis

100

0

20

40



0.1

0.0

100

80

60

Sinusoidal Projection Allows Colocated 500 m Cells to be Tracked Chronologically





Alain Sei, Al Danial NGAS



NOAA







# **VI EDR Product Improvements (DR7038)**



## Mapping of Additional QFs (Mx8.4)

- Include the following four additional QFs into QF3\_VIIRSVIEDR •
  - 1) snow/ice
  - 2) 3) adjacent clouds
  - aerosol quantity
  - cloud shadow 4)

- <= to be copied from Bit 0 of SR IP QF7
- <= to be copied from Bit 1 of SR IP QF7
- <= to be copied from Bits 2-3 of SR IP QF7
- <= to be copied from Bit 3 of SR IP QF2

|       | Current |                           |                     | Proposed, New |                        |                     |
|-------|---------|---------------------------|---------------------|---------------|------------------------|---------------------|
| Byte  | Bits    | VIIRS VI Quality Flag     | Value               | Bits          | VIIRS VI Quality Flag  | Value               |
| 2     | 0       | Stratification – Solar    | 0: SZA < 65 or > 85 | 0             | Stratification – Solar | 0: SZA < 65 or > 85 |
| (QF3) |         | Zenith Angle              | 1: 65 ≤ SZA ≤ 85    |               | Zenith Angle           | 1: 65 ≤ SZA ≤ 85    |
|       | 1       | Excl - AOT > 1.0          | 0: AOT ≤ 1.0        | 1             | Excl - AOT > 1.0       | 0: AOT ≤ 1.0        |
|       |         |                           | 1: AOT > 1.0        |               |                        | 1: AOT > 1.0        |
|       | 2       | Excl – Solar Zenith Angle | 0: SZA ≤ 85         | 2             | Excl – Solar Zenith    | 0: SZA ≤ 85         |
|       |         | > 85 <u>Deg</u>           | 1: SZA > 85         |               | Angle > 85 Deg         | 1: SZA > 85         |
|       | 3       | spare bit                 | set to 0            | 3             | Snow/Ice               | 0: False (no)       |
|       |         |                           |                     |               |                        | 1: True (yes)       |
|       | 4       | spare bit                 | set to 0            | 4             | Adjacency Clouds       | 0: False (no)       |
|       |         |                           |                     |               |                        | 1: True (yes)       |
|       |         |                           |                     |               |                        |                     |
|       | 5       | spare bit                 | set to 0            | 5-6           | Aerosol Quantity       | 00: Climatology     |
|       | 6       | spare bit                 | set to 0            |               |                        | 01: Low             |
|       |         |                           |                     |               |                        | 10: Average         |
|       |         |                           |                     |               |                        | 11: High            |
|       | 7       | spare bit                 | set to 0            | 7             | Cloud Shadows          | 0: False (no)       |
|       |         |                           |                     |               |                        | 1: True (yes)       |



## VI EDR Product Improvements (DR7038)



TOA NDVI: Screened for "Confident Cloudy" & "AOT > 1.0"

OOOX #1 Band 1:NPP\_VRVI\_L2.A2013266.1950.... File Overlay Enhance Tools Window

○ ○ ○ [X] #1 Scroll (0.04000)





TOA NDVI: Screened for "Cloud Shadows"

Pile Overlay Enhance Tools Window

 Image: Constraint of the second sec

Additional QF3 Bit 7: Cloud Shadows

> "Cloud shadow" QF can be used to screen shadowaffected pixels which produce faulty low NDVI or EVI values.



#### TOC EVI Backup Algorithm Prototype



- DR 7039 A backup algorithm for EVI over snow/ice and clouds
- TOC EVI is unstable over snow/ice and cloud edges
- An EVI backup algorithm is being prototyped based on the MODIS VI algorithm
  - It switches the EVI equation to a two-band EVI equation
- The current set of criteria (prototype) are:
  - If Confident Cloudy or Probably Cloudy or Thin cirrus or Adjacent pixels or snow or snow/ice then switch EVI to EVI2
  - If Inland water or coastal lines then switch EVI to EVI2
  - If M3>0.25 then switch EVI to EVI2
  - If M3<0.25 and M3>0.05 and I1<0.1 7 then switch EVI to EVI2
  - If M3<0.05 and I1<0.03 then switch EVI to EVI2



#### TOC EVI Backup Algorithm Prototype



- TOC EVI values are unrealistically high/low over the snow/ice covered areas in the high northern latitude area and most of Antarctica as well as over clouds
- They become around "zero" in the backup algorithm output

VIIRS Data of Sep 23, 2013

#### TOC Reflectance (RGB: I1, I2, M3)



**TOC EVI with Backup Algorithm** 



#### **TOC EVI Current Algorithm**



1.5

0.5

-0.5

EVI2

#### TOC EVI Backup Algorithm Prototype



 Unrealistically high/low EVI values in the current EVI algorithm output (left) are not seen in the output from the EVI backup algorithm (right)

**TOC EVI Current Algorithm** 

Global

EV



**TOC EVI with Backup Algorithm** 



## JPSS1 TOC NDVI Development



VIIRS derived TOC NDVI March 30 -April 14, 2014 (using S-NPP data)



#### TOC NDVI (VIIRS minus MODIS)



Surface reflectance Intermediate Product (SRIP) data from S-NPP VIIRS is used as test data representing J1 VIIRS surface reflectance in algorithm development





# **VI-EDR Future Plans**



- Validated 1: Expected August 2014
- TOC NDVI will be added to the JPSS-1 VI product suite (Algorithm Change Package will be delivered to DPES in FEB 2015)
- JPSS1 TOC NDVI Critical Design Review (CDR) on May 22, 2014
- TOC-EVI backup algorithm (DR7217)
- Temporal compositing (weekly, 16-day, monthly), and spatial compositing (global) (DR7488)
- Begin JPSS1 validation planning
- Will Continue long term monitoring



# Summary



- Analysis results indicate that the VIIRS Vegetation Index EDR operational product is performing well
  - Summary statistics meet the L1 requirements
  - Additional QFs critical in meeting the L1 requirements
- VI EDR will meet Validation 1 status based on the definitions and the analysis performed (summer 2014)
- The JPSS1 TOC NDVI algorithm will be developed to meet the Level 1 Requirements



#### **NDE NUP Green Vegetation Fraction**

#### Marco Vargas<sup>1</sup>, Zhangyan Jiang<sup>2</sup>, Junchang Ju<sup>2</sup>, Ivan Csiszar<sup>1</sup>

<sup>1</sup>NOAA Center for Satellite Applications and Research, College Park, MD, <sup>2</sup>AER/NOAA/STAR, College Park, MD

STAR JPSS 2014 Science Team Annual Meeting, May 12-16, NCWCP College Park, MD



# **GVF Team Members**



- Marco Vargas (NOAA/STAR) Project Lead, Development Scientist
- Zhangyan Jiang (STAR/AER) Development Scientist
- Junchang Yu (STAR/AER) Development Scientist
- Ivan Csiszar (NOAA/STAR) Development Scientist
- Mike Ek (NOAA/NCEP/EMC) User readiness
- Yihua Wu (NOAA/NCEP/EMC) User readiness
- Weizhong Zheng (NOAA/NCEP/EMC) User readiness
- Hanjun Ding (NOAA/OSPO) Product Area Lead
- Dylan Powell (Lockheed Martin/ESPDS/NDE) AI&T
- Tom Schott (NOAA/OSD) Consultant



# **GVF Customers/Users**



- NCEP/EMC
- CLASS
- NASA/SPoRT



### NDE NUP GVF Product



- Green Vegetation fraction (GVF) is defined as the fraction of a pixel covered by green vegetation if it were viewed vertically.
- The current NOAA operational GVF product is derived from AVHRR top of atmosphere NDVI data at 16-km resolution.
- In the Suomi National Polar-orbiting Partnership (SNPP) era, there is a need to produce GVF as a NOAA-Unique Product (NUP) from data from VIIRS for applications in numerical weather and seasonal climate prediction models at NCEP.
- The retrieval algorithm uses VIIRS TOC red (I1), near-infrared (I2) and blue (M3) bands centered at 0.640 µm, 0.865 µm and 0.490 µm, respectively, to calculate the Enhanced Vegetation Index (EVI) and derive GVF from EVI.
- To meet the data needs of NCEP and other potential users, GVF will be produced as a daily rolling weekly composite at 4-km resolution (global scale) and 1-km resolution (regional scale).
- For more information see GVF poster by Jiang et al.



# NDE NUP GVF Product



Two GVF weekly products: global (4km res) and regional (1km res)
Global GVF product in NetCDF4 format will be archived at CLASS

0.1

0.2

0.3

0.4





0.5

0.6

0.7

0.8

0.9

1 0



# NDE NUP GVF Product





• GVF is being tested in the Global Forecast System (GFS).



# **GVF Accomplishments**



 GVF Linux DAP delivered to NDE in April

• GVF system currently undergoing integration and testing in NDE



# **GVF Future Plans**



 GVF transition to operations in Summer 2014

 Planning NUP GVF from VIIRS JPSS1





# Thank you