

Application of DAI-based smoke/dust detection algorithm to VIIRS observations

Pubu Ciren^{1,2} and Shobha Kondragunta¹

¹NOAA/NESDIS ²IMSG

JPSS Risk Reduction Algorithm for VIIRS Dust and Smoke Detection

- Adapt GOES-R Advanced Baseline Imager (ABI) aerosol (dust and smoke) detection algorithm
 - For dust, take advantage of deep-blue channels on VIIRS and adapt MODIS dust detection algorithm developed by STAR*
- Simple, fast, and easy to be implemented operationally
- Detects most plumes with good accuracy

*Dust Aerosol Index (DAI) Algorithm for MODIS Pubu Ciren and Shobha Kondragunta Journal of Geophysical Research: Atmospheres 03/2014 DOI:10.1002/2013JD020855 Spectral dependence of three processes allows the dust detection

- Surface reflectance
- Rayleigh scattering
- > Dust absorption

6S Radiative Transfer Simulations

6S Simulations:

- 1. MODIS C5 dust aerosol model used
- Desert, vegetation, ocean BRDF with easterly wind speed of 6 m/s are used to represent surfaces in 6S

DUST reduces the contrast between 412nm and 440 nm as a result of increasing absorption by dust with decreasing wavelength

3

MODIS Observations: Dust vs. Clear Sky

Smoke:

- Has the same effect as dust in terms of reduction of the contrast between 412nm to 440nm
- Difference in particle size enables us to pick-out the smoke by introducing short-wave IR channel (2.13 $\mu m)$

Dust Aerosol Index

 $DAI = 100*[log_{10}(R_{412nm}/R_{445nm})-log10(R_{412nm}'/R_{445nm}')]$ $NDAI = -10*[log_{10}(R_{412nm}/R_{2.25um})]$

R'-- reflectance from Rayleigh scattering

- Clouds are first screened by using R_{0.42um}
- Residual Clouds over water are screened using 0.86 μm spatial variability test. Over land, residual clouds are screened by 412 nm spatial variability test. Cirrus clouds are screened using 1.38 μm test.
- Bright desert surfaces are screened for by bright pixel index (normalized difference of 1.24 μ m and 2.25 μ m).
- Turbid water test based on Shi and Wang, 2007 uses 0.746 um and 1.24 μm measurements.
- Sunglint, snow/ice, fire hot spots are also screened based on different tests (geometry, spectral etc.)
- DAI and NDAI are computed for pixels that pass these tests:
 - Water: DAI \geq 4 and NDAI \geq -10
 - Land: DAI \geq 11.5 and NDAI \geq 0

JPSS RR dust/Smoke Detection

OF

VIIRS Smoke Detection

 The NDAI in the dust algorithm can also indicate the presence of smoke and/or haze mixed in with smoke

Surface	Condition	Smoke Detection			
Land	DAI \geq 5.0 and NDAI \leq -2.0	Thin Smoke			
	DAI \ge 9.0 and NDAI \le -2.0	Thick Smoke			
Water	DAI \geq 4.0 and NDAI \leq -10.0 R_{410} < 0.1	Thin Smoke			
	DAI \ge 9.0 and NDAI \le -4.0	Thick Smoke			

JPSS RR Algorithm for Smoke Detection

Spectral (wavelength dependent) thresholds can separate thick smoke, light smoke, and clear sky conditions

JPSS RR Dust and Smoke Detection Examples

Smoke over West Coast of United States on September 22, 2012

JPSS RR Dust and Smoke Detection Examples

VIIRS fire hot spots and visible smoke in the RGB image on July 8, 2012

JPSS RR smoke detection algorithm identifies the smoke plumes including the one removed from fire hot spots

JPSS RR Dust and Smoke Detection Examples

VIIRS true color image of blowing dust from different sources in Alaska on April 28, 2013

Validation

- JPSS RR dust detection algorithm run on VIIRS observation for the entire year of 2013.
 - VIIRS smoke/dust frequency vs. CALIPSO and MISR
 - VIIRS smoke and dust detection matchups with CALIPSO and AERONET
- Derive performance metrics
 - Accuracy
 - Probability of Correct Detection (POCD)
 - Probability of False Detection (POFD)

		Yes	No						
VIIRS	Yes	А	В						
	No	С	D						

POCD = A/(A+C) POFD = B/(A+B) Accuracy* = (A+D)/(A+B+C+D)

VIIRS vs. CALIPSO

DUST

January

2013.01 VIIRS "Dust" Type Frequency

April

2013.04 CALISPO VFM "Dust" Type Frequency (High Quality)

2013.01 CALISPO VFM "Dust" Type Frequency (High Quality)

DUST

September

90°N 60°N 30°N -0° · 30°S -60°S -90°S 120°E 180°W 120°₩ 60°₩ 0° 60°E 180°E 0.0 0.1 0.20.3 0.4 0.5 0.6 0.7 8.0 0.9 1.0

2013.09 CALISPO VFM "Dust" Type Frequency (High Quality)

2013.07 CALISPO VFM "Dust" Type Frequency (High Quality)

July

2013.07 VIIRS "Dust" Type Frequency

JPSS RR Dust Detection Over Land: VIIRS vs. CALIPSO

	Month (2013)											
	1	2	3	4	5	6	7	8	9	10	11*	12
Accuracy	100.0	99.4	99.9	99.9	98.4	99.4	99.6	98.7	100.0	100.0	-	100.0
POCD	N/A	71.4	77.8	80.0	75.3	73.4	97.9	76.5	N/A	N/A	-	N/A
POFD	N/A	50.0	8.7	42.8	13.5	53.4	39.4	35.3	N/A	N/A	-	N/A

* CALIPSO data not available

JPSS RR Dust Detection Over Water: VIIRS vs. CALIPSO

	Month (2013)											
	1	2	3	4	5	6	7	8	9	10	11	12
Accuracy	99.8	99.8	99.9	99.9	99.8	99.6	99.7	99.8	100.0	100.0	-	100.0
POCD	54.2	N/A	N/A	N/A	N/A	80.0	94.8	91.8	N/A	N/A	-	N/A
POFD	56.6	N/A	N/A	N/A	N/A	46.1	49.5	47.6	N/A	N/A	-	N/A

* CALIPSO data not available

JPSS RR Dust Detection :

VIIRS vs. AERONET

Stations	True positive	False positive	True negative	False negative	Accuracy	POCD	POFD
Banizoumbou	10) 1		12	85.2	45.4	9.0
Darkar	1	0	25	1 96.3		50.0	0.0
IER_Cinzana	2	0	23 1 96.2		96.2	66.6	0.0
Solar_Village	6	5	29	4	79.5	60.0	45.4
Capo_Verde	Capo_Verde 2		9 0 91.6		91.6	100.0	33.3
Cape_San_Juan	1	2	18	0	90.4	100.0	66.6
Over 401 AE	RONET stat	tions	Accuracy	РОС	D	POFD	
Year	of 2013		99.8	86.	9	39.3	

Summary

- An algorithm based on observations from deep-blue and shortwave-IR developed for MODIS has been adapted for VIIRS.
 - Algorithm is simple, fast, and easy to be implemented operationally.
- Dust and smoke detections meet L1RD requirements
- Additional validation on smoke detection is needed
- Additional investigation of data artifacts (false detections) is required to enhance product accuracy