NPP and J1 CrIS Instruments Noise Performance

STAR JPSS Science Team Meeting SDL, Exelis, NOAA STAR results
Deron Scott presenting
May 12-16, 2014
Outline

1. Noise sources and NPP on-orbit real spectra NEdN
2. NPP CrIS on-orbit noise performance as compared to TVAC ground test and heritage AIRS and IASI instruments
3. NPP on-orbit NEdN trend. NEdN stability over different orbital positions (North Pole, Tropics, and South Pole)
4. Small seasonal, spatial, and orbital NEdN variations.
5. Imaginary spectra NEdN as a diagnostic tool to monitor instrument health
6. J1 CrIS instrument NEdN performance (bench and RRTVAC tests)
7. Conclusion.
 • Total NEdN is calculated using standard technique (standard deviation)
 • PCA technique is used to estimate random NEdN component
 • Correlated noise contribution is estimated as:
 \[NEdN_{\text{cor}} = \sqrt{NEdN_{\text{total}}^2 - NEdN_{\text{random}}^2} \]
Exelis CrIS NEdN model and simulations: 1-7 detector and electronics noise (random); 8-14 interferogram distortion noise (may lead to spectrally correlated noise component)

- Major contributors: LWIR - 1/f noise; MWIR and SWIR - background shot and IR signal delay slope noise
- Background shot noise dominates in MWIR and SWIR spectral bands in both NPP and J1 sensors.
- Note, under external vibration interferometer induced noise dominates – characteristic slope (12)
NPP: On-orbit NEdN vs TVAC4

On-orbit
January 10, 2013

TVAC 4, MN
$T_{ECT}=287K$

- NEdN in all spectral channels and FOVs (except MWIR FOV7) is well within spec
- On orbit NEdN is practically the same as during TVAC4 ground test
- MWIR FOV7 is slightly out of spec from TVAC4 test probably due to migrating impurities in the IR detector interface (may change after warm-up/cool-down cycle).
On-orbit NEdN exhibit significantly lower correlated noise contribution. During TVAC4 test additional vibration from the test equipment was present.

Vibration test and NEdN simulations conclusions:

- SWIR NEdN is most sensitive to the external vibration.
- DS is most sensitive to the external vibration as compared to the ICT and ECT.
- Corner FOVs (1,3,7,9) are most susceptible to the vibration.
Change in the on-orbit NEdN as compared to TVAC4 MN is mostly due to a random noise component (intrinsic detector noise):

- LWIR: on-orbit random NEdN higher by ~10-12% then TVAC4 MN level
- MWIR: on-orbit NEdN is at the same level as TVAC4 MN NEdN
- SWIR: on-orbit random NEdN is smaller by ~15-20% then TVAC MN NEdN

- NEdN is averaged over each spectral band and all FOVs
- 220 spectra were used for each on-orbit and TVAC4 data analysis
NPP: NEdN and NEdT (at 270°K) comparison with AIRS and IASI

- NEdN is estimated from Earth scene radiances using SDL PCA approach (60 PCs retained)
- CrIS exhibits smaller noise level in LWIR (~x3) and SWIR (~x3) spectral bands than noise estimated from IASI observations reduced to CrIS spectral resolution
- As expected, CrIS full spectral resolution noise in MWIR and SWIR bands is higher by ~x1.4 and ~x2, respectively, as compared to the CrIS standard spectral resolution
NPP: NEdN on-orbit trend over Equator region

ICT
IDPS NEdN SDR once a day
04/03/2012-05/05/2014

DS
SDL monitoring once a week
01/21/2012-05/05/2014

- NEdN remains stable during orbital operations
- LWIR FOV1 NEdN variations of ~25-50% were observed in July-September 2013
- NEdN was averaged over all FOVs and over spectral regions:
 - LWIR: 650-750 (beam-splitter transmittance); 750-900 (possible icing); and 750-195 cm\(^{-1}\)
 - MWIR: Entire band 1210-175 cm\(^{-1}\)
 - SWIR: Entire band 2155-2550 cm\(^{-1}\)
IDPS SDR NEdN and ICT temperature acquired once a day over NP (90°N), Equator (0°N), and SP (90°S) regions

At low latitude (~ 65° North to -65° South) the NEdN seasonal variations do not exceed 2-3% and follow the seasonal variations of the ICT temperature

larger variations ~ 4-6% are observed over the South Pole. NEdN over both North and South Pole regions exhibit additional seasonal variations during spring and fall.
NPP: Orbital NEdN variations. FOV5

- Descending (night time) orbits are shown
- Color scale is chosen +/- 10% of NEdN nominal values
- Small orbital NEdN variations <10% are typical for each FOV
- No NEdN anomalies are observed over the South Atlantic Anomaly region
- Relatively large area of PV HgCdTe detectors and radiation shielding provide reliable protection of the detector array from high energy particles

January 10, 2013

July 10, 2013
NPP: Total Imaginary NEdN
On-orbit vs TVAC4 MN

Orbit 6245
January 10, 2013

- Imaginary NEdN exhibits elevated level due to the spectrally correlated noise component
- Random noise is dominated by the intrinsic detector noise like in real NEdN
- On-orbit imaginary NEdN is lower than during TVAC4 especially for DS derived NEdN
- Negligible contribution of the correlated noise is observed in real NEdN shown previously
Imaginary NEdN is extremely sensitive to any instrument artifacts and external vibration as compared to real NEdN.

- Corner FOVs are more susceptible to the tilt-induced OPD sample jitter
- DS derived imaginary NEdN has largest vibration sensitivity while ICT target exhibits the smallest vibration susceptibility.
- On-orbit correlated imaginary NEdN significantly lower than during TVAC4
On-orbit data: orbit # 6245 at January 10, 2013 (max increase in the imaginary NEdN)

During TVAC4 PQH test additional vibration from the test equipment was present

On-orbit imaginary NEdN is comparable or smaller than TVAC4 MN value

Only random NEdN component can be estimated on-orbit from ES view using PCA

NEdN is averaged over each spectral band and all FOVs
NPP: DS derived average imaginary NEdN

- Real spectra NEdN
- Imaginary spectra NEdN

STAR NPP CrIS Housekeeping
DA tilt error in Y-direction, hourly averaged

- NEdN has increased in the imaginary part of the DS spectra in all spectral bands (~30-40%)
- Increase in the imaginary DS NEdN correlates with DA tilt error in Y-direction
- Practically no change in real spectra NEdN is observed
- Possible source of small additional S/C vibration: ATMS scanning assembly
NPP: Orbital fluctuations in the DS imaginary NEdN

- DS imaginary NEdN exhibit slightly larger fluctuations ~10-30% over time as compared to the real NEdN and ICT derived NEdN (a)
- Variation are due to correlated noise component
- Larger noise occurs near North and South poles when the Sun light hit the Suomi NPP spacecraft during day/night transition (flight time of ~25 and ~80 minutes respectively)
- These variations in the imaginary NEdN correlate with FOV-to-FOV responsivity and small variations in BT of FOV3 and FOV7 (b)
No contribution of correlated noise is observed
Additional LWIR short wavelength tail is observed. It is probably due to combination of transmission and digital filter.
MWIR FOV 9 is out of family as FOV7 for NPP CrIS
CrIS full spectral resolution noise in MWIR and SWIR bands is higher by \(\sim x1.4 \) and \(\sim x2 \), respectively, as compared to the CrIS standard spectral resolution.

Other features are the same as for standard spectral resolution.
No contribution of correlated noise is observed.

LWIR short wavelength tail seen in bench not observed.

MWIR FOV 9 is still out of family but is within specification.

J1 has comparable or smaller NEdN than NPP.
Contribution of correlated noise is observed
Likely an ECT target alignment issue (FOVs 3 & 6 higher for all bands)
Significant FOV 2 FOV calibrated radiances difference also indicative of
target alignment issue
No impact on the real NEdN is observed
1. NEdN level meets mission requirements for both NPP and J1 instruments with a margin of typically 100% (except MWIR FOV 7 NPP instrument).

2. The intrinsic detector noise randomly distributed in spectral domain dominates total instrument NEdN. Negligible contribution of correlated noise is observed.

3. CrIS has comparable or smaller noise levels than AIRS and IASI heritage instruments (~2-3 times smaller in LWIR spectral band)

4. NEdN has remained extremely stable during on-orbit operations. Only small seasonal, orbital and spatial NEdN variations (<10%) are observe on-orbit.

5. Small anomaly (≤ 50%) in LWIR FOR1 NEdN was observed on July 07 and September 10 and 12, 2013. Remains stable on slightly elevated level (<10%)

6. As expected, for both instruments full spectral resolution noise in MWIR and SWIR bands is higher by ~x1.4 and ~x2, respectively, as compared to the CrIS standard spectral resolution.

7. Imaginary NEdN is extremely sensitive to any instrument artifacts and external vibration as compared to the real NEdN and may serve as an important tool to monitor on-orbit performance of CrIS
J1 RRTVAC test (Exelis): Excellent NEdN Performance

- J1 NEdN Spec Applies Only to MN
- RRTVAC Results Predict Full Compliance (MW9 may still change with cool-downs)

Prior LW Tails Gone and LW5 is Now in Family (Spectral Shape Combination of Transmission & Digital Filter Differences on J1)

RRTVAC NEdN Performance is Similar or Better than NPP
Small increase in the imaginary noise is observed (the same was observed for NPP sensor). No impact on the real NEdN is observed.

Most probably it is due to correlated noise component (analysis is underway)

This is typical for normal FTS instrument performance
Preparation of CrIS Full Resolution Processing

Yong Chen¹
Yong Han², Denis Tremblay³, Likun Wang¹, Xin Jin⁴, and Fuzhong Weng²

¹Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20740
²NOAA Center for Satellite Applications and Research, College Park, MD, 20740
³Science Data Processing Inc., Laurel, MD, 20723
⁴ERT, Laurel, MD, 20723

STAR JPSS Annual Science Team Meeting, May 12-16, 2014
Contents

- Prototype ADL to generate CrIS full resolution mode Sensor Data Records (SDR)
- Comparison of different calibration approaches in ADL full resolution mode
- Radiometric accuracy assessment
 - Difference between observation and forward model simulation
 - Double difference (DD) between CrIS and IASI
 - Simultaneous Nadir Overpass (SNO) between CrIS and IASI
- Spectral accuracy assessment
 - Absolute spectral validation
 - Relative spectral validation
- Summary
CrIS Normal Resolution and Full Resolution SDR

- CrIS can be operated in the full spectral resolution (FSR) mode with 0.625 cm\(^{-1}\) for all three bands, total 2211 channels, in addition to normal mode with 1305 channels.
- NOAA will operate CrIS in FSR mode on December 2014 to improve the profile of H\(_2\)O, and the retrieval of atmospheric greenhouse gases CO, CO\(_2\), and CH\(_4\).

<table>
<thead>
<tr>
<th>Frequency Band</th>
<th>Spectral Range (cm(^{-1}))</th>
<th>Number of Channel (unapodized)</th>
<th>Spectral Resolution (cm(^{-1}))</th>
<th>Effective MPD (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWIR</td>
<td>650 to 1095</td>
<td>713* (717)</td>
<td>0.625</td>
<td>0.8</td>
</tr>
<tr>
<td>MWIR</td>
<td>1210 to 1750</td>
<td>433* (437)</td>
<td>1.25</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>865* (869)</td>
<td>0.625</td>
<td>0.8</td>
</tr>
<tr>
<td>SWIR</td>
<td>2155 to 2550</td>
<td>159* (163)</td>
<td>2.5</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>633* (637)</td>
<td>0.625</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Red: Full resolution

![Graph showing brightness temperature (K) vs. wavenumber (cm\(^{-1}\)) for CH\(_4\), CO, and CO\(_2\).]
Up to date, the FSR mode has been commanded three times in-orbit (02/23/2012, 03/12/2013, and 08/27/2013).

CrIS normal mode SDR can be operationally generated from IDPS with the FSR RDR truncation modulus.

CrIS normal mode SDR
Ch 848, 1377.5 cm\(^{-1}\), water vapor channel

Results show that the SDR from FSR has similar features compared to SDR generated from low resolution RDR.

Both radiometric and spectral uncertainty are consistent with SDR generated from low resolution RDR.
Prototype ADL to Generate CrIS Full Resolution SDR

A prototype ADL in full resolution model is developed based on ADL42&Mx8.3

CrIS full resolution SDR are successfully generated offline using the three times in-orbit FSR RDR test data

Different calibration approaches are implemented in the code in order to study the ringing effect observed in CrIS normal mode SDR and to support to select the best calibration algorithm for J1

Code is modularized and flexible to run different calibration approaches, but need to be recompiled before running

A lot of work still need to be done to make the code ready for delivery, such as calibration algorithm, Correction Matrix Operator (CMO), code interface, etc.

Other models such as CCAST from UMBC/UW can also generate the CrIS full resolution SDR
Calibration Approaches

<table>
<thead>
<tr>
<th>Item</th>
<th>Member</th>
<th>Calibration</th>
<th>CMO Principals</th>
<th>Calibration Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IDPS</td>
<td>$N = (S_{A_0}^{-1} \cdot F_{s \rightarrow u} \cdot f_{ATBD}) \cdot \left{ \frac{S_E - S_{SP}}{S_{ICT} - S_{SP}} \cdot ICT(T, u_{sensor} \cdot (t+\delta)) \right}$</td>
<td>$SA_0^{-1} \cdot F_{s \rightarrow u}$</td>
<td>4th Best & Baseline</td>
</tr>
<tr>
<td>2</td>
<td>ADL/CSPP</td>
<td>$N = (S_{A_0}^{-1} \cdot F_{s \rightarrow u} \cdot f_{ATBD}) \cdot \left{ \frac{S_E - S_{SP}}{S_{ICT} - S_{SP}} \cdot ICT(T, u_{sensor} \cdot (t+\delta)) \right}$</td>
<td>$SA_0^{-1} \cdot F_{s \rightarrow u}$</td>
<td>Calibration first, then CMO</td>
</tr>
<tr>
<td>3</td>
<td>Exelis (old)</td>
<td>$N = (S_{A_0}^{-1} \cdot F_{s \rightarrow u} \cdot f_{ATBD}) \cdot \left{ \frac{S_E - S_{SP}}{S_{ICT} - S_{SP}} \cdot f_{RB} \cdot \left[S_{A_0}^{-1} \cdot F_{s \rightarrow u} \right]^{-1} \cdot ICT(T, u_{sensor}) \right}$</td>
<td>$SA_0^{-1} \cdot F_{s \rightarrow u}$</td>
<td>2nd Best</td>
</tr>
<tr>
<td>4</td>
<td>UMBC/UW** option A</td>
<td>$N = F_{s \rightarrow u} \cdot f \cdot S_{A_0}^{-1} \cdot \left{ \frac{FIR^{-1} \cdot (S_E - S_{SP})}{FIR^{-1} \cdot (S_{ICT} - S_{SP})} \cdot ICT(T, u_{sensor, off, ahl}) \right}$</td>
<td>$F_{s \rightarrow u} \cdot SA_0^{-1}$</td>
<td>Best</td>
</tr>
<tr>
<td>5</td>
<td>CCAST Cal mode 1</td>
<td>$N = F_{s \rightarrow u} \cdot f \cdot S_{A_0}^{-1} \cdot \left{ \frac{FIR^{-1} \cdot (S_E - S_{SP})}{FIR^{-1} \cdot (S_{ICT} - S_{SP})} \cdot ICT(T, u_{sensor, off, ahl}) \right}$</td>
<td>$F_{s \rightarrow u} \cdot SA_0^{-1}$</td>
<td>3rd Best</td>
</tr>
<tr>
<td>6</td>
<td>UMBC/UW** option B</td>
<td>$N = F_{s \rightarrow u} \cdot \left{ ICT(T, u_{sensor}) \cdot f \cdot S_{A_0}^{-1} \cdot \left{ \frac{FIR^{-1} \cdot (S_E - S_{SP})}{FIR^{-1} \cdot (S_{ICT} - S_{SP})} \right} \right}$</td>
<td>$F_{s \rightarrow u} \cdot SA_0^{-1}$</td>
<td>3rd Best</td>
</tr>
<tr>
<td>7</td>
<td>CCAST Cal mode 2</td>
<td>$N = F_{s \rightarrow u} \cdot f \cdot ICT(T, u_{sensor}) \cdot S_{A_0}^{-1} \cdot \left{ \frac{FIR^{-1} \cdot (S_E - S_{SP})}{FIR^{-1} \cdot (S_{ICT} - S_{SP})} \right}$</td>
<td>$F_{s \rightarrow u} \cdot SA_0^{-1}$</td>
<td>3rd Best</td>
</tr>
<tr>
<td>8</td>
<td>LL(old)*</td>
<td>$N = \left{ \frac{M \cdot \left[FIR^{-1} \cdot (S_E - S_{SP}) \right]}{M \cdot \left[FIR^{-1} \cdot (S_{ICT} - S_{SP}) \right]} \cdot ICT(T, u_{sensor}) \right}$</td>
<td>$F_{s \rightarrow u} \cdot SA_0^{-1}$</td>
<td>CMO first, then Calibration</td>
</tr>
<tr>
<td>9</td>
<td>Proposed(1)</td>
<td>$N = F_{s \rightarrow u} \cdot f_{ATBD} \cdot \left{ S_{A_0}^{-1} \cdot \left[FIR^{-1} \cdot (S_E - S_{SP}) \right] \right}$</td>
<td>$F_{s \rightarrow u} \cdot SA_0^{-1}$</td>
<td>3rd Best</td>
</tr>
<tr>
<td>10</td>
<td>Proposed(2)</td>
<td>$N = ICT(T, u_{sensor}) \cdot F_{s \rightarrow u} \cdot S_{A_0}^{-1} \cdot f_{ATBD} \cdot \left{ \frac{FIR^{-1} \cdot (S_E - S_{SP})}{FIR^{-1} \cdot (S_{ICT} - S_{SP})} \right}$</td>
<td>$F_{s \rightarrow u} \cdot SA_0^{-1}$</td>
<td>3rd Best</td>
</tr>
<tr>
<td>11</td>
<td>Exelis(new)</td>
<td>$N = \left{ \frac{S_{A_0}^{-1} \cdot F_{s \rightarrow u} \cdot (S_E - S_{SP})}{S_{A_0}^{-1} \cdot F_{s \rightarrow u} \cdot (S_{ICT} - S_{SP})} \right} \cdot ICT(T, u_{sensor})$</td>
<td>$F_{s \rightarrow u} \cdot SA_0^{-1}$</td>
<td>3rd Best</td>
</tr>
</tbody>
</table>

From Dan and Joe 01/15/2014
(Preliminary Rankings of Calibration differences by Organization RevH - v2.xlxsx)
Proposed 2 as Reference Calibration Approach

- Proposed 2 as reference calibration approach

\[
N = \text{ICT}(T, u_{\text{iter}}) \cdot \left\{ \frac{F_{z \rightarrow u} \cdot SA_{s}^{-1} \cdot f_{\text{ATBD}} \cdot (\text{FIR}^{-1} \cdot (S_{E} - S_{SP}))}{F_{z \rightarrow u} \cdot SA_{s}^{-1} \cdot f_{\text{ATBD}} \cdot (\text{FIR}^{-1} \cdot (S_{\text{ICT}} - S_{SP}))} \right\}
\]

- SA matrix with delta approximation and sincq instead of sinc (Yong Han “correctionMatrix_withSincq_STAR.pptx” on 01/15/2014)

\[
SA[k', k] \approx \int d\sigma' \text{Sincq}(2\text{MPD}(\sigma_{k'} - \sigma')) \text{ILS}(\sigma', \sigma_{k})
\]

- Proposed 2': Interpolation to user grid using extended resampling method with larger \(N'\) instead of \(N\) (Yong Han: “star_resampling_study.pdf” on 03/12/2014 and “Ring_reduction_withResampling_9Apr_2014.pdf” on 04/09/2014)

\[
S_{k'} = \sum_{k=0}^{N-1} S_{k} \frac{1}{N'} \frac{\sin(\pi \frac{\sigma_{s,k'} - \sigma_{u,k}}{\Delta \sigma_{u}})}{\sin(\pi \frac{\sigma_{s,k'} - \sigma_{u,k}}{N' \Delta \sigma_{s}})}
\]

\(N' = \text{DecimationFactor} \times N\)

N: Original spectrum binsize
The full resolution spectra were produced with a modified ADL code based on ADL42&Mx8.3 from full spectral resolution RDRs, collected when the CrIS was operated in the full spectral resolution mode on 08/27/2013.

Except for the proposed2/ algorithm, all others use the same resampling method from ATBD.

Significant ringing among different approaches at the both band edges.
Differences among Calibration Approaches for FOR15 and Band2

Significant ringing among different approaches at the end of band edge
Differences among Calibration Approaches for FOR15 and Band3

- Significant ringing at the band edge for IDPS and Proposed1
- Large ringing for the cold channels
- Which approach to use for the J1 algorithm? Need to define the truth reference, and consider the code interface changes and computing efficiency
CrIS Radiometric Assessment

- Validation of August 27-28, 2013 full spectral resolution data
- ADL42Mx8.3 used to generate full spectral resolution SDRs with updated non-linearity coefficients, ILS parameters, and sincq function for Correction Matrix Operator (CMO) for IDPS calibration approach.
- Assessment approach 1: Biases between CrIS observations and simulations using ECMWF analysis/forecast fields and forward model CRTM (Community Radiative Transfer Model)
 \[BIAS = (Obs - CRTM) \]
- Assessment approach 2: Double difference between CrIS and IASI on MetOp-a/b (converted to CrIS) using CRTM simulation as a transfer tool
 \[DD = (Obs - CRTM)_{CrIS} - (Obs - CRTM)_{IASI\rightarrow CrIS} \]
- Assessment approach 3: SNO difference between CrIS and IASI converted to CrIS
 \[BT_{diff} = BT_{CrIS} - BT_{IASI\rightarrow CrIS} \]
Resampling error from IASI to CrIS resolution is very small (less than 0.02 K) since IASI spectra cover CrIS spectra for all three bands.
FOV-2-FOV variability is small, within ±0.3 K for all the channels
CrIS and IASI2CrIS NWP Biases: Clear Ocean Scenes

- Good agreement between CrIS observation and simulation using ECMWF
- Very good agreement between CrIS and IASI
- Smaller standard deviation for CrIS than IASI in band 3
CrIS Nadir Bias for Shortwave

\[\text{BIAS}_{FOV_i} = (\text{Obs} - \text{CRTM})_{FOV_i} \]

- Good agreement between IASI and CrIS, better than bias with CRTM
- CO high bias errors due to CO default profile in CRTM
- CrIS and IASI window channels differ by 0.1 K due to diurnal variation in the SST
Double Difference between CrIS and IASI2CrIS

\[DD = \frac{(\text{Obs} - \text{CRTM})_{\text{CrIS}}}{(\text{Obs} - \text{CRTM})_{\text{IASI2CrIS}}} \]

- Double difference between CrIS and IASI using CRTM simulations as transfer target are within ±0.3 K for most of channels.
- For 4.3 µm CO₂ strong absorption region, CrIS is warmer than IASI about 0.3-0.5 K.
- CrIS and IASI window channels differ by 0.1 K due to diurnal variation in the SST.
SNOs between CrIS and IASI

SNO Criteria
- Time difference: \(\leq 120 \) seconds
- Pixel distance: \(\leq \frac{(12+14)}{4.0} \) km = 6.5 km
- Zenith angle difference: \(\text{ABS} \left(\frac{\cos(a1)}{\cos(a2)} - 1 \right) \leq 0.01 \)

- SNO agreement is very good for band 1. Also good for band 2, but larger BT difference toward the end of band edge
- Large BT differences in cold channels for band 3
Although there is large BT difference in band 3, line structures in CO and CO\textsubscript{2} region show very agreement between CrIS and IASI.

Line structure in CO (2155-2190 cm-1) region provides very good information to retrieve CO amount, and line structure in CO\textsubscript{2} absorption band (2300-2370 cm-1) provides very good spectral calibration information.
CrIS Spectral Assessment: Cross-Correlation Method

- Two basic spectral validation methods are used to assess the CrIS SDR spectral accuracy
- Relative spectral validation, which uses two uniform observations to determine frequency offsets relative to each other
- Absolute spectral validation, which requires an accurate forward model to simulate the top of atmosphere radiance under clear conditions and correlates the simulation with the observed radiance to find the maximum correlation

Correlation coefficient between the two spectra:

\[
r_{s_1s_2} = \frac{\sum_{i=1}^{n} (S_{1j} - \bar{S}_1)(S_{2j} - \bar{S}_2)}{(n-1)D_{s_1}D_{s_2}} = \frac{\sum_{i=1}^{n} (S_{1j} - \bar{S}_1)(S_{2j} - \bar{S}_2)}{\sqrt{\sum_{i=1}^{n} (S_{1j} - \bar{S}_1)^2}(S_{2j} - \bar{S}_2)^2}.
\]

Standard deviation based on the difference of the two spectra:

\[
D_{s_1s_2} = \sqrt{\sum_{i=1}^{n} [(S_{1,i} - \bar{S}_1) - (S_{2,i} - \bar{S}_2)]^2 / (n-1)}.
\]

The cross-correlation method is applied to a pair fine grid spectra to get the maximum correlation and minimum standard deviation by shifting one of the spectra in a given shift factor.
CrIS Spectral Uncertainty

Absolute cross-correlation method: between observations and CRTM simulations under clear sky over oceans to detect the spectral shift

Relative method: observations from FOV 5 to other FOVs

Frequency used: 710-760 cm\(^{-1}\), 1340-1390 cm\(^{-1}\), and 2310-2370 cm\(^{-1}\)

Spectral shift relative to FOV 5 are within 1 ppm

Absolute spectral shift relative to CRTM within 3 ppm
The CrIS full resolution SDRs generated from the modified ADL were assessed.

Different calibration approaches are implemented in ADL to study the ringing.

CrIS full resolution SDR radiometric uncertainty:
- FOV-2-FOV radiometric differences are small, within ±0.3 K for all the channels.
- Double difference with IASI are within ±0.3K for most of channels.
- SNO results versus IASI show that agreement is very good for band 1 and band 2, but large BT differences in cold channels for band 3.

CrIS full resolution SDR spectral uncertainty:
- Spectral shift relative to FOV5 are within 1 ppm.
- Absolute spectral shift relative to CRTM simulation are within 3 ppm.
Inter-comparison of Hyperspectral Sounders Towards Establishing Hyperspectral Benchmark Radiance Measurements

Likun Wang1*, Yong Han2, Yong Chen1, Denis Tremblay3, Xin Jin4

1. CICS/ESSIC/University of Maryland, College Park, MD
2. NOAA/NESDIS/STAR, College Park, MD
3. Science Data Processing, Inc, Laurel, MD
4. Earth Resources Technology, Inc., Laurel, MD

*Email: wlikun@umd.edu

2014 STAR JPSS Science Meeting, NCWCP; May 14 2014
Outline

• Motivation
• Methodology
• Results
• Conclusion
Each Agency routinely uses AIRS/IASI to assess calibration accuracy of its own geostationary instruments.

Spectral and radiometric consistency among CrIS, AIRS and IASI is significant for GSICS community.
Hyperspectral radiance measurements can serve as a benchmark for model assessment, but the consistency is the key.
Spectral Coverage and Resolution of AIRS, IASI, and CrIS

- **IASI-A:** 2006-
- **IASI-B:** 2012-
- **AIRS:** 2002-
- **CrIS:** 2011-
- **CrIS:** 2014.09-

- **2378 channels, 9 FOVs/50 km FOR**
- **8461 channels, 4 FOVs/50 km FOR**
- **1305 channels, 9 FOVs/50 km FOR**
- **2211 channels, 9 FOVs/50 km FOR**
Simultaneous Nadir Overpass (SNO)

Time Difference: <= 120 Sec

FOV distance difference: <=\((12+14)/4.0\) km = 6.5 km

Angle Difference:
\[\text{ABS}(\cos(a1)/\cos(a2)-1) \leq 0.01\]

From Changyong Cao

SNO Spectra during full resolution test
On August 27 2013
The SNOs between SNPP and Aqua occurred every 2-3 days. The SNOs between MetOp and SNPP occurred every 50 days. Fortunately, once an SNO event occurs, their orbits will continuously cross each other every orbit.
Scene Uniformity Effects

Radiance nonuniformity within the instrument’s FOV affects ILS associated with each true wavenumber.

Inhomogeneous scenes can introduce spatial collocation uncertainties.

The standard deviation to mean ratio of the VIIRS radiances in band 16 is used to select uniform scenes.
Resample IASI to CrIS

1) De-Apodization of IASI spectra
2) Truncation of IASI spectra
3) Apodization using CrIS Hamming Apodization function

Fourier Transform

Inverse Fourier Transform

Re-sampling error very small
CrIS versus AIRS:
The best we can do without reducing the spectral resolution

- AIRS Spectrum is convolved with CrIS SRFs (three bands) at each AIRS spectral grid
- Resembling CrIS into high-resolution data (e.g. 2^{15}) and they are convolved with AIRS SRFs
- After that, they are at the same spectral grid
- The results should be carefully interpreted with cautious.
The data used in this study were reprocessed using ADL4.0 (comparable to Mx8.1/8.2) with EP36.

From Xin Jin/STAR
The differences between ADL and IDPS are negligible.

From Xin Jin/STAR
Non-linearity Coefficient Changes

Longwave band

Middlewave band
For a non-linear detector

Hypothetical detector-response curve exhibiting nonlinearity. The horizontal axis represents the absolute magnitude of the photon flux and the vertical axis represents the measured dc signal.

F(lfg1): linear response
F(lfg2): non-linear response
F(lfg3): convolution term

Non-linearity responses in spectral domain.

From Abrams et al. 1994
Longwave FOV 5
BT changes: Old a2 – New a2

1042.50 cm$^{-1}$
900.0 cm$^{-1}$
The differences between CrIS-IASI is reduced at LW bands with new a2 values.
CrIS versus IASI/MetOp-A

North Pole (987)

South Pole (1112)

Bias: CrIS-IASI

STDEV: CrIS-IASI
CrIS versus IASI/MetOp-B

North Pole (774)

South Pole (809)

Bias: CrIS-IASI

STDEV: CrIS-IASI
Scene-Dependent Bias

Scene 1:
- CrIS BT [K] range: 200 to 300
- Scene-Dependent Bias: 0.0004
- Uncertainty: 0.0004

Scene 2:
- CrIS BT [K] range: 200 to 300
- Scene-Dependent Bias: 0.0039
- Uncertainty: 0.0005

Scene 3:
- CrIS BT [K] range: 200 to 300
- Scene-Dependent Bias: 0.0027
- Uncertainty: 0.0009

Scene 4:
- CrIS BT [K] range: 200 to 300
- Scene-Dependent Bias: 0.00033
- Uncertainty: 0.0009

Scene 5:
- CrIS BT [K] range: 200 to 300
- Scene-Dependent Bias: 0.0022
- Uncertainty: 0.0009

Scene 6:
- CrIS BT [K] range: 200 to 300
- Scene-Dependent Bias: 0.0046
- Uncertainty: 0.0010
CrIS versus AIRS
Daily averaged SNO observations

Large spread could be due to the resampling uncertainties and AIRS band channels
Time Series of CrIS-AIRS

Atmospheric Window

Water Vapor Window
Conclusion

- Radiometric and spectral consistency of four IR hyperspectral sounders is fundamental for GSICS and climate application.

- Inter-comparison of CrIS with IASI/Metop-A, IASI-Metop-B, and AIRS have been made for one year’s of SNO observations in 2013.

- CrIS vs. IASI
 - CrIS and IASI well agree each other at LWIR and MWIR bands with 0.1-0.2K differences
 - No apparent scene dependent bias
 - At SWIR band, a sharp increases can be clearly seen at spectral transition region. The reason is still under investigation.

- CrIS vs. AIRS
 - Resampling errors still remain when converting AIRS and CrIS onto common spectral grids.
 - CrIS and AIRS well agree each other at LWIR and MWIR bands within 0.4 K differences
 - At SWIR band, a sharp increases can be clearly seen at spectral transition region.
 - A weak seasonal variation can been seen for CrIS-AIRS at water vapor absorption region.

- Lessons learned for JPSS CrIS: Non-linearity play an important role for CrIS radiometric accuracy and should be carefully evaluated during the prelaunch test.

- The comparison will be continued until end of sensor mission, which will provide fundamental information about consistency of hyperspectral sounders to the community.
Proxy Dataset for Testing and Evaluating J1 CrIS SDR Products

Xin Jin, Mark Esplin, Lihong Wang, Denis Tremblay, Ninghai Sun, Yong Han, Yong Chen, Likun Wang, Fuzhong Weng
Introduction

• Why we need proxy data
 • Proxy datasets, including simulation, original or modified observation, are critical for evaluating algorithm and testing system robustness

• What we have
 • Data
 i. SNPP and J1 CrIS TVAC data
 ii. SNPP CrIS science and telemetry RDR since Day 1 of the mission
 iii. Intact collection of ancillary files such as TLE, PolarWander and CMO.
 • Memo
 i. Processing log of all SNPP CrIS operational RDR and SDR granules since Day 1 of the mission, including anomaly warning messages down to pixel level: rcris_diary_of_yyyymmdd.txt, scris_diary_of_yyyymmdd.txt
 ii. A diary manually maintained to record any mission-related event/action/anomaly
 • Software
 i. Matlab scripts to manipulate every bit of the CCSDS binary data.
 ii. ICVS: A web-based instrument monitoring and product evaluation system
Readiness of CrIS proxy dataset: Menu

1. **Functional**
 1. Golden day
 2. Full resolution

2. **Sensitivity test for science**
 3. Non-linearity correction
 4. ILS correction
 5. Geolocation calibration
 6. Lunar intrusion

3. **Instrument anomaly**
 7. Fringe Count Error
 8. Laser wavelength leaps (CMO update)
 9. Incorrect time stamp
 10. Scene select module (SSM) position counter error
 11. ICT temperature anomaly
 12. ICT scene impulse
 13. Impulse noise mask

4. **Engineering**
 14. Bit trim mask (sun glint)

5. **Abnormal inputs**
 15. (1) Missing scan(s), (2) Missing Earth scene packet(s), (3) Missing deep space packet(s), (4) Missing ICT packet(s), (5) Missing 8-sec telemetry packet(s), (6) Missing engineering packet, (7) Missing spacecraft diary(s)
 16. Automatic/Manual re-tasking
Readiness of CrIS proxy dataset: Functional

1. Functional
 1. Golden day
 1. Our RDR dataset can cover any golden day since Jan 30, 2012, determined by the team decision
 2. Full resolution
 1. Data for three full-resolution tests are all archived: (Case 1) Feb 22~23, 2012; (Case 2) Mar 12~13, 2013; (Case 3) Aug 27~28, 2013
 2. Full resolution RDR will be routinely available after December, 2014

Case 1:
Intensive cal/val stage
Bit trim mask not optimized
FIR filter not improved

Case 2:
Probationary data stage
Bit trim mask not optimized

Case 3:
Probationary data stage
Bit trim mask optimized
Impulse noise mask not improved
Mid-wave bin size increased from 1039 to 1052
Readiness of CrIS proxy dataset: Sensitivity

2. Sensitivity test for science
 3. Non-linearity correction
 4. ILS correction
 5. Geolocation calibration
 6. Lunar intrusion

 • Enough cases are collected for testing

Dataset + EngPkt tools

NPP CrIS Lunar Intrusion Occurrence, Both Directions, Daily Average
Created at 05/07/2014 – 14:34:48 UTC

Long Wave

Percentage (%) vs. Time (Q1-13 to Q2-14)

FOV1 FOV2 FOV3 FOV4 FOV5 FOV6 FOV7 FOV8 FOV9
3. Instrument

7. Fringe Count Error

- The real FCE case has never been found since the SNPP mission. Only a false alarm happened on 10:07, Dec 11, 2013. SDL provided several simulated cases:
 - LWIR Diagnostic mode
 orbit 01303 on Feb 28, 2012
 - Mid-latitude scenes
 SCRIS_npp_d20130912_t1626499_e1627197_b09723_c2013091224348119785_noaa_ops.h5 to
 SCRIS_npp_d20130912_t1638019_e1638317_b09723_c20130912230335907566_noaa_ops.h5
 - Very cold Antarctic scene
 SCRIS_npp_d20130730_t1616419_e1617117_b09098
 SCRIS_npp_d20130730_t1622019_e1622317_b09098

Left: Diagnostic mode interferogram; Mid: Imaginary radiance over Mid-lat; Right: Imaginary radiance over Antarctic
3. **Instrument**

8. **Laser wavelength leaps (CMO update)**
 - The sampling laser wavelength of S-NPP CrIS is very stable since the mission. The measurements of laser wavelength in some RDR granules are manually modified to create a dataset to test the functionality of automatic CMO update.

 - CMO should be updated in both moments.
3. Instrument

9. Incorrect time stamp
 • The real time stamp error in RDR has not been found yet
 • Lihong Wang of NGAS created a case to test the system response to the incorrect time stamp: The number of day since 1598 for all DS LW FOV2 in the following granule is changed from 20381 to 20380 to simulate a RDR time stamp error

RCRIS-RNSCA_npp_d20131020_t0331004_e0331324_b10254_c20131020044721180606_noaa_pop.h5
3. Instrument

10. Scene select module (SSM) position counter error

- 5 cases have been recorded:
 1. RCRIS-RNSCA_npp_d20120928_t0942093_e0942413
 2. RCRIS-RNSCA_npp_d20121212_t1534078_e1534398
 RCRIS-RNSCA_npp_d20121212_t1534398_e1535118
 3. RCRIS-RNSCA_npp_d20121223_t0104276_e0104596
 RCRIS-RNSCA_npp_d20121223_t0104596_e0105316
 4. RCRIS-RNSCA_npp_d20130804_t1024338_e1025058
 RCRIS-RNSCA_npp_d20130804_t1025058_e1025378
 5. RCRIS-RNSCA_npp_d20140213_t2348499_e2349219

Currently, when such an anomaly happens, the moving window containing the bad values is skipped without processing.
3. Instrument
 11. ICT temperature anomaly
 • ICT temperature quickly increased more than 4K on Dec 18, 2012 after CrIS was switched to safe mode, and the nominal daily variation is less than 0.8K

This case will be used to test the program response to dramatic ICT drifting. Some quality flags should be triggered.
3. Instrument

12. ICT scene impulse

- ICT interferogram occasionally gets corrupted by random impulse, resulting in excessive spectral noise. No quality checks for this anomaly in current algorithm. Abundant cases are prepared for testing new algorithms dealing with this issue.
3. **Instrument**

13. Impulse noise

- Too many impulse noise counts could corrupt an interferogram. Although SNPP CrIS is well sheltered, some cases are still found. The following cases are found to be the reason of the false alarm of ‘Invalid Radiometric Calibration’ in IDPS operational SDR products:

 - SCRIS_npp_d20140226_t1429539_e1430237_b12091
 - SCRIS_npp_d20140228_t0459299_e0459597_b12113
 - SCRIS_npp_d20140315_t1821379_e1822077_b12334
4. Engineering

14. Bit trim mask saturation

- Abundant BTM cases are available. Most of them are over ocean due to SW sun glint. A few of them are over hot desert or high altitudes with strong surface reflectivity.
5. Abnormal inputs

15. Abundant cases are ready for the tests of the following anomalies and/or their combinations:

(1) Missing one or more scan(s)
(2) Missing Earth scene packet(s)
(3) Missing deep space packet(s)
(4) Missing ICT packet(s)
(5) Missing 8-sec telemetry packet(s)
(6) Missing engineering packet
(7) Missing spacecraft diary(s)
5. Abnormal inputs

16. Automatic/Manual re-tasking

- It is found that the interaction between Re-tasking procedure and the main processing line is extremely subtle. Anomalies caused by the bugs hidden in this part include: (i) sudden change of re-sampling laser wavelength; (ii) incorrect measured laser wavelength record; (iii) difficulty of indentifying CMO matrix used in the procedure.
- Several cases are prepared.

NPP CrIS Laser Wavelength: Measured/Monitored/Resampling, 03/04/2014

Created at 03/06/2014 – 17:49:19 UTC
Conclusions

- Proxy data is invaluable for evaluating algorithm and testing system robustness
- We have prepared abundant cases during the SNPP CrIS trending/monitoring/debugging and we are still collecting new cases. All of these cases will be part of the J1 proxy dataset
- We have convenient tools to manipulate the dataset to create new cases for new requirement for J1
NGAS Support to CrIS SDR CalVal

Degui Gu

May 14, 2014
NGAS Activities in Supporting CrIS SDR CalVal

- Supported CrIS SDR algorithm/data product DR investigations
 - 27 DRs formally assigned to NG team to investigate since Launch

- Developed, verified and implemented CrIS SDR algorithm code updates using G-ADA
 - 8 CrIS SDR code update packages delivered to DPES since Launch
 - All major algorithm modules are affected and significantly improved by the CrIS CalVal team (ILS correction, Radiometric calibration, Quality flags, Robust error handling)

- Supported SDR performance assessment and characterization

- J-1 SDR algorithm development
 - Science improvement
 - Software development
Distribution of overall quality flag for CrIS Golden Day May 15, 2012. Note CrIS SDR data were incorrectly labeled as degraded extensively.
Significantly Improved CrIS SDR Algorithm to Produce Quality SDR Data Products

Example of data quality after Mx8.0

Real radiance
Near zero Imaginary radiance indicates good real radiance
Overall SDR quality flag
Blue - good

900 cm\(^{-1}\) channel

(Courtesy of Yong Han, STAR)
CrIS SDR Algorithm Code Updates to Resolve DR7542

- **DR 7542**: CrIS SDR NEdN with zero values
 - Zero NEdN values were found in operational CrIS SDR valid data products

- **Root cause**
 - The code internally uses the binSize of ICT spectrum of the 1st scan in the sliding window to compute NEdN values
 - When this ICT spectrum is determined by the algorithm to be invalid, its binSize is set to zero and therefore NEdN is never computed. Later the algorithm writes out the default value of zeros for NEdN in the CrIS SDR data product

- **Code updates**
 - Update 1: In the extreme case when all ICT spectra in the sliding window are invalid, NEdN values can not be computed. In this case, the code should output fill values for NEdN instead of zero. Modified code to replace zero NEdNs with fill values (-999.8)
 - Update 2: Fix the identified code bug to compute and output valid NEdN values. Rather than using the binSize of the first ICT spectrum in the sliding window (not guaranteed to be always valid), the code is modified to search through the sliding window for a valid spectrum and use its binSize to compute NEdN values
CrIS SDR Algorithm Code Updates to Resolve DR7466

- DR 7466: Occurrence of extended SDR anomaly due to time stamp error
 - A corrupted time stamp of a reference spectrum should only affect SDR radiances that are calibrated using the specific reference spectrum. But extended anomaly is observed and persists for a longer period of time

- Root cause:
 - Algorithm checks for invalid reference (Deep/ICT) spectra to exclude them from being saved in a buffer. They are flagged using the SDR_Invalid flag. But later the code uses the RDR Missing flag to determine whether to remove invalid reference data from the calibration window buffer, causing misalignment

- Code updates
 - Modify the code to check SDR Invalid flag instead of RDR Missing flag to determine whether an invalid SDR reference spectrum should be removed from the buffer
 - Update other part of the code to be consistent with the above code change
Proposed a new Approach for CrIS Spectral Calibration

- Least square approximation of the user required ILS by combining native sensor ILS based on detailed modeling of sensor effects
 - Ideal point detector, finite size detector, Finite Impulse Filter, decimation
 - Current SDR algorithm does it in two steps, also by combining native sensor ILS of all bins in each band, but the coefficients are computed based on physical/mathematical models

- The new approach performs frequency resampling and self-apodization correction in one simple step

- The new approach is intended to ensure consistency between CrIS SDR data products and the presumed ILS used by the user community in developing their forward models (e.g., CRTM, OSS RTM in CrIMSS EDR algorithm)
The new approach provided an objective criterion for evaluating different calibration approaches, assuming that instrument ILS can be accurately modeled.
Issue: significant errors observed in TVAC data after processing using the CrIS SDR algorithm
 – Wavelength dependent and up to ~0.3% in the SW band

Root cause: most of the errors are due to the instrument operator being removed from the calibration equation
 – Should be
 \[L^S = F_{INT}^{-1} \left[\frac{\tilde{S}^S - \langle \tilde{S}^{DS} \rangle}{\langle \tilde{S}^{ICT} \rangle - \langle \tilde{S}^{DS} \rangle} \right] \cdot F_{INT} L^{ICT} \]
 – Implemented in the code
 \[L^S = F_{INT}^{-1} \left[\frac{\tilde{S}^S - \langle \tilde{S}^{DS} \rangle}{\langle \tilde{S}^{ICT} \rangle - \langle \tilde{S}^{DS} \rangle} \right] \cdot L^{ICT} \]

\(F_{INT} \) is the instrument operator that represents the ILS effects, including all effects that the instrument might introduce such as self-apodization, IGM modulation, etc. The notation \(\langle \rangle \) implies that the radiance has been affected by the instrument.
The observed radiance errors in TVAC data are consistent with the predicted algorithm errors due to dropping the F_{INT} term in the calibration equation.
Improved Radiometric Calibration After SDR Algorithm Update

- Small residual errors suspected to be caused by SA correction matrix not properly normalized

Difference between new baseline results and “ILS-Off” results (“Truth”)
Next Steps

• Continue to Support S-NPP CrIS SDR Cal/Val

• Support J-1 SDR algorithm development

• Support to CrIS sensor TVAC test data analysis
 – Verification of both sensor performance and algorithm performance using TVAC data