

S-NPP VIIRS Thermal Emissive Bands Performance and Calibration Improvements

Boryana Efremova, Xiaoxiong (Jack) Xiong, Jeff McIntire, Aisheng Wu, Vincent Chiang, Samuel Anderson

VCST, NASA/GSFC

Acknowledgements:

VIIRS SDR Team Members VCST Members

- TEB Calibration
- On-orbit Performance
 - ✓ BB performance
 - ✓ Detector short-term stability and long-term response (F-factors)
 - ✓ Detector noise characterization (NEdT)
 - ✓ Trending during WUCD
- Potential Improvements and Uncertainty Estimates
 - ✓ Uncertainty assessment
 - ✓ Improving M13LG calibration
 - ✓ Average vs per-scan F-factor
 - \checkmark Moon in SV processing
- Conclusions

5 M-bands and 2 I-bands, covering wavelengths from 3.7 to $12 \mu m$

Calibrated using an on-board blackbody (BB):

- ✓ Scaling factor "F-factor" is derived and applied each scan.
- ✓ Warm-up and cool-down (WUCD) cycles are performed quarterly to fully characterize TEB detector response, including offset and nonlinear terms.

VIIRS Earth View radiance is retrieved following ATBD Eq.(116)

$$L_{EV}(B,\theta) = \frac{F(B)\sum_{i=0}^{2}c_{i}(B)dn^{i}(B) - \Delta L_{bg}(B,\theta)}{RVS(B,\theta)},$$

dn: detector response c_i: calibration coefficients RVS: response versus scan-angle

where the $\Delta L_{bg}(B, \theta)$ is the background difference between the EV and SV path:

$$\Delta L_{bg}(B,\theta) = (RVS(B,\theta) - RVS_{SV}(B)) \left[\frac{(1 - \rho_{RTA}(B))}{\rho_{RTA}(B)} L_{RTA} - \frac{1}{\rho_{RTA}(B)} L_{HAM} \right],$$

the F-factor is derived each scan for each band, detector, and HAM-side:

and the aperture radiance from the BB is:

$$L_{ap}(B) = \varepsilon L_{BB} + (1 - \varepsilon)(F_{RTA}L_{RTA} + F_{SH}L_{SH} + F_{CAV}L_{CAV})$$

BB Performance

⁻-factor

Orbits: 10853, 10854, 10855

Detector responses (F-factors) show small orbital variations: 292.74 Т2 Т5 Ο $\pm 0.2\%$ or less for scan-by-scan T1 BB temperature 292.72 $\pm 0.1\%$ or less for granule average 292.70 Would using averaged F-factors improve granùle SDR product? 292.68 292.66 F-factor orbital variations correlate with 765.00 764.85 764.90 764.95 T_{BB} variations and instrument temperatures Days since launch variations. M16 •I5 M12 ×M14 M15 M16 (granule average) 0001 (granule average) 1.006 1.006 1.004 1.002 1.000 764.85 765.00 764.90 764.95 764.85 765.00 764.90 764.95 Days since launch Days since launch Granule average (HAM-A) Scan-by-scan (HAM-A)

* For clarity the F-factors are shifted.

Orbits: 10853, 10854, 10855

Daily average F-factor trend:

- From 1/20/2012 (orbit 1200) to 4/30/2014 (orbit 12983)
- I5 shows the most noticeable trend of 0.68%, followed by M12 and I4 of 0.33% and 0.32%, respectively
- Discontinuities in the trend are coincident with S/C anomalies during which the CFPA and/or instrument temperatures changed.
- Features in LWIR bands F-trend appear to coincide with the passage of the Earth through perihelion.

Band	I4	I5	M12	M13	M14	M15	M16
Average F-factor: 03 26 2012	1.0105	1.0040	1.0035	1.0070	0.9946	1.0056	1.0101
Average F-factor: 04 30 2014	1.0137	1.0109	1.0068	1.0092	0.9961	1.0066	1.0121
Trend [%]	0.32	0.68	0.33	0.22	0.15	0.09	0.19

- Discontinuities in the instrument temperatures trends coincident with discontinuities in the Ffactor trends shown on previous slide.
- Features in instrument temperature trends appears to coincide with the passage of the Earth through perihelion. The F-factor for LWIR bands shows features at the same time.

$$NEdT = \frac{NEdL}{\partial L/\partial T} = \frac{L}{SNR \partial L/\partial T}$$

- NEdT routinely trended at 292.5K: stable since the CFPA temperatures reached ~80K (orbit 1200). Band averaged values are within 0.2 K for I bands and 0.07 K for M bands
- NEdT at T_{TYP} derived periodically from BB WUCD data: stable and meeting the sensor design requirements by a wide margin:

NEdT at T_{TYP} (derived from BB cool-down data)

q	[K]	NEdT at Ttyp [K]										
Bar	$\mathbf{T}_{\mathbf{T}\mathbf{Y}\mathbf{P}}$	Require ment	02/12	05/12	09/12	12/12	03/13	06/13	09/13	12/13	03/14	
I4	270	2.5	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	
15	210	1.5	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	
M12	270	0.396	0.13	0.13	0.13	0.11	0.12	0.12	0.12	0.12	0.12	
M13	300	0.107	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	
M14	270	0.091	0.05	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	
M15	300	0.070	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	
M16	300	0.072	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	

Continue to meet the sensor design requirements

NASA

• Band-average c1 coefficients, as derived from the nine WUCD cycles performed till Mar 2014, are shown in red (WU data), and blue (CD data) in comparison with pre-launch (green) values.

• Band-average c1 coefficients derived during WUCD cycles are within 1.9% on average (at M16 CD) from pre-launch values.

•An offset between WU and CD results is present through the nine WUCDs, especially for LWIR bands.

C₀ Coefficients

- EV retrieved radiance uncertainty propagated using standard NIST formulation (k=1)
- Some uncertainty contributors determined pre-launch by the instrument vendor: RTA reflectance BB emissivity
- Radiometric coefficient and RVS uncertainties determined from NASA pre-launch analysis
- Uncertainties investigated for a range of input signal levels and scan angles

Uncertainty specifications

temperatures, converted to K

temperatures for bands M12 and M13

Defined in terms of %, at particular uniform scene

Estimates exceed the specification at lower scene

Band	267 K
I4 spec	0.91
14 estimate	0.468
I5 spec	1.4
15 estimate	0.226

Band	190 K	230 K	270 K	310 K	340 K
M12 spec		0.92	0.13	0.17	0.21
M12 estimate		1.11	0.13	0.07	0.09
M13 spec		0.85	0.14	0.19	0.23
M13 estimate		1.01	0.14	0.07	0.10
M14 spec	2.60	0.75	0.26	0.23	0.34
M14 estimate	0.95	0.26	0.12	0.12	0.20
M15 spec	0.56	0.24	0.22	0.28	0.34
M15 estimate	0.42	0.18	0.12	0.13	0.19
M16 spec	0.48	0.26	0.24	0.31	0.37
M16 estimate	0.35	0.16	0.12	0.14	0.19

Uncertainty contributors:

- Dominant for MWIR bands are the relative BB radiance uncertainty and the relative EV *dn* uncertainty (increasing rapidly with decreasing scene temperature).
- The LWIR bands uncertainties are dominated by the c₀, RVS, and EV *dn* relative uncertainties, which increase with decreasing scene temperatures.

M13 low gain: No scan by scan F factor correction

Prelaunch analysis differs between Government team (Aerospace and VCST) and sensor subcontractor – current LUT. Government team results are:

✓
$$c_1 = 0.142 - 7\%$$
 higher than LUT value $c_{1LUT} = 0.132$;

$$c_0 = 0$$
 - inconsistent with $c_{0LUT} = 1.15$

Proposal:

Update M13 low gain coefficients based on Government team pre-launch analysis, which is consistent with results from on-orbit calibration

On-orbit comparison of lunar images in M13 LG and M13 HG - supports Government

team pre-launch results:

M13 LG c_{1LUT}, c_{0LUT}

M13 LG c₁=0.142, c₀=0

✓ $c_0 = 0$ consistent with Gov. team pre-launch

Evaluating the effect of using average F-factors

- The VCST VIIRS SDR code was modified to apply average F-factors instead of per-scan F-factors for TEB calibration.
- The F-factors for each band, detector, HAM are averaged over 24 scans.
- Using average F-factors does not significantly impact the SDR product.
- Striping on the noise level affects SST products based on M15 and M16 brightness temperatures.

TEB Calibration when Moon in SV

- Currently for TEB, Fill values are assigned in EV SDR when the Moon is in the SV.
- Improved algorithm computes the mean and standard deviation of a 48-frame sample each scan. Then the outlier samples (Moon intrusion) with selected rejection scheme are identified and excluded from the SV average for background subtraction.

Images of calibrated radiance from 4 consecutive Band **M12** SDRs, generated with current SDR code (left) and modified (right) calibration algorithms (Data: Jan 22, 2013; Time 22:24:02). [Reference SPIE 2013, 8866-72]

F-factors Orbital Variation Reduction

• F-factor orbital variations are present, on the order of 0.05-0.1 %.

• Changing the BB thermistor weighting can reduce the F-factor orbital variations. Using T3 and T6 yield less variation for most bands (except M13).

• Improving the background model which would also reduce the Ffactor orbital variations.

- S-NPP VIIRS on-orbit BB long-term (2+ yr) performance is very stable. Short-term (orbital) temperature variations are present but within the uniformity requirement of 30mK
- Detector response (F-factor) trending is stable, with I5 showing maximum band-average trend of 0.68% followed by M12 and I4. Small orbital variations are present (0.05-0.1%)
- No change is observed for TEB detector noise characteristics. NEdT at Ttyp is in compliance with the requirements
- Uncertainty estimates: TEB meet calibration requirements for most scene temperatures; M12 and M13 have slightly larger than specified UC at low scene temperatures; Larger uncertainties in M13 low gain (above 350 K)
- Improvements: Updates to M13 LG offset and linear coefficients to improve calibration; Modifications to the SDR code/algorithm to allow TEB calibration to be performed when the Moon is in SV; Modifications to SDR code to apply average F-factor do not have significant impact.

Back Up

Dynamic range verified using scheduled Lunar observations

- All detectors of all TEB bands meet the Tmin (marginal non-compliance at I4) and Tmax requirements
- For some detectors of some bands the radiance limits in the Radiance-to-Temperature LUT do not extend to the largest possible unsaturated radiance

Detector Specific NEdT

Detector

• Detector specific NEdT is stable through the mission.

WUCD cycles performed: Feb, May, Sep, Dec 2012; Mar, Jun, Sep, Dec 2013, Mar 2014

WUCD 17-19 Mar 2014 Data Selection

Warm-up:

- Orbits: 12355 12364; 12378 12383 🗵
- T_{BB} set to: 297.5K, 302.5K, 307.5K, 312.5K, 315.0K and 272.5K, 282.5K, 292.5K,
- The scans used (~40700) are highlighted in red.

Cool-down:

- Orbits: 12364 12378.
- T_{BB} range: 266.8K to 315K;
- The scans used (~47700) are shown in blue.

Calibration Coefficients – c1/LUT

0 5 10 15 20 25 30 Detector

10

Detector

5

M13

15

15

15 SO

Band average c1 difference

$$100* (c1_{on-orbit} - c1_{LUT})/c1_{LUT}$$

	I4	I5	M12	M13	M14	M15	M16
WU 02/12 [%]	1.2	-0.8	0.4	1	-1.1	-0.2	-0.3
CD 02/12 [%]	1.5	0.6	0.6	1.2	0.2	0.4	1.6
WU 05/12 [%]	1.2	-0.6	0.4	0.9	-1.7	-0.6	-0.8
CD 05/12 [%]	1.6	0.5	0.7	1.3	-0.6	0.3	1.1
WU 09/12 [%]	1.3	0.2	0.6	1.2	-0.8	0.2	0.5
CD 09/12 [%]	1.6	1	0.8	1.7	0.3	0.9	2.2
WU 12/12 [%]	1.3	-0.2	0.6	1.2	-1.2	0.1	0.03
CD 12/12 [%]	1.6	0.7	0.8	1.2	-0.2	0.3	1.6
WU 03/13 [%]	1.4	0.4	0.6	1.2	-1.1	0.1	0.4
CD 03/13 [%]	1.7	0.8	0.9	1.3	-0.1	0.6	1.8
WU 06/13 [%]	1.4	0.6	0.7	1.2	-0.7	0.4	0.9
CD 06/13 [%]	1.7	1.1	0.9	1.3	-0.01	0.5	2
WU 09/13 [%]	1.5	0.3	0.7	1.2	-1.1	0.1	0.3
CD 09/13 [%]	1.7	1.1	0.9	1.3	0.05	0.6	2
WU 12/13 [%]	1.4	-0.18	0.7	1.2	-1.2	0.1	0.05
CD 12/13 [%]	1.7	1.7	0.9	1.4	0.4	0.6	2.2
WU 03/14 [%]	1.4	0.5	0.7	1.2	-1.0	0.2	0.7
CD 03/14 [%]	1.7	1.6	0.9	1.3	0.3	0.7	2.4

1.03

1.02

1.01

1.00

0.99

0.98

0.97

0

5

10

C,

c1/LUT

1.03

1.02

1.0

1.00

0.99

0.98

0.97

1.03

1.02

1.0

1.00

0.99

0.98

0.97

0

с1

<u> </u>

c1/LUT

Warm-up 02/2012 HAM-A Warm-up 05/2012 HAM-A Warm-up 09/2012 HAM-A Warm-up 12/2012 HAM-A Warm-up 03/2013 HAM-A Warm-up 06/2013 HAM-A Warm-up 09/2013 HAM-A Warm-up 12/2013 HAM-A Warm-up 03/2014 HAM-A

Cool-down 02/2012 HAM-A Cool-down 05/2012 HAM-A Cool-down 09/2012 HAM-A Cool-down 12/2012 HAM-A Cool-down 03/2013 HAM-A Cool-down 06/2013 HAM-A Cool-down 09/2013 HAM-A Cool-down 12/2013 HAM-A Cool-down 03/2014 HAM-A

C2 Coefficients

Uncertainty specifications	Band	267 K
Defined in terms of %, at particular uniform scene	l4 spec	5.00
temperatures	I4 estimate	2.55
Estimates exceed the specification at lower scene	I5 spec	2.50
temperatures for bands with and with	15 estimate	0.41

Band	190 K	230 K	270 K	310 K	340 K
M12 spec		7.00	0.70	0.70	0.70
M12 estimate		8.98	0.71	0.27	0.32
M13 spec		5.70	0.70	0.70	0.70
M13 estimate		7.50	0.69	0.26	0.31
M14 spec	12.30	2.40	0.60	0.40	0.50
M14 estimate	4.82	0.84	0.28	0.21	0.29
M15 spec	2.10	0.60	0.40	0.40	0.40
M15 estimate	1.59	0.47	0.22	0.19	0.22
M16 spec	1.60	0.60	0.40	0.40	0.40
M16 estimate	1.24	0.37	0.21	0.18	0.20

Uncertainty contributors:

- Dominant for MWIR bands are the relative BB radiance uncertainty and the relative EV *dn* uncertainty (increasing rapidly with decreasing scene temperature).
- The LWIR bands uncertainties are dominated by the c₀, RVS, and EV *dn* relative uncertainties, which increase with decreasing scene temperature.

