

Resolving S-NPP VIIRS Thermal Emissive Band Performance Issues

Chris Moeller, Univ Wisconsin David Moyer (Aerospace Corp.) *with contributions from* **Dave Tobin, Greg Quinn (Univ. Wisconsin)**

Thanks to all VIIRS SDR team partners in this work

2014 STAR JPSS Science Teams Anuual Mtg May 12-16, 2014 College Park , MD

Outline

- VIIRS TEB Performance Status and Issues
 - Radiometric Comparisons
 - Trending
 - Scene Temperature Dependence (CO)
 - OBC Dependence Consistency
 - Mirror Side Dependence
 - Detector Dependence

Summary

Objective: <u>understand</u> TEB SDR performance "On-orbit sensor performance characterized and calibration parameters adjusted accordingly".

VIIRS Band M15 Brightness Temp (K)

VIIRS-CrIS SDR Comparisons

- VIIRS SDR accuracy/stability plus RVS performance
- Global; 2.9 million matchups daily from SNPP platform
- Cross Track coverage
- In-band spectral radiance for M13, M15, M16 and I5
- Long term high quality data record to assess stability

CrIS convolved with VIIRS SRF

VIIRS mean within CrIS FOVs

VIIRS-IASI SDR Comparisons

- Evaluate VIIRS SDR accuracy and OOB impact
- High latitude SNOs; limited data sample
- All FOVs inside 50 km radius around each SNO are retained:14-16 IASI FOVs and >10,000 VIIRS 750m FOVs
- 10 minute tolerance on SNO occurrence
- IASI spectral coverage of VIIRS M13-M16, I5; nearly complete spectral coverage of M12 (85%) and I4 (81%)

+/-10 minute tolerance on overpass of SNO point

S-NPP/MetOp-A SNOs occur exclusively at polar latitudes

Jul 01, 2013 : Mean SNPP VIIRS - CrIS:v33a

- M15 bias (above) has <u>minor cold scene</u> <u>dependence</u>, less so for M13. Suggests that C₀ coefficient may not be optimally set. Note: this dependence has been reduced by Mx8.1 CrIS calibration.
- Minimal dependence of bias on scan angle (right). <u>TEB RVS well characterized</u>.

VIIRS-CrIS (Mx8.1)

- Scene temperature provides insight on calibration coefficient performance.
- Scan angle provides insight on HAM RVS characterization quality.
- Data shown for July 1, 2013 is typical of all days. CrIS calibration Mx8.1.

VIIRS-CrIS SDR Comparisons

SNPP VIIRS SDR Comparisons to CrIS and IASI

VIIRS C₀ Calibration Coefficient Modification

- Modify the VIIRS TEB delta C LUT to change the VIIRS cold brightness temperatures to better match CrIS and IASI on-orbit cold scene performance (brightness temperature).
- Preserves VIIRS detector-to-detector, HAM side and temperature relative "shape" in prelaunch tables.
- Latest testing uses CrIS calibration planned for Mx8.1.
- <u>ADR-7414</u>: TEB calibration coefficient C0 requires modification to ... improve radiometric accuracy.

Considerations on CO Adjustment

- CrIS, AIRS, Metop-A IASI and Metop-B IASI are all well calibrated systems. But they disagree at cold scenes by ~0.1 – 0.2 K in LWIR and more so in MWIR. Which is "truth"?
- VIIRS currently about as good as C6 MODIS 11um
- 0.25 K accuracy is well within VIIRS specification for LWIR cold scenes.
- On the other hand.....
 - M15 and M16 are commonly used together in science algorithms; consistent relative performance between M15 and M16 would seem beneficial.

Mirror Side and Detector Striping

- Using VIIRS-CrIS global day comparisons, stratify the data by mirror side and detector.
- Reveals information on striping in SDR that may be masked by natural variability.
- M13, M15, and M16 examined (insufficient spectral coverage for M12, M14 by CrIS).
- 4 global days tested; similar result each day:
 Suggestion of small mirror side effect in M15.
 M13 has distinct even-odd detector pattern.

2013172 : MS1 AD Mean SNPP VIIRS - CrIS:v33a

2013172 : MS2 AD Mean SNPP VIIRS - CrIS:v33a Mirror Side Dependence: HAM-B M13, 4um 0.8 M15, 10.8um M16, 12um 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8

240

220

260

CrIS BT (K)

280

VIIRS - CrIS BT (K)

-1

200

320

300

2013172 : MS1 Det7 Mean SNPP VIIRS - CrIS:v33a

2013172 : MS1 Det8 Mean SNPP VIIRS - CrIS:v33a

2013172 : MS1 Det9 Mean SNPP VIIRS - CrIS:v33a

2013172 : MS1 Det10 Mean SNPP VIIRS - CrIS:v33a

Summary

- SNPP VIIRS TEB SDR performing within uncertainty requirements; minimal trends
- Minor adjustment to M15 C0 calibration coefficient will bring M15 and M16 performance closer together, but question on which sensor (AIRS, IASI, CrIS) is "truth"
- Evidence of mirror side striping in M15
- Detector level striping evident in M13 and seems to exist at a very small level in M15 and M16

Backup

Summary of SNO results

for 6 representative spectral regions, and VIIRS/CrIS comparisons:

- LW differences display only small dependence on scene BT for both IASI and AIRS SNOs.
- MW differences are relatively independent of scene BT for IASI and for AIRS at 1382-1408 cm⁻¹; Differences for AIRS at 1585-1600 cm⁻¹ range from ~+0.3K at 200K to -0.1K at 265K.
- SW differences are relatively flat above ~240K; Below ~230K larger differences between all three sensors are observed.
- Consistent with SNO results shown in L. Strow presentation, and reported by L. Wang et al. at NOAA STAR.

1382-1408 cm⁻¹

1585-1600 cm⁻¹

830-840 cm⁻¹

VIIRS C₀ Calibration Coefficient Modification

- ADR7414: TEB calibration coefficient c0 requires modification to reduce striping and improve radiometric accuracy at low scene temperatures
- The zero-th order calibration coefficient c0
 - introduced as an ad hoc parameter...compensating for errors in other retrieval equation parameters or...in the radiometric model.
 - can reduce discrepancies between VIIRS and CrIS and between VIIRS and IASI at low scene temperatures..., and reduce striping in the TEB SDR that is evident in cold uniform scenes.

VIIRS C₀ Calibration Coefficient Modification

NPP VIIRS F1 SDR Comparison for Band M16 HAM A

2013172 : MS1 Det1 Mean SNPP VIIRS - CrIS:v33a

2013172 : MS1 Det2 Mean SNPP VIIRS - CrIS:v33a

2013172 : MS1 Det3 Mean SNPP VIIRS - CrIS:v33a

2013172 : MS1 Det4 Mean SNPP VIIRS - CrIS:v33a **Detector Dependence: Det 4** M13, 4um 0.8 M15, 10.8um M16, 12um 0.6 0.4 VIIRS - CrIS BT (K) 0.2 0 -0.2 -0.4 -0.6 -0.8 **Product Order** -1 200 220 240 260 280 300 320 CrIS BT (K)

2013172 : MS1 Det5 Mean SNPP VIIRS - CrIS:v33a

2013172 : MS1 Det6 Mean SNPP VIIRS - CrIS:v33a

2013172 : MS1 Det7 Mean SNPP VIIRS - CrIS:v33a

2013172 : MS1 Det8 Mean SNPP VIIRS - CrIS:v33a

2013172 : MS1 Det9 Mean SNPP VIIRS - CrIS:v33a

2013172 : MS1 Det10 Mean SNPP VIIRS - CrIS:v33a

2013172 : MS1 Det11 Mean SNPP VIIRS - CrIS:v33a

2013172 : MS1 Det12 Mean SNPP VIIRS - CrIS:v33a

2013172 : MS1 Det13 Mean SNPP VIIRS - CrIS:v33a

2013172 : MS1 Det14 Mean SNPP VIIRS - CrIS:v33a

2013172 : MS1 Det15 Mean SNPP VIIRS - CrIS:v33a

2013172 : MS1 Det16 Mean SNPP VIIRS - CrIS:v33a

