STAR JPSS Annual Meeting, May 12-16, 2014

ATMS Optimal Striping Filters

X. Zou¹, Y. Ma¹ and F. Weng²

¹Department of EOAS, Florida State University

²Center for Satellite Applications and Research, NOAA

May 13, 2014

Outline

- ATMS TDR/SDR Striping Issues
- User Complains
- Requirements for Characterization and Correction
- AMSU-A/MHS/AMSU-B
- ATMS Striping (TVAC, Pitchover Data, Earth Scene ...)
- De-striping Methodology
- Optimal Striping Filters for Radiances
- Optimal Striping Filters for Calibration Counts

Qin, Z., X. Zou and F. Weng, 2013: Analysis of ATMS and AMSU striping noise from their earth scene observations. *J. Geophy. Res.*, **118**, 13,214-13,229.

PCA Decomposition for ATMS Channel 10

The ATMS data can then be expressed as in PCA:

$$\mathbf{A} = \sum_{j=1}^{96} \stackrel{\mathbf{r}}{e_j} \stackrel{\mathbf{r}}{u_j}$$

$$\square \stackrel{j=1}{\frown} \stackrel{\mathbf{r}}{\frown} \stackrel{\mathbf{r}}{\mathsf{PC}} \text{ mode PC coefficient}$$

 $TB_{1,1}$ $TB_{1,2}$ L $TB_{1,i}$ L $TB_{1,K}$ $TB_{2,2}$ L $TB_{2,j}$ L $TB_{2,1}$ $TB_{2,K}$ Μ 0 $\mathbf{A} =$ $TB_{k,K}$ $TB_{k,1}$ $TB_{k,j}$ Μ Ο $TB_{96,K}$ *TB*_{96,1} K-total number of scanlines

The First Three IMFs of ATMS Ch10 Obs.

The 1st PC Component at Nadir

The Optimal Striping Filters: Mathematical Formula

Power Spectrum Density of the First Seven IMFs and Residuals of ATMS Brightness Temperatures

Decision:

The total number of IMFs removed are two for channels 1-2 and three for channels 3-22.

The Optimal Striping Filters: Numerical Results $J = \sum_{k=1}^{K} (\sum_{n=1}^{N} \alpha_{n} u_{1,k+n} - \overline{u}_{1,k}^{eemd})^{2}$

Variation of Cost Function J with Filter Span

Optimal Weighting Coefficients

Response Functions of the Optimal Striping Filters

Striping noise Spectrum removed by the optimal striping filters

Global O-B Spectrum with and without Applying the Optimal Striping Filter

Global O-B Distributions of ATMS Channel 8

After

Before minus After

Pitch-Over Maneuver Data with and without Optimal Filtering

Striping Index (SI)

$$SI = rac{V_{along}}{V_{cross}}$$

Along-track variance

$$V_{along} = \frac{1}{N} \sum_{j=1}^{N} \left(\frac{1}{M} \sum_{k=1}^{M} \left(T_{b}(k,j) - \frac{1}{M} \sum_{k=1}^{M} T_{b}(k,j) \right)^{2} \right)$$

Cross-track variance

$$V_{cross} = \frac{1}{M} \sum_{k=1}^{M} \left(\frac{1}{N} \sum_{j=1}^{N} \left(T_{b}(k,j) - \frac{1}{N} \sum_{j=1}^{N} T_{b}(k,j) \right)^{2} \right)$$

Striping Index (SI) of Pitch-Over Maneuver Data

Variance of down-track (VDT), variance of cross-track (VCT), and striping index (SI) before (red) and after (blue) applying the optimal striping filter.

SI is significantly reduced to one for ATMS all channels.

Summary

- Twenty two optimal striping filters are developed for 22 ATMS channels
- Two months of de-striping ATMS data are being produced for NWP impact test

Future Plan

Similar optimal striping filters will be developed for calibration counts, and impact of striping noise on NEDT will be quantified.