ATMS Airborne SDR Validation, Spectral Analysis, & Correlation Analysis

Vince Leslie, Bill Blackwell, Mike DiLiberto, Idahosa Osaretin, Erik Thompson, and Mark Tolman

STAR JPSS Annual Meeting

13 May 2014

- NAST-M cross-validation from S-NPP Field Campaign
- S-NPP and J1 ATMS Spectral Analysis
- S-NPP and J1 ATMS Correlation Coefficients Analysis

Radiance Versus Modeling Verification

Radiance to Radiance Comparisons

- Separate sensors measuring nearly the same point at the same time
- Examples include Simultaneous Nadir Observations (SNO) or aircraft underflights
- Pros: same atmosphere and surface conditions with similar instrumentation
- Cons: Different spectral or spatial characteristics and small data sets

Radiance to Model Comparisons

- Model the sensor and the atmosphere
- Examples include using state-of-theart NWP, radiative transfer, and surface models
- Pros: large amounts of data
- Cons: Idealized or measured spectral or spatial characteristics and modeling errors

- Calibrated NAST-M (V-band & upper G-band) in altitude chamber using precision microwave calibration target from 100-325 K at the instrument's high-altitude operating temperature
- NAST-M calibrated to these residual errors:
 - V-band: <0.25 K from 200-325 K
 - G-band: <0.30 K from 200-325 K
- Compared S-NPP ATMS measurements against NAST-M for the 10May2013 sortie

S-NPP Mission Cal/Val Campaign

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

STAR JPSS Annual Mtg- 5 RVL 05/13/14

	NAST-M has data from 12 flights ~81 hours								Data Collected No Data Collected			
Data Source	May 7th	May 10th	May 15th	May 16th	May 18th	May 20th	May 22nd	May 23rd	May 24th	May 30th	May 31th	June 1st
NAST-M												
GPS												
Video												
ER-2 NAV												
Drop Sonde												
Radioondes												
Salton Sea												
NAM												
ECMWF												
Overpass												
NPP												
Aqua												
Metop-A												
Metop-B												
Conditions												
Time Of Day	Day	Day	Day	Day	Day	Day	Day	Day	Day	Night	Night	
Surface type	Ocean	Mixed	Mixed	Mixed	Land	Land	Land	Ocean	Land	Ocean	Mixed	
Weather	Cloudy	Clear	Clear	Scattered	Thin Cirrus	Scattered	Clear	Cloudy	Scattered	Scattered	Clear	
Flight Time (H)	6.35	5.98	7.63	8.13	6.25	8.47	9.2	6.58	8.03	6.22	8.18	0

Collected data from 9 S-NPP overflights

NAST-M Calibration Accuracy: 54 GHz Band

STAR JPSS Annual Mtg- 7 RVL 05/13/14

NAST-M Calibration Accuracy: 183 GHz Band

STAR JPSS Annual Mtg- 8 RVL 05/13/14 LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Matchup Flowchart

- 1) Radiosonde or dropsonde (Most desirable)
- 2) Simulated model output (e.g., ECMWF)
- 3) Retrieved profile from a different instrument

Altitude-Corrected Aircraft Brightness Temperature (T_b)

S-NPP 10 May 2013 Matchup

Residual Error between ATMS measurements and NAST-M (ATMS – NAST-M) at nadir

Lower V-Band ATMS Channels

ATMS	Ch. 3	Ch. 4	Ch. 5	Ch. 6	Ch. 7	Ch. 8	Ch. 9
TDR	0.95	-0.22	-1.6	0.59	-0.07	0.00	-0.36
SDR	1.38	0.34	-0.89	1.04	0.41	0.35	-0.19

Upper G-Band ATMS Channels

ATMS	Ch. 18	Ch. 19	Ch. 20	Ch. 21	Ch. 22
TDR	-2.52	-2.11	-2.23	-1.24	1.58
SDR	-3.38	-2.93	-3.08	-2.11	0.62

TDR = Temperature Data Record or antenna temperature

SDR = Sensor Data Record or brightness temperature (scan bias corrected)

TDR-to-SDR Results: K and Lower V Band

ATMS Residuals of SDR and TDR against ECMWF/CRTM for May 24, 2013 over ocean and under clear skies from STAR

* NAST-M Result from 10 May 2013; clear skies over ocean with limited # of high quality matchups

* NAST-M Result from 10 May 2013; clear skies over ocean

TDR-to-SDR Results for W/G Band

Example Power Spectral Densities

- PSD show the 1/f noise on the left and the thermal noise to the right
- The red vertical line is the calibration frequency (scan period) and the calibration algorithm effectively applies a highpass filter to the spectrum

Brightness Temperature Correlation

22

20

18

16

14

12

10

8

6

6

8

10

12

ATMS chan.

Figure 6. Estimates of interchannel error correlations based on the Desroziers diagnostics for ATMS. Statistics are based on used data over sea for 1–31 July 2012 (only scenes for which all considered channels are assimilated).

S-NPP Brightness temperature correlation coefficient matrix from pre-launch TVAC calibration

14

ATMS chan.

16

18

20

22

S-NPP RC = 1 CPT = 5.1 ° C

Bormann et al., "Evaluation and assimilation of ATMS data in ECMWF" JGR-A Vol. 118 12,970-12,980

- Pre-launch TVAC
- Two external targets and internal target
- Correlation matrix calculated for eleven scene temperatures 0.8
- Correlation matrices averaged after Fisher 0.6 transform
- DN cold is the 0.4 averaged four Space **View measurements** 0.2
- Gain uses eight scans in calculation

0

$$T_b = gain \times (DN_{scene} - DN_{cold \ target}) + T_{cold \ target}$$

ATMS chan.

J1 ATMS Results

- Successful airborne campaign, but need to finish processing all sorties and investigate ATMS bias
- J1 ATMS 1/f noise and correlation is lower than S-NPP ATMS
- Need to analyze how the J1 & S-NPP spectra and correlation matrices impact data products and instrumentation