JPSS STAR Science Team
Annual Meeting
VIIRS EDR Imagery

Don Hillger, and Curtis Seaman, PhDs
EDR Imagery Team Product Lead
(Tom Kopp, Cal/Val Lead)
(Ryan Williams, JAM)
And the rest of the EDR Imagery Team!

12-16 May 2014
Outline

• Overview
 – Products, Requirements, Team Members, Users, Accomplishments

• S-NPP Algorithms Evaluation:
 – Algorithm Description, Validation Approach and Datasets, Performance vs. Requirements, Risks/Issues/Challenges, Quality Monitoring, Recommendations

• Future Plans
 – Plan for JPSS-1 Algorithm Updates and Validation Strategies, Schedule and Milestones

• Summary
EDR Imagery Cal/Val Team

- **NESDIS/StAR** (D. Hillger, D. Molenar, D. Lindsey, T. Schmit – GOES liaison)
- **CIRA/CSU** (C. Seaman, S. Miller, S. Kidder, S. Finley, R. Brummer)
- **CIMSS/SSEC** (T. Jasmin, T. Rink, W. Straka) **McIDAS-V**
- **Aerospace** (T. Kopp, J. Feeley)
- **Stellar Solutions** (R. Williams)
- **NOAA/NGDC** (C. Elvidge)
- **NRL** (J. Hawkins, K. Richardson, J. Solbrig)
- **AFWA** (J. Cetola)
- **Northrop Grumman** (K. Hutchison, R. Mahoney, C. Liang)
- **NASA** (W. Thomas, P. Meade)
- **NOAA/OSPO** (A. Irving)
- **NASA/SPoRT** (G. Jedlovec, M. Smith)
S-NPP/JPSS data sources

- **GRAVITE**¹ (Wash DC, ~7-hour delay)
- **NOAA CLASS**² (Asheville, ~7-hour delay) – not actively used
- **Atmosphere PEATE**³ (Wisconsin, ~7-hour delay)
 - ADDE server for McIDAS
 - FTP and HTML
- **Direct Readout** (Wisconsin, ~0.5-hour delay, only over North America, when the satellite is with sight of Madison)
 - ADDE server for McIDAS
 - FTP
- **AFWA IDPS**⁴ (Omaha, near real-time)

¹Government Resource for Algorithm Verification, Independent Test, and Evaluation
²Comprehensive Large Array-data Stewardship System
³Product Evaluation and Algorithm Test Elements
⁴Air Force Weather Agency Interface Data Processing Segment
VIIRS Bands Created as EDR Imagery

Bands in bold and highlighted in grey are available as Imagery EDRs.

<table>
<thead>
<tr>
<th>VIIRS Band</th>
<th>Central Wavelength (μm)</th>
<th>Wavelength Range (μm)</th>
<th>Band Explanation</th>
<th>Spatial Resolution (m) @ nadir</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>0.412</td>
<td>0.402 - 0.422</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>0.445</td>
<td>0.436 - 0.454</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>0.488</td>
<td>0.478 - 0.488</td>
<td>Visible</td>
<td>750 m</td>
</tr>
<tr>
<td>M4</td>
<td>0.555</td>
<td>0.545 - 0.565</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M5</td>
<td>0.672</td>
<td>0.662 - 0.682</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M6</td>
<td>0.746</td>
<td>0.739 - 0.754</td>
<td>Near IR</td>
<td></td>
</tr>
<tr>
<td>M7</td>
<td>0.865</td>
<td>0.846 - 0.885</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M8</td>
<td>1.240</td>
<td>1.23 - 1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M9</td>
<td>1.378</td>
<td>1.371 - 1.386</td>
<td>Shortwave IR</td>
<td>750 m</td>
</tr>
<tr>
<td>M10</td>
<td>1.61</td>
<td>1.58 - 1.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M11</td>
<td>2.25</td>
<td>2.23 - 2.28</td>
<td>Medium-wave IR</td>
<td></td>
</tr>
<tr>
<td>M12</td>
<td>3.7</td>
<td>3.61 - 3.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M13</td>
<td>4.05</td>
<td>3.97 - 4.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M14</td>
<td>8.55</td>
<td>8.4 - 8.7</td>
<td>Longwave IR</td>
<td></td>
</tr>
<tr>
<td>M15</td>
<td>10.763</td>
<td>10.26 - 11.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M16</td>
<td>12.013</td>
<td>11.54 - 12.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNB (NCC)</td>
<td>0.7</td>
<td>0.5 - 0.9</td>
<td>Visible</td>
<td>750 m across full scan</td>
</tr>
<tr>
<td>I1</td>
<td>0.64</td>
<td>0.6 - 0.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2</td>
<td>0.865</td>
<td>0.85 - 0.88</td>
<td>Near IR</td>
<td></td>
</tr>
<tr>
<td>I3</td>
<td>1.61</td>
<td>1.58 - 1.64</td>
<td>Shortwave IR</td>
<td></td>
</tr>
<tr>
<td>I4</td>
<td>3.74</td>
<td>3.55 - 3.93</td>
<td>Medium-wave IR</td>
<td></td>
</tr>
<tr>
<td>I5</td>
<td>11.45</td>
<td>10.5 - 12.4</td>
<td>Longwave IR</td>
<td></td>
</tr>
</tbody>
</table>
Suomi NPP VIIRS Imagery examples

High-resolution color-enhanced infrared of cloud tops. Image courtesy of Dan Lindsey.

3-color image combination of visible and IR bands over northern Italy. Image courtesy of Curtis Seaman.
The Imagery EDR is the projection of SDRs onto a Ground Track Mercator (GTM) layout (remapped)
 – For the non-DNB/NCC bands: the radiances/reflectances are the same
 – For the DNB SDR: the Near Constant Contrast (NCC) EDR Imagery product has additional calculations involved

Advantages of Imagery EDRs:
 – Bowtie-deletions eliminated
 – Overlapping pixels eliminated

Current EDR Imagery:
 – 5 I-bands (all of them)
 – 6 of the 16 M-bands (default set, leaving 10 M-bands behind!)
SDRs and EDRs: What’s the difference?

Unmapped SDR and EDR granules from 08:14 UTC 24 October 2013
Scan lines in SDR data are not orthogonal to the satellite ground track, due to the constant motion of the satellite. Mapping the data to the Ground Track Mercator (GTM) grid restores orthogonality. This is the cause of the apparent rotation between SDRs and EDRs.
The brown outline shows where a SDR granule matches up with a given EDR granule. It takes three SDR granules to produce one EDR granule. If an SDR granule is missing when the EDR is created, you get a “missing triangle”...
Unique features of VIIRS, as compared with its predecessors

- **Finer spatial resolution** for all bands (down to 375 m)
- **Finer spatial resolution at swath edge** in particular
- **Wider (3000 km) swath**, leaving no gaps between adjacent orbits
- **DNB / NCC enables visible light imagery under all natural and artificial illumination conditions**
NCC (EDR) vs. DNB (SDR)

- What are the differences?

<table>
<thead>
<tr>
<th>Product</th>
<th>xDR</th>
<th>Units</th>
<th>Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNB</td>
<td>SDR</td>
<td>Radiances</td>
<td>Raw</td>
</tr>
<tr>
<td>NCC</td>
<td>EDR</td>
<td>Pseudo-albedos</td>
<td>GTM</td>
</tr>
</tbody>
</table>

- Which is better?
- Answer: Depends on the usage!
Sensor Data Record (SDR) to Environmental Data Record (EDR)

- **Ground Track Mercator (GTM) remapping software.**
 - GTM is a **remapping** of the data, but the **same** radiances/reflectances for Non-NCC bands only.
- **For NCC Imagery** there is **additional radiance processing**

![Diagram showing the flow from Non-DNB (SDR) through GTM software to Non-NCC (EDR), and from DNB (SDR) through GTM software plus to NCC (EDR).]
Near Constant Contrast (NCC) Product

NCC extends constant contrast into the twilight portion of the granule swath.

Cross-terminator DNB SDR (top) versus NCC Imagery EDR (bottom)
Artifacts in the DNB SDR are inherited by the NCC Imagery EDR. Before August 2013 the most significant of these was a stray light issue with the DNB on the dark side of the terminator. The DNB SDR algorithm was adjusted to correct for this error in August 2013. The impact on the NCC Imagery EDR was profound. The removal of the stray light is evident in the bottom image, taken from the granule over the upper Midwest of the United States on 9 August 2013. As a reference, Lake Michigan may be seen in the middle of the granule.
Algorithm Evaluations (Slide formatted as requested.)

- In the case of IDPS algorithms, we want the algorithm leads to provide 1 of 3 recommendations:

 1. **NPOESS algorithm has evolved into the NOAA-endorsed JPSS algorithm and any needed improvements should continue.**

 2. NPOESS (or evolved) algorithm will not meet requirements or effort is too large, replace with NOAA-endorsed JPSS algorithm

 3. NOAA-endorsed algorithm should be used even if NPOESS (or evolved) algorithm meets performance because of legacy, enterprise, blended products, and other considerations.

- For 2 or 3, present the alternative algorithm methodology description, algorithm performance against the level 2 supplement specification and any user assessments.
Mostly cloud-free DNB image over the U.S. Upper Midwest, 3 September 2012 at 0839 UTC

Note the lights from major cities, as well as a large cluster of oil flare signatures in northwestern North Dakota from the recently-developed Bakken formation.
Aurora Borealis over Saskatchewan, Canada on 9 March 2012, visible during a full moon!

Aurora Australis over Antarctica on 15 September 2012, during a new moon.
VIIRS DNB image, 1219 UTC, 7 October 2013.
Image courtesy Curtis Seaman (CIRA)

Note
Aurora (as well as stray light), Prudhoe Bay lights, and Veniamin of volcano on Aleutian Islands
Animation of VIIRS NCC images of the Pine Island Glacier and a huge iceberg breaking away, 7-18 November 2013. Images courtesy Curtis Seaman (CIRA)
Animation of VIIRS NCC images of icebergs, 20-26 December 2013. Images courtesy Curtis Seaman (CIRA)
Animation of VIIRS DNB images from 19-20 October 2013. The North Pole is located at the center of the image. Light from the ship carrying the 2014 Winter Olympic torch is visible.

Images courtesy Curtis Seaman (CIRA)
Animation of selected VIIRS DNB images from 30 October to 2 November 2013.
Images courtesy William Straka III (CIMSS)
Future Plans

• **VIIRS EDR Imagery latency** (of 6-7 hours for non-direct broadcast imagery) is a major hindrance for real-time use by analysts and forecasters.

• **Missing M-bands as EDRs** limits many image products, including RGB combinations, one being true-color imagery.

• Remaining relatively-minor NCC Imagery issues continue:
 – **Stray light** will continue with JPSS-1
 – **Crosstalk** issue being studied

• **Involving additional Imagery users** depends on data availability issues, such as lack of bandwidth to carry VIIRS Imagery to AWIPS for example.
Summary

• VIIRS EDR Imagery (including NCC Imagery) has reached the Validation 3 maturity stage in April 2014, back dated to August 2013.

• Feedback is still requested from users.

• DNB/NCC will continue as unique imagery on JPSS-1 and JPSS-2!

• Only major concern is data latency for non-direct-broadcast users (~6 hours).

Don.Hillger@NOAA.gov
VIIRS Imagery outreach at RAMMB/CIRA

- **VIIRS Imagery and image products outreach:**
 - **VIIRS Imagery and Visualization Team Blog**
 (http://rammb.cira.colostate.edu/projects/npp/blog/)
 - **Seeing the Light: VIIRS in the Arctic**
 (http://rammb.cira.colostate.edu/projects/alaska/blog/)
 - **Suomi NPP VIIRS Online** (including direct-broadcast imagery)
 (http://rammb.cira.colostate.edu/ramsdis/online/npp_viirs.asp)

- **NRL-Monterey** uses of VIIRS:
 - **NexSat** http://www.nrlmry.navy.mil/NEXSAT.html
 - **VIIRS Cal/Val**
 http://www.nrlmry.navy.mil/VIIRS.html