

VIIRS SDR Overview

Name of the Product: VIIRS SDR Contributors: VIIRS SDR Team

Changyong Cao VIIRS SDR Team Lead

Date: August 24, 2015

VIIRS Instrument Overview

•VIIRS is a scanning imaging radiometer onbaord the Suomi NPP, and JPSS satellites in the afternoon orbits with a nominal altitude of 829km at the equator, and swath width of ~3000km;

VIIRS has 22 types of SDRs:

•16 moderate resolution (750m), narrow spectral bands (11 Reflective Solar Bands (RSB); 5 Thermal Emissive Bands (TEB))

•5 imaging resolution(375m), narrow spectral bands (3 RSB; 2 TEB)

•1 Day Night Band (DNB) imaging (750m), broadband

•VIIRS Onboard calibration relies on the solar diffuser (SD), solar diffuser stability monitor (SDSM), space view (SV), and the blackbody (BB);

•Vicarious calibration also used (lunar, dark ocean for DNB, and cal/val sites);

•Calibration is performed per band, per scan, per half angle mirror side (HAM), and per detector.

VIIRS instrument

Smoke & fire in Tianjin explosion last week

Algorithm Cal/Val Team Members

PI	Organization	Team Members	Roles and Responsibilities
C. Cao	STAR	W. Wang, S. Blonski, S. Uprety, Z. Wang, S. Shao, Y. Bai, B. Zhang, J. Choi, M. Schull, Y. Gu, C. Moeller.	 VIIRS SDR calibration/validation for S-NPP, J1, and beyond. Prelaunch calibration LUT development Software code changes ADL test Vicarious calibration Postlaunch monitoring and LUT update
F. DeLuccia	Aerospace	G. Moy, E. Haas, C. Fink, D. Moyer	VIIRS operational calibration update; RSB autocal; prelaunch TV data analysis;
J. Xiong	VCST	J. McIntire, G. Li, N. Lei, T. Schwarting	VIIRS TV data analysis; prelaunch characterization; LUT development

VIIRS SDR Product Requirements from JPSS L1RD

Attribute	Threshold	Objective		
Center Wavelength	412 to 12,013 nm	412 to 12,013 nm		
Bandpass	15 to 1,900 nm	15 to 1,900 nm		
Max. Polarization Sensitivity	2.5 to 3.0 %	2.5 to 3.0 %		
Accuracy @ Ltyp	0.4 to 30 %	0.4 to 30 %		
SNR @ Ltyp or NEdT @ 270 K	6 to 416 or 0.07 to 2.5 K	6 to 416 or 0.07 to 2.5 K		
FOV @ Nadir	0.4 to 0.8 km	0.4 to 0.8 km		
FOV @ Edge-of-Scan	0.8 to 1.6 km	0.8 to 1.6 km		
Ltyp or Ttyp	0.12 to 155 W·m ⁻² ·sr ⁻¹ ·mm ⁻¹ or 210 to 380 K	0.12 to 155 W·m ⁻² ·sr ⁻¹ ·mm ⁻¹ or 210 to 380 K		
Dynamic Range	0.12 to 702 W·m ⁻² ·sr ⁻¹ ·mm ⁻¹ or 190 to 634 K	0.12 to 702 W·m ⁻² ·sr ⁻¹ ·mm ⁻¹ or 190 to 634 K		

S-NPP Product Overview

S-NPP Cal/Val Accomplishments

- Developed validation time series at 30+ vacarious sites and at SNOs , DCC and Lunar;
- Developed VIIRS DNB radiometric stability monitoring and geolocation validation using point sources;
- Developed common geo processing capabilities;
- Successfully transitioned DNB stray light correction LUT from NG to STAR. LUTs are being delivered monthly for IDPS operational processing since January 2015;

Known Product Deficiencies:

- Calibration uncertainty for reflective solar bands is within 2% for most bands;
- SWIR bands such as M11 has large uncertainties due to lack of traceable source;
- Bowtie deletion may cause discontinuities in imagery with satellite projection, although not an issue with earth projection;
- M15 bias at 200k can be upto 0.5k, although meeting the spec.
- Striping may be apparent in both RSB and TEB bands, although below noise level.

• LTM: Monitoring Tools/Website

- VIIRS SDR home page: http://ncc.nesdis.noaa.gov
- ICVS: <u>http://www.star.nesdis.noaa.gov/icvs/</u> status_NPP_VIIRS.php

5

J1 Algorithm Summary

Major changes to the product algorithm(s)/Improvements:

- J1 VIIRS DNB nonlinear response at high scan angles required a performance waiver with the implementation of Agg mode 21 and 21/26:
- VIIRS DNB GEO code analysis shows that J1 DNB GEO product cannot be generated correctly without code change.
- Block 2 ADL VIIRS GEO code was modified to support J1 DNB agg mode change.
- J1 GEO code change was verified using MDR 28 and MDR 39 J1 RDRs
- The Modified code can support Agg21, Agg21/26 correctly
- Backward compatible with SNPP.

J1 VIIRS DNB Geo GEO_determine_DNB_sample_time_offsets.	code changes . Determine DNB sample time offsets
GEO_interpolate_mirror_encoder.cpp GEO_interpolate_telescope_encoder.cpp	- 2. Extrapolating of encoder data
ProSdrViirsGeoDataStructs.h	٦
GEO_process_parameters.cpp	
fixSatAngles.cpp	
ProSdrViirsGeo.cpp	3. Hard-coded nadir frame #
geolocateDecim.cpp	
geolocateAllRecPix.cpp	Files with red color have relatively more changes.
GEO_parameters.h	- Т
ProViirsGeoRectangle.h	
ProGeoloc_createInterpRectangles.cpp	 4. Interpolation rectangles
calcModFromImg.cpp	
aeolocateGranule.cpp	

Totally 14 files were modified

All files are located at \${ADL_HOME}/SDR/VIIRS/Geo, except for *ProViirsGeoRectangle.h & ProGeoloc_createInterpRectangles.cpp are located at* \${ADL_HOME}/include & \${ADL_HOME}/Geolocation/Util/src. respectively.

- J1 Cal/Val Overview
 - Timelines for Beta, Provisional and Validated Maturity
 - O Beta: L+10/40 days to L+60?
 - O Initial power on: L+10
 - O Outgassing: L+10 to L+39
 - Door deploy: L+40: ?
 - Provisional: L+60 to L+90?
 - Validated: L+180
 - O Pre-Launch Calibration/Validation Plans
 - Cal/val plan developed, currently under review by external team members
 - O Post-Launch Calibration/Validation Plans
 - Cal/val plan developed, currently under review by external team members

JPSS VIIRS Calibration and Validation Plan

Table of Contents

LIST OF FIGURES	5
LIST OF TABLES	6
LIST OF ACRONYMS	7
1. OBJECTIVE	
1.1. Purpose of this Document	11
1.2. Specific Objectives	11
1.3. Scope of Document	11
1.4. Related Documents	11
1.5. Revision History	11
2. PRODUCT DESCRIPTION	12
2.1. Product Overview	12
2.2. Product Requirements	14
 CALIBRATION AND VALIDATION STRATEGY. 	
3.1. JPSS-1 VIIRS Pre-launch Characterization	
3.2. VIIRS Cal/Val Post-launch Tasks	
3.3. Calibration Tools	
3.4. Correlative Data Sources	
3.4.1. Ground-based Measurements (To be updated later)	
3.4.2 Satellite Derived Products	40
3.4.3. Field Campaign Measurements	41
3.4.4. Numerical Weather Prediction Forecast/Analysis Fields (To be	
updated later)	41
3.4.5. Special Collections	41
4. METHODOLOGY OF CAL/VAL TASKS	42
4.1. Noise Measurement Prior to RTA Scanning	42
4.2. Operability, Noise, SNR Verification with Nadir Door Closed	42
4.3. In-Scan Aggregation Verification-Non-DNB Bnads	43
4.4. Dual Gain Band and DNB Transition Verification	43
4.5. On-Board Bow-Tie Deletion Verification	
4.6. DC-Restore Functionality and Performance Check	
4.7. Calibrator Visual Inspection	44
4.8. SD and SDSM Characterization	45
4.9. Onboard Calibrator Black Body (OBCBB) Temperature Uniformity	45
4.10. Strylight VIIRS RSB Solar Diffuser Stryleight Analyis of Non-Polar	
SD Data	46
4.11. Temporal Analysis of SD Signal over Polar Region	46
4.12. Temporal Analysis of Solar Diffuser Stability Montor (SMSD) Data	47
4.13. Yaw Maneuver Analysis-Solar Attnuation Screen (SAS)	
Transmission	47
4.14. Analysis of SDSM Data with Model Assisted Extrapolation of Screen	
Calibration Data	47
4.15. Crosstalk, Echo, and Ghost Investigation	
4.16. Image Analysis (Striping, Glints and Other Artifacts)	

- Major Accomplishments and Highlights Moving Towards J1
 - Developed J1 VIIRS DNB waiver mitigation and delivered pre-operational software to the program on-time, which greatly reduced program schedule and cost risks (Wang & Lee), in addition to operational straylight correction.
 - Prepared all 47 J1 VIIRS LUTs (ver1.0) based on analysis of prelaunch test data, tested using ADL and simulated J1 data, and delivered to the program(Aerospace/VCST/STAR);
 - Developed and demonstrated VIIRS DNB radiometric and geolocation monitoring/characterization capabilities using nightlight point sources (Cao & Bai, 2014,RS.), which is critically needed for J1 postlaunch validation of the waivers;
 - Expanded validation time series with the 30+ validation sites worldwide, with added capabilities in the SWIR bands, as well as comparing with GOSAT FTS hyperspectral observations (Uprety & Cao, 2015, RSE);
 - Completed J1 VIIRS prelaunch test data analysis (VCST/Aerospace/STAR)
 - Improved RSB autocal maturity;
 - Geolocation thermal chip development for the infrared bands;
 - Modeled VIIRS solar diffuser degradation using surface roughness and metrology;
 - Active nightlight SBIR project feasibility study in support of VIIRS DNB cal/val.

- Issues/Mitigation
 - Need to work closely with flight to test DNB op21 and op21/26 postlaunch
 - Other waivers still need to be addressed:
 - SWIR nonlinearity
 - Bad detector
 - Saturation
- Stake Holder Interactions, Users and Impact Assessment Plans
 - O List of Users/Stake Holders
 - SST, Ocean Color, Imagery, Aerosols, Ice temperature, and other products
 - User Impact Assessment (examples)

Work with SST team to address bow-tie, striping, and other issues.Work with imagery team to address bad detector issue.Work with Ocean color team to address polarization sensitivity issues.Work with Cryosphere team to assess impact of M15 bias.

FY16 Milestones/Deliverables

Task Category	Task/Description	Start	Finish	Deliverable
Development (D)	 DNB&SWIR band dual calibration; Improve straylight correction; RDR toolkit; Geolocation control points; SD degradation model 	10/2015	09/2016	Science code & LUTs & data
Integration & Testing (I)	J1 prelaunch LUT and code change testing support	10/2015	09/2016	Code & LUT updates
Calibration & Validation (C)	 Support the RSB autocal (operational); Offline RSB/DNB/TEB cal/val analysis; Quantify striping & develop mitigation; Common geo validation; Prepare field campaign validation for J1 	10/2015	09/2016	Improved radiometric & geolocation accuracy; LUT; publications
Maintenance	 Maintain the performance trending at 30 sites Update documentation 	10/2015	09/2016	Continuity
LTM & Anomaly Resolution (L)	LTM for all RSB bands using DCC, lunar, SNOs, and other vicarious targets	10/2015	09/2016	Continuity

The VIIRS SDR team has made great progress:

- Supported J1 VIIRS waiver studies
- Developed and enhanced vicarious validation site time series at 30+ sites
- Developed geolocation software code modifications for J1
- Developed and delivered J1 VIIRS LUTs
- Developing common geo and geolocation validation capabilities

The VIIRS SDR team will continue to support SNPP, J1, J2 & beyond

- Refine J1 VIIRS LUTs, and expand validation capabilities
- Feasibility study developing value-added SDR L1.5 product
- Reprocessing
- Support J2 enhancements