

J1 CrIS Noise Performance & Impulse-Noise/Bit-Trim Mask Optimization

Mark Esplin, Deron Scott, Bryce Walker, and Ben Esplin

Outline

- Excellent CrIS NEdN performance
- NEdN subtle issues
 - NEdN dependency on photon flux sometimes not as expected
 - Differences in electrical side1 to side 2
- Optimizing bit-trim mask
- Impulse mask considerations
 - Radiation causes spikes in interferograms
 - Detecting/correcting spikes in FIR filtered interferograms

Extensive J1 NEdN Measurements During TVAC

- NEdN from both operational and staring mode
- Three sensor plateaus
 - (PFL) Proto Flight Low (ICT at about 262 K)
 - (MN) Mission Nominal (ICT at about 278 K)
 - (PFH) Proto Flight high (ICT at about 314 K)
- Both electronic sides
- Different power supply voltages
- With induced vibration

- MW FOV9 out of family with other FOVs
- MW FOV9 slightly above spec value
- MN (Mission Nominal) plateau staring mode

Operational Mode MN NEdN

Staring and operational mode NEdN nearly identical
 MN 287 K ECT, side 1

Allan Deviation

- Alternative way to characterize noise behavior
- Standard deviation of sets with increased averaging
- Single spectral channel per band (868, 1234, 2528 cm⁻¹)
- MN, 287 K ECT, operational mode, side 1
- Bottom trace is Matlab random noise

http://www.allanstime.com/AllanVariance/

6

PFL NEdN

PFL (Proto Flight High) temperature plateau
Operational mode, 287 K ECT, side 1

- PFH (Proto Flight High) temperature plateau
- Slightly higher NEdN

spacedynamics.org

Operational mode, 287 K ECT, side 1

NEdN Verses Photon Flux

- NEdN expected to increase with photon flux
- Band averaged NEdN of operational mode data
 - LWIR 680-1020 cm⁻¹, MWIR 1220-1600 cm⁻¹, SWIR 2160 2400 cm⁻¹
- In general NEdN increases with photon flux as expected
- Exception for large contrast between ECT and CrIS sensor
- Excess noise seen in PFL and PFH
- Behavior may be due to ground testing vibration issue
- Vibration issues also seen during SNPP CrIS TVAC

MWIR Operational NEdN

Average NEdN goes up with photon flux
 MW FOV9 NEdN consistently increases with photon flux
 Component of NEdN difference between sensor and ECT

MWIR Expanded Scale

Average NEdN goes up with photon flux
 Component of NEdN difference between sensor and ECT

SWIR Operational Mode

- Average NEdN goes up with temperature
- Component of NEdN difference between sensor and ECT
- Possible indication of vibration effects
- Staring mode data didn't show as large effect

PFL 200 K ECT

Spectrally correlated noise is insignificant

13

PFL 310 K ECT

Spectrally correlated noise dominates random noise

14

Allan Deviation Also Show Non-Ideal Behavior

PFL 310 K ECT

- Same cases as previous two slides
- In 310 K case noise increased and character changed
- Bottom plot Matlab random number generator

Electronic Side 1 Side 2 NEdN Differences

- Differences in NEdN between side 1 and side 2 have been observed
- Actual differences or random measurement error?
- Operational data more representative of on-orbit operation
- LTR (Long Term Repeatability) data set
 - Consists of 36 collections 2 hours each
- Averaged over spectral band to produce one NEdN point for each FOV per 2 hour measurement
 - Removed LWIR NEdN tail (band averaged over 750 1050 cm⁻¹)
 - Only real data shown, imaginary results are similar
- Concatenated measurements into one time series
- First half side 1, second half side 2

NEdN Trend for MWIR LTR

With FOV9 Removed

- FOV9 is out of family
- FOV 8 has positive side 1 to side 2 jump
- FOV7 has negative jump

17

LWIR LTR

- Bar chart gives alternative view of data
- Bars are the standard deviation of data for side 1, side 2, and combined side 1 and side 2
- Shows if differences are statically significant

MWIR and SWIR LTR

MW FOV8 shows large side 1 side 2 difference
SW side 1 to 2 differences are not statistically significant

Bit-Trim Mask Optimization

- Number of bits needed to define an interferogram depends on interferogram position
- Larger number of bits needed near center, less in wings
- Lut Desert Iran, 6/21/2015

Bit-Trim Mask Optimization

- Bit-trim is a lossless data compression technique
- Needs to be optimized for best performance
 - Bit-trim too conservative waste bandwidth
 - Too aggressive corrupt bright scene data
- J1 can benefit from SNPP data
- Compare largest interferogram amplitude for each interferogram point of a scene with bit-trim mask
- Pick SNPP scenes with high dynamic range
 - Australia February 23, 2012 (orbit 01671)
 - Andes Mountains March 12, 2013 (obit 07113)
 - Lut Desert, Iran July 14, 2012 (orbit 03689)

Use same bit-trim mask for J1 as presently used for SNPP

LWIR Bit-Trim Mask

Absolute value of maximum interferogram at each interferogram position is plotted with positive part of bit-trim mask

SNPP interferograms are always below bit-trim mask

MWIR and SWIR Bit-Trim Masks

Interferogram Spikes

- Radiation can cause spikes in interferograms
- Impulse mask designed to zero out interferogram spikes
- SWIR is most affected (smallest detector current)
- Impulse mask operates on interferograms before FIR filter
- Electrical offsets and low frequency signals cause false triggers
- Impulse mask must be set high to avoid false triggers
- Small spikes are not presently being detected/corrected
- Many more small spikes than large spikes
- A method of detecting spikes is through interferogram asymmetry
- Small spikes can be detected/corrected on the ground

Geographical Distribution of Interferograms with Spikes

Medium sized SW spike January to May 2015

Low Earth Orbit Radiation Distribution

From NASA/SAMPEX satellite

Can't Use Scaled Bit-Trim Mask for Impulse Mask

Diagnostic mode allows view of raw interferograms
Bit-trim mask scaled to raw interferogram levels
Electronic offset about 95 counts for LW and MW
Beginning of scan transient can be around 200 counts

Example of Spike in SW Interferogram

- Filtered interferogram is absolute value
- Many SW interferogram have small amplitudes
 - High dynamic range in the SW scenes
- Xin Jin estimated 123 spikes/day for side (less than 0.07%)

Detecting Interferogram Spikes

- A simple amplitude mask isn't very effective to detect spikes
 - Bright scenes can be larger than spikes
- Interferograms should be symmetric
- Interferogram phase makes direct left side to right side comparisons difficult
- Absolute value of interferogram plotted

Binned Interferogram

- Interferograms can be binned to make side to side comparisons
- Example is for 6 interferogram points/bin and skip ZPD area
- Right side of interferogram has been flipped
 - Difference clearly show spike

30

Spikes Are Not Single Sample Events

- Raw diagnostic mode data
- Data points indicated by "x" connected by straight lines
- Shape similar to that of a damped oscillator
- Least-squares fit to spike
 - Subtract modeled spike from interferogram

Affect of Filtering and Decimating on a Spike

- Modeled spike
- SW band
- Fit uses real and imaginary componet

Example of Spike Removed from Interferogram

Correction though subtracting modeled spike from original interferogram

- No residual error visible
- FOR 27, FOV6, 2/18/2015 18:11:11.367

Expanded Vertical Scale

- Fit to spike is very good
- Residual error not visible in expanded view of interferogram

Expanded View of Corrected Interferogram

Spike residual error not visible
Quantization noise clearly visible

Conclusions

- CrIS J1 has excellent NEdN performance
- Evidence for vibration effects in ground testing
 - Not an issue for MN
 - Noticeable for PFL and PFH
- Some FOVs show consistent differences in side 1 to side 2 NEdN
- Bit-trim mask optimization for CrIS SNPP can be applied to J1
- Impulse mask needs to be set high to avoid false triggers
- Number of interferogram effected by spikes is low with respect to operability requirement of 99%
- Radiation spikes can be detected and removed through ground processing

