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Project Descriptions
(Background)

 The NOAA Ecological Forecasting Roadmap (EFR) for 2015-2019
states that its objective is “to provide dependable, higher quality
forecast products, derived from the successful transition of research
and development into useful applications....”

* In support of the NOAA-approved roadmap, this project proposes to
evaluate approaches and develop a prototype foundational global
biogeochemical modeling capability for NOAA’s operational Real-Time
Ocean Forecast System (RTOFS) for reliably providing the global
modeling fields required to support the ecological forecasts of the EFR
technical teams



Project Descriptions
(Background)

e Specifically,
» to establish a component for the national modeling ‘backbone’
that will generate global predictions of the common physical and

biogeochemical variables used by ecological forecasts

» to address key linkages and gaps within the EFR infrastructure
framework via JPSS VIIRS ocean color data and physical-
biogeochemical numerical modeling because ocean color data
from VIIRS provides a unique path toward ecological forecasting
through biogeochemical (BGC) analyses and forecasts, facilitating
both real-time and scenario-based marine ecosystem applications



Project Descriptions
(Identification of Users)

e Targeted users within NOAA:
» Ecological Forecasting Roadmap technical teams
(harmful algal blooms, hypoxia, habitats),
» Those explicitly involved with numerical modeling
and prediction in conjunction with the NOAA
Ecological Forecasting Infrastructure and Process team

* The external user community:
» Local, state, federal governments, non-
governmental organizations (NGO's), and academic
and industry entities using derivative analyses and
predictions.
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 Employing coupled BGC-physical modeling to improve NWS
forecasting skill at short-term and seasonal scales
» by including the effects of biological heating on upper-ocean
thermal structure
» by exploring the direct assimilation of VIIRS products (Ky,q,)
in conjunction with radiative transfer (RT) computations using
existing validated algorithms (Lee, 2006; Gregg, 2002).
* Providing scenario-based forecasting
» to predict system responses to potential changes by drivers
(natural or through ecosystem management decisions)
* Assessing the effects of carbon dynamics between the
atmosphere and the ocean and subsequent changes in the acidity
of the global ocean
e Exploring BGC model to support for upper-trophic-level modeling



EMY
‘ﬂﬁf_‘s.‘oa ROy,
P M

Approaches

(Schematic Diagram)
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Approaches
(Ocean Model: RTOFS-Global)

* RTOFS-Global
» Hybrid Coordinate Ocean Model (HYCOM) based system
with 1/12° and 41 layers
» iso-pycnal (deep ocean), z-levels (surface), o (coasts)
» Tripole grid (1 at South Pole and 2 from Arctic bipole)
» Recti-linear (<47°N) and curve-linear (>47°N)

SN A RTOFS Global
Sea Surface Temperature

* RTOFS-Global
» NAVOCEANO daily
initialization with MVOI (now
3DVAR) data assimilation
from NCODA (Navy Coupled
Ocean Data Assimilation)
» KPP for vertical mixing
» 2-day nowcast (GDAS) and
6-day forecast (GFS)
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Approaches
(NOBM: NASA Ocean Biogeochemcial Model)
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Gregg (2002; http://gmao.gsfc.nasa.gov/research/oceanbiology/description.php)
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Approaches
(Data Assimilation: 2DVAR)

e Step 1. Integrate model for a certain period with no nudging from t=0
(beginning of cycle) to t=T. Initial condition is X(t=0). End condition is X(t=T)

e Step 2. Carry out CHL analysis at O-hr and at T-hr
e Use CHL from X(t) as a background X
> X =X +K(y,-H(X,))
where X: analysis; X,: background; K: Kalman gain; y,: observations (VIIRS); H:

observation operator; [y,-H(X,)]: innovation, distance between model and
observation

» Data points will be assimilated (e.g., VIIRS) with a certain time window for
data pooling

e Step 3. Create linearly interpolated CHL field between the two consecutive
CHL analyses X, (t=0) and X, (t=T).

e Step 4. Integrate model for T hours with nudging from t=0 (beginning of cycle)
to t=Thrs. Initial condition is X(t=0). End condition is X(t=T)

* Next cycle: re-label end condition of integration with nudging as the initial
condition if the next cycle.



@ Approaches
(Data Assimilation: NCODA) i

Stage 1: Preliminary data
/\x sensibility error checks

&
£
=]
-4
2
<
)

Ocean Obs
SST:
NOAA (GAC, LAC), Stage 2: External data error checks
METOP (GAC, LAC), |
GOES, MSG, AATSR,

AMSR-E, Ship/Buoy
Profile Temp/Salt: Ocean Data Innovations

XBT, CTD, Argo Float, Qc
Fixed/ Drifting Buoy /‘\%Stage 3: Internal data

Altimeter SSH: ‘ error checks
Jason-1, Joson-2,
ENVISAT Increments
Sea Ice: 3DVAR
SSM/I, SSMIS
Glider:
Slocum, Sea-Glider,
Spray CTD
Adaptive Sampling Forecast Fields + HYCOM
Data Impacts Prediction Errors First Guess
- . L
~ v ~ S ~ S
Stage 4: Adjoint Analysis Components
sensitivities (QC + 3DVAR) Forecast Component

Cummings (2011)
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Milestones (NCER)
* Year 1:
» Use VIIRS-derived K ppg and Ky,q0 With @ two-band scheme (Lee et al.,
2006)
* Year 2:

» Implement coupling of the modified BGC model with online
HYCOM/RTOFS-Global

» Modify NOBM (Gregg, 2002; 2003) biogeochemical module to include
air-sea oxygen dynamics

* Year 3:
» Implement simple data assimilation techniques (2DVAR) to nudge
model values to better represent VIIRS observations
» Validate model-derived Chl-a against independent in situ observations
(e.g., BIO-Argo) and VIIRS data.
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