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Atmospheric Chemistry, Carbon Cycle and Climate

(AC4) Program

AC4 is a competitive research program which manages a
portfolio of multi-year projects

AC4 Goal: Determine the processes governing atmospheric
concentrations of greenhouse gases and aerosols in the
context of the Earth System and climate
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FY13-FY16 Atmospheric Chemistry, Carbon Cycle, and

Climate (AC4) Research Portfolio
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Atmospheric Composition from space

Data from JPSS instruments and AC4 program science:

* AC4 typically supports field and laboratory data, which
can be complemented by JPSS data

e CrIS, OMPS and VIIRS composition products (trace gases
and aerosols) can all supply relevant products

e Retrievals are used in connection with global and Earth
System models

e Data used so far (from CrlS onl

e

include: NH;, ozone

Advancing Atmospheric Chemistry

Through the Use of Satellite Observations
from the Cross-track Infrared Sounder (CriS)

AC4 current and future activities:

e CrIS data users workshop, focused on atmospheric
composition took place September 18-19, 2014, \
report published August 2015

* Three projects include NH; data product
development, validation and application

e Upcoming project on CrIS/OMPS ozone retrieval

e Ongoing interest in atmospheric composition from
space, with special emphasis on monitoring and
field campaign support/complement



http://dx.doi.org/10.7289/V50V89SS

Thank you.



ATMOSPHERIC
COMPOSITION FROM SPACE

Useful tropospheric observations CriS ins.trumfent focus in AC4:

have been obtained from space 3 * CriSis aninfrared sounder,
since 1999. In 2011, NOAA- Star / 13 Solar Array similar in observing

NASA partnership resultedina | __Phiam ¥ characteristics to MOPITT, AIRS
launch of SNPP satellite, the first | and TES instruments that have
in the JPSS series. Aboard provided data since 1999, 2002
SNPP, and later also JPSS-1 and 2004, respectively

and JPSS-2, there are several ¢ Mid-tropospheric data from CrIS
instruments relevant to include: CO, CH,, O, CO,, NH,,
atmospheric chemistry: CrlIS, VIIRS, dust

ATMS and OMPS. Together, they ¢ Scheduled to be launched on
can provide data on trace gases SNPP, JPSS-1 and JPSS-2, CrlS can

(e.g. CO, O3, CH,, NH;, CO, etc.) and provide at least 20 years of
aerosols. continuous measurements

NOAA NESDIS activities:

¢ Development and validation of composition products from
CrlS: CO, CO, and CH, so far

e JPSS call for proposals (LOIs due January 12, 2015) for
proving ground included atmospheric chemistry focus

AC4 current and future activities:

J CrIS data users workshop, focused on atmospheric - g
composition took place September 18-19, 2014; report 3 o A0 S LU wiecioT R
published August 2015 L == = ’ o v e

e Two projects funded include NH; data product o : o - '
development, validation and application

J Future plans: inclusion in program announcement(s) CrlS
data applications



http://dx.doi.org/10.7289/V50V89SS
http://dx.doi.org/10.7289/V50V89SS

NOAA Long-term Strategy of trace
gases from hyper-spectral thermal
sounders

Antonia Gambacorta (1), Chris Barnet (1), Nadia Smith (1), Jonathan Smith (1),
Walter Wolf (2), Mark Liu (2), Tony Reale (2), Tom King (2), Michael Wilson (2),
Letitia Suillard (2), Nick Nalli (2), Bomin San (2), Kexin Zhang (2), Changyi Tan
(2), Flavio lturbide-Sanchez (2), Xiaozhen Xiong (2), Mitch Goldberg ®)

34 JPSS Annual Meeting
August 11, 2016
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The NOAA Unique Combined
Atmospheric Processing System
(NUCAPS)

Same exact executable
Same underlying Spectroscopy
Same look up table methodology
for all platforms



(x7z) Philosophy of NUCAPS

* The challenge: high computationally efficiency and sophisticated inversion
methods to maximize utilization of large volumes of data for real time
weather and long-term climate applications

* Philosophy of NUCAPS: developing a mathematically sound and globally
applicable (land/ocean, day/night, all season, all sky, TOA-surface) retrieval
algorithm that can fully exploit all available satellite assets (infrared,
microwave, visible) to retrieve the full suite of surface temperature and
vertical profiles of temperature, moisture and trace gases. These are among
the essential metrics defining a modern, physical and independent data
record of atmospheric variables, suitable for both weather and climate
applications.
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Hyper spectral sounders
sensitivity to trace gases

Planck Function versus temperature
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Summary of products

S7L from NUCAPS
gas Range (cm™') | Precision | d.o.f. | Interfering Gases
T 650-800 1K/km | 6-10 H20,03,N20
2375-2395 emissivity
H,O 1200-1600 15% 4-6 CH4, HNO3
(O 1025-1050 10% 1+ | H20,emissivity
CcoO 2080-2200 15% ~ 1 H20,N20
CH, 1250-1370 1.5% ~1 | H20,HNO3,N20
CcoO, 680-795 0.5% ~ 1 H20,03
2375-2395 T(p)
Volcanic 1340-1380 | 50% ?? | <1 H20,HNO3
SO,
HNO, 860-920 50% ?? | <1 emissivity
1320-1330 H20,CH4,N20
N,O 1250-1315 5% ?? <1 H20
2180-2250 H20,CO
CFCl; (F11) 830-860 20% - emissivity
CF.CI (F12) 900-940 20% - emissivity
CCl, 790-805 50% - emissivity




The challenge of trace gas retrievals
from hyper spectral sounders

B
TS 7Z

* Retrieving trace gases from hyper spectral sounders is a highly non linear and ill-conditioned
problem

* Trace gas signals are small and characterized by strong spatial and seasonal variability

* In some cases trace gases are physically correlated with other geophysical variables — for
example in respiration of soil CO2 is correlated with surface temperature; Ts/CH4; CO/CH4/
03;

* Most of geophysical correlations in nature are non-linear.

e With trace gases geophysical a-priori information is limited.

* Lack of information content is problematic especially in presence of cloudy, cold, isothermal
scenes.

e Trace gases are highly spectrally correlated (CO2,03,H20 in 15 um band, etc.)

* Errorsin spectroscopy and geophysical state.
— All trace gases dependent on temperature profile.
— CO02 and temperature are intimately correlated since CO2 absorption is used to derive temperature
— CO2 can be correlated with clouds both in the retrieval and geophysical sense.
e Stitching satellite instruments together with different
— Spatial sampling,
— Spectral sampling, and
— Noise characteristics
e Ground truth
— Need full atmospheric state — up to = 30 km.
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Brightness temperature difference ( ABT ) terms represent the sensitivity of each channel to a given

perturbation species and are indicative of the degree of “spectral purity” of each channel.

*For each atmospheric species, we select channels with:

* the highest degree of spectral purity (the highest sensitivity to the species of interest and the lowest

sensitivity to all other interfering species).

* the lowest noise sources (NEDT, calibration & apodization corr., RTA errors. See ahead.)
* unique spectral features (to capture atmospheric variability, maximize vertical resolution)




PR NUCAPS long-term strategy of trace gases
i—rf[ from hyper spectral sounders

« A minimum dependence on the geophysical a priori and full exploitation of the measurement
and knowledge of the physics of radiative transfer.
*  Channel selection aimed at maximizing spectral purity and information content.

Spectral correlation, cloud clearing errors and instrument noise used as terms of the measurement
error covariance in a weighted least square minimization

* Asequential approach, solving for most linear (including cloud clearing) or high S/N
parameters first and a formal error propagation from one step to the next

 Aretrieval is a signal averaging process over many channels and only makes changes where

we have information content. Vertical averaging kernels, A, , define where the instrument
has skill.

* Users need to know vertical and spatial error covariance and vertical weighting functions.
— Many of the “signals” we see have seasonal or spatial variability in the information content.

— Broad vertical weighting functions tend to mix stratospheric and upper tropospheric contributions
together.

* Trace gas retrievals are sensitive to stratospheric-tropospheric exchange.
* Reprocessing capability to study long-term stability of algorithm.
— All archived data (“granule” processing)
— Global “gridded” data sub-sets (for rapid evaluation of algorithm modifications)
— All validation datasets (including radio-sonde, aircraft match up datasets)
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" [T7Z) The path forward

e

 We have built a retrieval system aimed at making the best use of hyper
spectral data.

* Previous validation efforts have proven that we can meet requirements.
 With temperature and water vapor, users are clearly identifiable.

 What defines the operational need for these trace gas products instead?
— Just because we can do it, it does not mean that we shall do it.

— We would like to support any project supported by the NOAA AC4 Program to
engage new potential users and gain insights on the applicability of our
products. This will ultimately lead to a user requirement to justify the effort of
transitioning products into operations.

— NOAA JPSS is funding an unprecedented list of Proving Ground and Risk
Reduction (PGRR) initiatives to demonstrate the operational need of our
products. This is not validation in the traditional sense, it is developing new
user’s applications.

 What defines a trace gas operational user?

— We need a real time, vetted, institutional user: EPA, National Forest Service,
DOA, etc.

— We need users that need archived consistent products: NUCAPS CO2 might
serve as forecast climatology for the National Weather Service.



" [T7Z) Main goal of this session

e

* This session should discuss what trace gases should be explored in a
research sense and what trace gases should be distributed operationally.

 NASA and NOAA have different research mandates, goals and intended
users.
— NASA’s focus is primarily on new instrument concepts and fundamental
research.
— NOAA leverages on NASA’s research to develop a real time, operational and

archival product, intended for specific end users applications of societal
benefits.

 We are now looking for those user applications that will (1) verify the
applicability of our trace gas products, (2) educate us on the need for new
or improved products, QCs and formatting, (3) justify new efforts for
algorithm improvements and transition to operations.

* The ultimate result is a continued and intelligent use of hyper-spectral
trace gas products, both for real time and long-term applications.
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Why are CO, averaging functions broad while T(p)
functions have profile information?

(37Z)

« Spectroscopy: The CO2 lines are strong narrow lines. Temperature
affects the width (and hence the channel transmittance) while # of\C0O2
molecules affects the strength. Once the line is saturated (near th

suﬁacew large) we loose sensitivity.

ki(v,p, T,0) ~ » e Vi - sec(0) Yij =~ P}/O ’ £ ’ z
ST T E o (v —w)? 4 (1)? i PO TO

« Radiative transfer: The temperature enters both in the absorption
coefficient and in the Planck function.

L

O exp (— ,zgp) )3 m(f,p, . .)dz')
F—o .dp - dv
op

Ru(X) =~ [@0(v) [ B,(T(p))

13
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* I. A microwave retrieval module which computes Temperature, water vapor and cloud liquid water (Rosenkranz, 2000)
* Il. A fast eigenvector regression retrieval that is trained against ECMWF and CrIS all sky radiances which computes
temperature and water vapor (Goldberg et al., 2003)

* lll. A cloud clearing module (Chahine, 1974)

* IV. A second fast eigenvector regression retrieval that is trained against ECMWF analysis and CrlS cloud cleared
radiances

* V. The final infrared physical retrieval based on a regularized iterated least square minimization: temperature, water
vapor, trace gases (03, CO, CH4, CO2, SO2, HNO3, N20) (Susskind, Barnet, Blaisdell, 2003) 14



Ammonia (NH;) Distributions
and Recent Trends
by 13-year AIRS Measurements

J. X. Warner!, Z. Weil, L. L. Strow?, R. R. Dickerson!, J. B. Nowak3
Y. Wang*, Q. Liang® ®

I Dept. of Atmospheric and Oceanic Science, UMCP, College Park, MD, U.S.A.

2 Dept. of Physics and JCET, UMBC, Baltimore, MD, U.S.A.

3 Aerodyne Research, INC

4 Department of Earth and Atmospheric Sciences, University of Houston

SNASA Goddard Space Flight Center, Atmospheric Chemistry and Dynamics, Greenbelt, MD, U.S.A.
6 Universities Space Research Association, GESTAR, Columbia, MD, U.S.A.

*Published in ACP: The Global Tropospheric Ammonia Distribution as seen in the 13-year
AIRS Measurement Record

*Ready to Submit: Increases in Atmospheric Ammonia over Major Agricultural Areas
from Space Measurements

* Funded by NASA's The Science of Terra and Aqua Program (NNX11AG396), and the
Atmospheric Composition Program (NNX07AM456).



Why Ammonia

Ammonia (NH5) plays an increasingly important role in the global
biogeochemical cycle of reactive nitrogen as well as in aerosol
formation and climate.

Measurements with daily and large global coverage are challenging
and have been lacking partly because the lifetime of NH; is
relatively short and partly because it requires high sensitivity for
the retrievals that can be only obtained from areas with high
thermal contrasts near the surface (Clarisse et al, 2010).

AIRS afternoon overpasses (1:30pm) are best correlated with the
daily emission peak time and during the daily period with the
highest thermal contrast. Additionally, AIRS large coverage with
wide swaths and cloud-clearing provide daily NH; maps. The 13-
year data records makes AIRS the best sensor for NH; trends and
variability studies (to date).



Atmospheric Infrared Sounder

Launched May 2002

* A grating spectrometer originally designed to
improve weather forecast and now also used for
climate and air quality studies.

* Spectral resolution at [41200 (~ 0.5 cm™)

* Covers 650-2665 in three bands with a total of
2378 channels

« Spatial resolution 13.5 km?2 (with retrievals at
~45 km?2)

» Wide swaths and cloud clearing provide daily
global coverage

* Very high Signal-to-Noise accuracies of 1K over
1 km-layer.
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AIRS NH; Algorithm

*AIRS NH3 retrievals use Optimal Estimation (OE) technique
(Rodgers, 2000);

*CCRs and SARTA are used as in AIRS algorithm for other species;

*The a priorilevels are computed from GEOS-chem;

Globally one set a priori.

Select a priorilevels based on brightness temperature differences
weighted by noise (dbti);

Low Emissions | Mid- Emissions High Emissions

_ Low Pollution ~ Moderate Pollution High Pollution
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Validation vs CRDS/Picarro in DISCOVER-AQ CA
Spiral Profiles Only - 01/16 to 02/06, 2013
CRDS/Picarro data courtesy of Co-author J. Nowak
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* Gray - a priori; Red - retfrievals; Green solid - in situ; and Green dashed - convolved in situ.
« AIRS L2 pixel sizes are ~45 km?, can coincide with multiple in situ profiles.
» AIRS NH; measurements are most sensitive at 850-950 hPa layer.



Global NH,
in 2002-2015

* AIRS NH; at 918 hPa for daytime and
land only averaged over Sept. 2002 to
Aug. 2015;

* Use QO; DOFS 2 0.1;

* High concentrations are mainly due to
human activities and fires;

* Use occurrences of higher emissions
(lower) to distinguish between the two
major sources: agricultural (high VMRs
& high frequencies); BB emissions (high
VMRs & low frequencies);

* Sources are seen in valleys (e.g., San
Joaquin Valley, California in the U.S.,
the Po Valley, Italy, Fergana Valley,
Uzbekistan, and the Sichuan Basin in
China); Agricultural especially in
irrigated lands (e.g., Azerbaijan, Nile
Delta and near Nile River in Egypt, the
Mid-West U.S., in the Netherlands, in
Mozambique and Ethiopia, Africa, and
especially the Indo-Gangetic Plain of
South Asia).
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100% 100%

o
0%

qu

Top panel: The NH; VMRs from
the persistent sources filtered
with the collocated occurrences
of elevated emissions (= 1.4 ppbv)
using a threshold of 40 days;

Middle panel: Pasture and
Cropland Map

Bottom panel: irrigated

agricultural land areas.



NH; Trends - Last 13 years

150°W 120°W 90°W 60°W 30°W 0 30°E 60°E 90°E 120°E 150°E

-0.3 -0.2 -0.1 D..'I] 0.1 0.2 0.3
NH, rate (ppbv/yr)

« Concentrations of anthropogenic emissions increased and BB decreased
e Trends due to BB are not conclusive due to the short record.



NH; over USA, China, India, and Europe

Using high concentration and high frequencies
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All 3 regions show increasing NH;
trends in the last 13 years, in
black.

Decreased SO, from OMI largely
explains the reason of NH;
increases in Midwest U.S. (not
shown), China, and Europe (not
shown).

OMI NO, decreasing explains
winter NH; increasing over the US
and Europe.

Meteorological conditions also
affect NH; concentrations (high
surface temperatures and low
precipitation), see top panel shaded
areas.



AIRS NH; Seasonal Variation

- over USA, China, Europe, and India
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* The highest NH; concentrations in average occur in India/Pakistan, and China. Note scales.
* NH; in India seasonal variation are broad and no obvious increasing/decreasing trends;

* NH; for USA, China and Europe have increased, with peaks in both spring and summer;
* Clear increasing trends over US Midwest, China, and Western Europe.
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Summary

AIRS NH; products not only include 13 years data record, it also provide daily
maps!

AIRS retrieved vertical profiles show good agreement (~5 - 15%) with in situ
profiles from the 2013 DISCOVER-AQ field campaign in central California.

AIRS daily measurements captures the strong continuous NH; emission
sources from the anthropogenic (agricultural) source regions, as well as
emissions from biomass burning (BB).

Ammonia trends increase over agriculture regions, where fertilizers are used
as routine practice, decrease over BB regions (with insufficient records).

Ammonia increases resulted primarily from dramatic decreases in
concentrations of acidic aerosols (sulfate and nitrate), an unintended
consequence of effective controls of NO, and SO, emissions.
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CrIS NH3 B(T) Signals (on/off line)
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Validation of SNPP NUCAPS trace gas
EDRs: O,, CO, and CO,

Nicholas R. Nalli%-2, Q. Liu?, C. Tan%2, A. Gambacorta3, C. D. Barnet3, F.
lturbide-Sanchez!2, J. W. Smith34, X. Xiong?, et al.

1IMSG, Rockville, Maryland, USA
2NOAA/NESDIS/STAR, College Park, Maryland, USA
3STC, Columbia, Maryland, USA

4National Research Council, Washington, DC, USA

2016 STAR JPSS Annual Meeting
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Outline

 JPSS Sounder Trace Gas EDR e NUCAPS Trace Gas EDR

Cal/Val Overview Product Evaluation Versus
— JPSS Level 1 Requirements AIRS v6 (Preliminary)
— Validation Hierarchy — Basic Methodology
— NUCAPS Algorithm — Carbon Monoxide (CO)
= v1.5 (operational, CrlS nominal = v1.5 (operational)
res) = v1.8.1 (full-res CrlS)
= v1.8.1. (CrlS full-res) — Carbon Dioxide (COZ)
= v1.5 (operational)
e NUCAPS IR Ozone Profile EDR = v1.8.1 (full-res CrlIS)
Product Evaluation
— v1.5 (operational) e Summary and Future Work

= Global Focus Day
= (Ozonesonde ensemble

— v1.8.1 (CrlS full-res)
= Global Focus Day
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JPSS Specification Performance Requirements - g
CrlS Trace Gas EDR Uncertainty (O;, CO, CO,, CH,) ¥ W

oy S
Argnt OF C°

CrlS Infrared Trace Gases

Specification Performance Requirements

PARAMETER THRESHOLD OBIJECTIVE
0O; (Ozone) Profile Precision, 4-260 hPa (6 statistic layers) 20% 10%
0O (Ozone) Profile Precision, 260 hPa to sfc (1 statistic layer) 20% 10%
0O; (Ozone) Profile Accuracy, 4-260 hPa (6 statistic layers) +10% +5%
0O (Ozone) Profile Accuracy, 260 hPa to sfc (1 statistic layer) +10% +5%
0O; (Ozone) Profile Uncertainty, 4-260 hPa (6 statistic layers) 25% 15%
0O, (Ozone) Profile Uncertainty, 260 hPa to sfc (1 statistic layer) 25% 15%
CO (Carbon Monoxide) Total Column Precision 35%, or full res mode 15% 3%
CO (Carbon Monoxide) Total Column Accuracy +25%, or full res mode 5% +5%
CO, (Carbon Dioxide) Total Column Precision 0.5% (2 ppmv) 1.05to 1.4 ppmv
CO, (Carbon Dioxide) Total Column Accuracy +1% (4 ppmv) NS
CH,(Methane) Total Column Precision 1% (=20 pphbv) NS
CH,(Methane) Total Column Accuracy +4% (=80 ppmv) NS

Source:

(LIRD, 2014, pp. 45-49)

Aug 2016 Nalli et al. — 2016 JPSS Annual 4



Validation Methodology Hierarchy

(e.g., Nalli et al., JGR Special Section, 2013)

Aug 2016

Numerical Model (e.g., ECMWEF, NCEP/GFS) Global
Comparisons

—  Large, truly global samples acquired from Focus Days
—  Useful for sanity checks, bias tuning and regression
—  Limitation: Not independent truth data

Satellite Sounder EDR (e.g., AIRS, ATOVS, COSMIC)

Intercomparisons

—  Global samples acquired from Focus Days (e.g., AIRS)

—  Consistency checks; merits of different retrieval
algorithms

— Limitation: Similar error characteristics; must take

rigorous account of averaging kernels of both systems
(e.g., Rodgers and Connor, 2003)

Conventional RAOB Matchup Assessments

—  WMO/GTS operational sondes launched ~2/day for
NWP

—  Representation of global zones, long-term monitoring

—  Large samples after a couple months (e.g., Divakarla et
al., 2006; Reale et al. 2012)
— Limitations:
= Skewed distribution toward NH-continents
= Mismatch errors, potentially systematic at individual sites

L Non-uniform, less-accurate and poorly characterized
radiosondes

L RAOBs assimilated , by definition, into numerical models

Nalli et al. — 2016 JPSS Annual

Dedicated/Reference RAOB Matchup
Assessments
—  Dedicated for the purpose of satellite validation

= Known measurement uncertainty and optimal
accuracy

= Minimal mismatch errors

= Atmospheric state “best estimates” or “merged
soundings”

—  Reference sondes: CFH, GRUAN corrected RS92/RS41
=  Traceable measurement
= Uncertainty estimates
— Limitation: Small sample sizes and limited geographic
coverage
— E.g., ARMssites (e.g., Tobin et al., 2006), AEROSE,
Calwater/ACAPEX, BCCSO, PMRF

Intensive Field Campaign Dissections

— Include dedicated RAOBs, some not assimilated into
NWP models

— Include ancillary datasets (e.g., ozonesondes, lidar, M-
AERI, MWR, sunphotometer, etc.)

— Ideally include funded aircraft campaign using IR
sounder (e.g., NAST-I, S-HIS)

—  Detailed performance specification; state
specification; SDR cal/val; case studies

—  E.g.,SNAP, SNPP-1,-2, AEROSE, CalWater/ACAPEX,
JAIVEX, WAVES, AWEX-G, EAQUATE



NOAA Unique Combined Atmospheric Processing
System (NUCAPS) Algorithm (1/2)

e Operational algorithm

Unified Sounder Science Team
(AIRS/IASI/CrIS) retrieval algorithm
(Susskind, Barnet and Blaisdell, IEEE
2003; Gambacorta et al., 2014)

Global non-precipitating conditions

Atmospheric Vertical Temperature,
Moisture Profiles (AVTP, AVMP) and
trace gas (O,, CO, CO,, CH,)
Validated Maturity for AVTP/AVMP,
Sep 2014

e Users

Weather Forecast Offices (AWIPS)

" Nowcasting / severe weather
= Alaska (cold core)

NOAA/CPC (OLR)
NOAA/ARL (IR ozone, trace gases)
TOAST (IR ozone)

Basic and applied science research

(e.g., Pagano et al., 2014)
=  Via NOAA Data Centers (e.g., CLASS)
L Universities, peer-reviewed pubs

Aug 2016

NUCAPS IR O, NUCAPS CO

NUCAPS Ozone Unfiltered at 30mb Asc NDE NUCAPS Carbon Monoxide Unfiltered at 500mb Asc NDE

7 Aug 2016

0 & « L — p——
480 -0 120 90 60 30 o 30 60 % 10 150 180

g a—— ; 80
NoData QC fail 1800 2750 3700 4650 5600 6550 7500 & NoData QC fail 5.000 44.000 83.000 122.000 161.000 200.000 u
NUCAPS CO, NUCAPS CH,
NUCAPS Carbon Dioxide Unfiltered at 200mb Asc NDE NUCAPS Methane Unfiltered at 600mb Asc NDE

7 Aug 2016
T T T

90— T

50 - S0l

-180

NoData QC fail 380.0 386.0 392.0 398.0 404.0 410.0 u NoData QC fail 1300

Long Term Monitoring
http://www.star.nesdis.noaa.gov/ipss/EDRs/products Soundings.php

http://www.ospo.noaa.gov/Products/atmosphere/soundings/nucaps/index.html
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http://www.star.nesdis.noaa.gov/jpss/EDRs/products_Soundings.php

NOAA Unique Combined Atmospheric Processing
System (NUCAPS) Algorithm (2/2)

 NUCAPS Offline Code Versioning
— Version 1.5

Current operational system
Runs on nominal CrIS spectral resolution data

— Version 1.8.1

Aug 2016

Offline experimental algorithm
Runs on CrlS full spectral resolution data

Uses conventional regression algorithm for the IR/MW first guess (as opposed
to MW retrieval as in v1.7 full-res)

Upgrades

0 Updated IR radiative transfer algorithm (RTA) bias correction coefficients (based on the
best combination resulted after testing the use of several atmospheric states and trace
gaseous profiles)

IR emissivity threshold decreased from 1.05 to 1.0 in the temp_cris.nl namelist.

O Replaced the Taylor expansion to the Exponential formula in the fasttau co2.F
program.

Updated MW bias correction (as in v1.6)
Updated MW RTA model error coefficients (as in v1.6)
Removal of MW channel 16 (as in v1.6)

o

© OO

Nalli et al. — 2016 JPSS Annual



From the Critical Design Review (CDR) Meeting
4 February 2016

Validation of Products
NUCAPS EDR: Trace Gases (1/2)

AIRE €O AT 500mb (ppbv) 20160130-20160122

e Satellite Intercomparisons (Hierarchy
Method #2)

» Agqua AIRS (NASA A-Train)

Launched in 2002, the satellite sounder community
has the experience of 13+ years of AIRS processing
and AIRS has been well tested and validated

The Aqua satellite is in the same orbit as SNPP,
thereby facilitating collocations with SNPP CrIS/ATMS

AIRS produces the same trace gas products as
NUCAPS: O,, CO, CO,, CH,

» Orbiting Carbon Observatory (OCO)-2
(NASA A-Train)

Launched in July 2014
Provides CO, observations
» Microwave Limb Sounder (MLS) (NASA A-
Train)
Launched in July 2004
Provides CO observations

Aug 2016 Nalli et al. — 2016 JPSS Annual 8



Validation of SNPP NUCAPS trace gas EDRs

IR OZONE PROFILE EDR

Aug 2016 Nalli et al. — 2016 JPSS Annual 9



IR Ozone Profile EDR Validation (1/8)

In Situ Truth Datasets

e Collocated ozonesondes for
O; (ozone) profile EDR

— Dedicated Ozonesondes

= NOAA AEROSE (Nalli et
al. 2011)

= CalWater/ACAPEX 2015
— Sites of Opportunity

= SHADOZ (Thompson et al.

2007)
0 CostaRica
Hanoi
Irene
Java
Natal
Paramaribo
Reunion
American Samoa
= WOUDC
0 STNO43
O STNO53
0 STN107
0 STN101

O O O0OO0OO0OO0Oo

Aug 2016

ey

Sark it

AEROSE 2013a °
AEROSE 2013b 5. 7°
 AEROSE 2015 “& = ¢
CalWater2015™

X4 pol

S-NPP CrIS/ATMS Ozone EDR ICV-LTM Ozone

SHADOZ : : : ; :
JWOUDG i BRG]

Nalli et al. — 2016 JPSS Annual
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IR Ozone Profile EDR Validation (2/8)
VALAR Ozonesonde-FOR Collocation Sample (n = 6024)

Geographic Histogram (Equal Area)
FOR Collocation Criteria: 6x < 125 km, -240 < 6t < +120 min

1800 W 1200 W 60 W 0 60 E 120 E 180 E
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IR Ozone Profile EDR Validation (3/8)
NUCAPS Offline (v1.5) versus Global Ozonesondes

Retrieval and A Priori First Guess

Ozone RMS Ozone Bias
4 P 4 T
5r 5r
6 0 6 0
7 7r
8 R T 8 T I T
1B 18
2495 2495
IR+MW Yield
=62.2% 5436 5436
5 \ 5605 L 5605
(= F \
£ L N | \
Q. F r II""
100 - \ 5821 100 L ’ ’ h H 5821
200 + 5940 200 + 1 I g H 5940
300 - 300 -
400 - 400
500 - 500
600 600 [
700 - IR+MW 2152 700 F 2152
800 i ——FG 800 i
1388 ' 1888 '
0 60 -50 0 50

BIAS (%) + 1o
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IR Ozone Profile EDR Validation (4/8)
NUCAPS Offline (v1.5) versus Global Ozonesondes

IR+MW Yield
=62.2%

Aug 2016

p (hPa}

SO0~ O 1

1

100 |

Ozone RMS

Retrieval and ECMWF

2495
5436

5605

5821 100 L

5940 200

I

o

=]
T

IR+MW 2152 700
—— ECMWF 800

40
RMS (%)

Ozone Bias

2495

5436

5605

5821

5940

2152

—

(e o]
(= ]
(= ]

60 -50 0
BIAS (%) + 1o
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IR Ozone Profile EDR Validation (5/8)
NUCAPS Offline (v1.5) versus Global Ozonesondes

IR+MW Yield
=62.2%

Aug 2016

p (hPa)

oo~y 1

1

100

* Broad-Layer Statistics
(Per JPSS Level 1 Requirements)

Ozone RMS 4 Ozone Bias
- 5 -
[ 0 6 [
- 7 -
R e
B 18
2495
5436
5605
L 5821 100 I
L 5940 200
- 300
L 400
- 500
- 600
L 2152 700
- 800
C 1 1 1888 1 1
40 60 -50 0 50
RMS (%) BIAS %) + 1o
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IR Ozone Profile EDR Validation (6/8)

NUCAPS Offline (v1.5) versus Global Focus Day 17-Feb-2015

IR+tMW
First Guess

NUCAPS v1.5
Yield = 63.4%

Aug 2016

p (hPa}

SO0~ O 1

1

100

.............................................................

O; Versus ECMWF

Ozone RMS

.........................

\ 205332 1p0 L

—FG 800

205332

oo~ Y 1

1
205332

205332

205332

205332 200

400

500

600

IR+MW 205332 700 F

RMS (%)

Ozone Bias

205332

205332

205332

205332

205332

205332

300

205332

1888 =

60 -50
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IR Ozone Profile EDR Validation (7/8)
NUCAPS Offline (v1.8.1) versus Global Focus Day 17-Feb-2015

O; Versus ECMWF

Ozone Bias
4 4 e
5 5 |
IR+MW 6 227033 6 227033
First Guess Z S Y
10 1B [
227033 227033
NUCAPS v1.8.1
Yield =70.1%
227033 227033
= 227033 227033
(=
5 .............................
o L
100 | 227033 1090k 227033
200 227033 200 F 227033
300 300 F
400 400 - ‘
500 500
600 600 -
700 227033 700+ 227033
800 800 B
1388 1888 '
-50 0 50
RMS (%) BIAS (%) + 1 o
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IR Ozone Profile EDR Validation (8/8)
NUCAPS Offline (v1.8.1) versus Global Focus Day 17-Feb-2015

* Broad-Layer Statistics
(Per JPSS Level 1 Requirements)

4 Ozone RMS 4 Ozone Bias
5r 5r
6 227033 6 227033
7 7r
R R
1B 18 [
227033 227033
NUCAPS v1.8.1
Yield =70.1%
227033 227033
= 227033 227033
(=
5 .......................................................................................
o L
100 L 227033 1090k 227033
200 + 227033 200 F 227033
300 - 300
400 400
500 - 500
600 600
700 F 227033 700+ 227033
800 - 800 |-
1388 . . 1888 L .
0 40 60 -50 0 50
RMS (%) BIAS (%) + 1 o
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Validation of SNPP NUCAPS trace gas EDRs

CARBON MONOXIDE
(PRELIMINARY)

Aug 2016 Nalli et al. — 2016 JPSS Annual 18



Basic Methodology for CO and CO,

Aug 2016

The AIRS v6 standard products were
obtained for the global Focus day 17
February 2015

— Total column integrated CO and CH,

— The AIRS Team provided us offline runs
for CO,

AIRS and NUCAPS were divided into
ascending (ASC) and descending
(DES) orbits

Linear interpolations of FOR (lat/lon)
were then performed for each orbit
(ASC and DES) to create a one-to-one
correspondence of collocation data
points

— AIRS CO was interpolated to NUCAPS

— NUCAPS CO, was interpolated to the
more sparse AIRS

NUCAPS offline runs for global Focus Day 17
February 2015

— v1.5 (nominal CrlS res)
— v1.8.1 (full CrIS res)

For NUCAPS CO, profile EDRs on 100 RTA
layers are integrated to obtain total column

abundances (molecules/cm2) according to
Nalli et al. (2013)

5.(2) = f Ny d?

ne

— Z_Y(Z) ~ ZLQ = ZN\-,Q 82£
L

with stats being computed relative to the
AIRS v6 total column product

For NUCAPS CO,, stats are performed simply
for atmospheric column averages (in PPMV)

Nalli et al. — 2016 JPSS Annual 19



Total Column Carbon Monoxide (CO) EDR (1/2)

17 Feb 2015 Focus Day, NUCAPS v1.5 and AIRS v6 Accepted Cases

Preliminary AIRS v6 NUCAPS v1.5

x10"8 NUCAPS v1.5 acc CO (17-Feb-15, ASC) %1018

25 NUCAPS V1.5
,  Yield=63.4%

molecules:,’cm2
=
i
molecules/em?

maleculesfcm2
=
v
moleculesfem?

-100 0 100 -100 0 100
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Total Column Carbon Monoxide (CO) EDR (2/2)

17 Feb 2015 Focus Day, NUCAPS v1.8.1 and AIRS v6 Accepted Cases

Z
i
3
Kl
o

Preliminary AIRS v6 NUCAPS v1.8.1

x10'8 NUCAPS v1.8.1 acc CO (17-Feb-15,ASC)  x10'®

25 NUCAPSv1.8.1
. Yield=70.1%

molecules/cm?
=
v
molecules/em?

-100 0 100

%1018

molecules/cm?
molecules/em?

-100 0 100 -100 0 100
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NUCAPS v1.5 CO - AIRS v6 CO = |
17 Feb 2015 Focus Day, Accepted Cases \&F/ W

Preliminary NUCAPS v1.5 (Nominal CrIS Resolution)

NUCAPS v1.5 acc - AIRS CO (17-Feb-15, ASC)

NUCAPS v1.5 acc - AIRS CO (17-Feb-15, DES)

e AR R e L o P o

-150 -100 =50 0 50 100 150
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NUCAPS v1.8.1 CO - AIRS vb CO
17 Feb 2015 Focus Day, Accepted Cases

Preliminary NUCAPS v1.8.1 (Full CrIS Resolution)

NUCAPS v1.8.1 acc - AIRS CO (17-Feb-15, ASC)

50

NUCAPS v1.8.1 acc - AIRS CO (17-Feb-15, DES)
& . Mt - . e

e R e T N TR Y
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Validation of SNPP NUCAPS trace gas EDRs

CARBON DIOXIDE (PRELIMINARY)

Aug 2016 Nalli et al. — 2016 JPSS Annual 24



Preliminary

Mean Column Carbon Dioxide (CO,) EDR (1/2)

17 Feb 2015 Focus Day, NUCAPS v1.5 and AIRS v6 Accepted Cases

AIRS v6

AIRS v6 acc average CO2 (17-Feb-15, ASC)

&
S
. =
& NOIyusS™

o
&

£
% “
TArugnt oF &

NUCAPS v1.5

NUCAPS v1.5 acc average CO2 (17-Feb-15, ASC)
410

410
405

NUCAPS v1.5
‘" Yield = 63.4%

400

ppmv

400
395

ppmv

- e 395
390

390

410 410

405

405
400

ppmv

400
395

ppmv

. 7 233 {3 g 395
390
Aug 2016

390
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Mean Column Carbon Dioxide (CO,) EDR (1/2)

17 Feb 2015 Focus Day, NUCAPS v1.8.1 and AIRS v6 Accepted Cases

Preliminary AIRS v6 NUCAPS v1.8.1
AIRS v6 acc average CO2 (17-Feb-15, ASC) NUCAPS v1.8.1 acc average CO2 (17-Feb-15, ASC)
410 410
NUCAPSv1.8.1
405 405 .
Yield =70.1%
= =
400 £ 400 €
o a
395 395
390 390
410 410
405 405
= =
400 £ 400 £
o a
395 395
_80 | ¢
390 390
-100 0 100 -100 0 100
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NUCAPS v1.5 CO, - AIRS v6 CO,

17 Feb 2015 Focus Day, NUCAPS and AIRS Accepted Cases

Preliminary NUCAPS v1.5 (Nominal CrIS Resolution)

NUCAPS v1.5 acc - AIRS v6 acc lf:ll)2 (17-Feb-15, ASC)

-5

-150 -100 =50 0 50 100 150
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NUCAPS v1.8.1 CO, - AIRS v6 CO,

17 Feb 2015 Focus Day, NUCAPS and AIRS Accepted Cases

Preliminary NUCAPS v1.8.1 (Full CrIS Resolution)

NUCAPS v1.8.1 acc - AIRS v6 acc ‘.':02 (17-Feb-15, ASC)

-5

-80 =

| | | | | | _s
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Preliminary Global Statistics NUCAPS versus AIRS

(accepted cases)

V1.5 CrIS Nom Res V1.8.1 CrlS Full Res

Trace Gas EDR BIAS(%) STD(%) RMS(%) | BIAS(%) STD(%) RMS (%)
CO (asc) 17.8
CO (des) 15.7
CO, (asc) 1.4
CO, (des) 1.4
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0,, CO, CO, Trace Gas Summary

e The NUCAPS IR ozone (O,) profile EDR products are shown to meet JPSS Level 1 requirements

— The offline v1.5 (nominal CrlS resolution) ozone EDR has reached “Validated Maturity” based upon
coarse/broad layer statistical analyses versus
= Collocated global ozonesondes, including dedicated ozonesondes (Validation Hierarchy Method #4)
= Global Focus Day (17 February 2015) ECMWEF output (Validation Hierarchy Method #1)

— The offline v1.8.1 (full CrIS resolution) also meets Level 1 requirements based upon coarse/broad layer
statistical analyses versus
= Global Focus Day ECMWEF output
= Statistics are comparable to the ozonesonde-validated NUCAPS v1.5

e  For validation of NUCAPS carbon monoxide (CO) and carbon dioxide (CO,) EDRs, we rely on
satellite EDR Intercomparisons (Validation Hierarchy Method #2) versus collocated AIRS v6
— AIRS flown on Aqua is in the same orbit as SNPP and is thus ideal for collocations with SNPP
— NUCAPS v1.5 CO and CO, retrievals meet the relaxed JPSS Level 1 requirements for BIAS
— NUCAPS v1.5 and v1.8.1 CO descending orbit currently meet JPSS Level 1 requirements

*  Future Work
— Perform “spot-checks” of AIRS and NUCAPS EDRs using in situ datasets of opportunity

— Utilize a larger data sample (e.g., month) for the CO, validation, apply other techniques for QA (e.g.,
considering DOF, applying AKs, etc.)

—  Further optimization of NUCAPS full-resolution algorithm
— Investigate improvements in the ozone a priori
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SNPP NUCAPS Validation

THANK YOU! QUESTIONS?
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Retrieval of Trace Gases using
CrlS Full Spectrum Data

Xiaozhen (Shawn) Xiong'?, Q. Liu?,
A. Gambacorta3, C. Tanl?,
and other NUCAPS Team members

HMSG Inc.
2NOAA/NESDIS/STAR
3Science and Technology Corporation

JPSS Annual Meeting, College Park, 8/11/2016



Outline

Part I: Lessons Learned from AIRS and IASI Trace Gases Retrievals

. AIRS and IASI provide measurements of trace Gases (O, CO,, CO, CH,, N,O since 2002),

" Valuable information of gases distribution in Mid-Upper troposphere can be observed (examples) :
1) Enhancement of upper troposphere CH, over south Asia during Monsoon season;
2) Stratospheric Intrusion and its impact to CH, and Og;

" One more study to examine the possibility to combine AIRS and IASI data to make a long-term product;

Part I1: Preliminary Assessment to CrlS Trace Gases Retrievals and Improvements
1) Preliminary assessment to current trace gases retrieval in NUCAPS (DOF, Averaging Kernels) and

Improvements;

2) Monitoring the leakage of CH, from California Aliso Canyon Oil Field and Gas Storage Facility;

Summary and Future Works



Trace Gases Products

Total Column Ozone (DU)

2005.09.29

CH4, ;Jv — N O
e 2

1687. 1723, 1760. 1797, 1833. s o i = MRS N0 ot 407hPa

CO,, CO and CH, are listed as Level-1 requirement of
products of JPSS




—_— 1. AIRS Observed CH, Enhancement over
! | South Asia During Monsoon Season (JJAS)
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783-794, 2009 . e e




CARIBIC aircraft measurements proved significant increase of CH, as
AIRS observed in the same time over South Asia
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Pressure (hPa)
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2. AIRS Observed the Impact of Stratospheric
Intrusion to CH, and O,

Aircraft Measurements
HIPPO Ozone (ppb)
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One more study: to make a long-term product by
combing AIRS and IASI CH, Products

South Asia: repeatable increase of CH,
during Monsoon Season

South Asia (260 hPa)
1900 " ° T T T LI T LI L L TT T
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ArcticC: similar seasonal cycles from

; AIRS and IASI but has large difference
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= The above examples shows that AIRS and IASI can be used to
observe gases distribution in Mid-Upper troposphere, and it is

likely to combine AIRS and IASI data to make a long-term
product;

= CrlS started to operate in the full spectral resolution (FSR)
mode since Dec.4, 2014 - making it possible to retrieve
trace gases .
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@ CrlIS FSR data are available from NOAA/NESDIS/STAR, and it has 2211
channels as compared to 1305 channels in normal mode

ftp://ftp2.star.nesdis.noaa.gov/smcd/xxiong/ Red: Full resolution
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ftp://ftp2.star.nesdis.noaa.gov/smcd/xxiong/

Part 2: Preliminary Assessment to CrlS Trace
Gases Retrievals and Improvements

= First check to NUCAPS trace gases retrieval averaging
kernels and DOFs indicated the DOFs are much lower than

AIRS and IASI;

* |Improvements can be made after re-selection of channels,
as well as the update to QC,;

= Historically largest gas leakage in California provides a good
case to test if NUCAPS can capture this leakage;



Averaging Kernels and Degree of Freedoms
(DOFs) before and after Improvement for CO

Major Sensitivity: 300-650 hPa
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Averaging Kernels and DOFs Changes for CH,

Major sensitivity: 200-550 hPa
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Changes of CH, Distribution after the re-selection of
channels and update of QC (+10 ppb)
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» Historically largest gas leakage -- a good
case to test if NUCAPS can capture this
leakage;

» CrlS retrievals for two days before the
leakage (10/23/2015) and 1 week after have
been made in this analysis;




. CH, from Ascending Node — enhanced cH,
started in Oct.22,2015
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& cH, from 10/21 - 10/29/2015
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CO from 10/21 -10/29/2015
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CO, from Ascending Node
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Summary and Future Works

CrlS full spectrum data can be used to retrieve trace gases with similar
DOFs as AIRS and IASI, with its major sensitivity in the mid-upper
troposphere; however, to combine these three sensors to make a
consistent product from 2002 to beyond need more works ( larger
disparity existed in the Arctic between AIRS and IASI retrievals);

It is promising to use CrlS full Spectrum data to detect the leakage of
CH, during the historically largest Gas leakage from Aliso Canyon Oil
Field and Gas Storage Facility in 2015. However, more checks to other
possible uncertainties need to be done (cloud-clearing, transport);

Preliminary improvements in channels selection and QC have been
made, which show positive impacts to the retrieval products;

Validation is a key step but hampered due to lack of the measurements of
trace gases profiles. Improvement to QC will be one focus of future
works.
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3. Monitoring of N,O trend using AIRS

Mauna Loa, Hawaii, United States (MLO)

* * MLO NeO Carbon Cycle Surface Flasks
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Xiong, X. et al., 2014, Retrieval of Nitrous Oxide from
Atmospheric Infrared Sounder: Characterization
and Validation, JGR-atmosphere, 119,
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Validation: one Key step to evaluate the trace gases products

Locations of Validation Profiles
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Change of CO,
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The Cross-Track Infrared Sounder (CrlS) is a Fourier spectrometer covering the longwave (655-1095 cm-1, “LW”),
midwave (1210-1750 cm-1, “MW”), and shortwave (2155-2550 cm-1, “SW”) infrared spectral regions.

NUCAPS Phase |, Il and lll operations:
— Maximum geometrical path difference L =0.8 cm (LW), 0.4 cm (MW) and 0.2 cm (SW)
— Nyquist spectral sampling (1/2L): 0.625 cm-1, 1.25 cm-1 and 2.5 cm-1
— Total number of channels: 1305

NUCAPS Phase IV operations:

— Maximum geometrical path difference L = 0.8 cm in all three bands
— Nyquist spectral sampling (1/2L): 0.625 cm-1 in all three bands
— Total number of channels: 2211 + 12 guard channels

Motivation for a channel selection:

— Assimilation of full radiance spectra is not computationally efficient for near real time data processing.
— Achannel selection is required to expedite both data assimilation and retrieval processes.

— Attention must be paid to minimizing the loss of information content such that the final retrieval quality is not
deteriorated.
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Jacobians or Physical method

physically-based methodology

— channels are selected upon their spectral
properties

— each atmospheric species, we perform a
spectral sensitivity analysis and retain the
spectrally purest channels.

Other than spectral purity, priority is given
to:

— vertical sensitivity properties,

— instrumental noise

— RTA errors.

Jacobian method is suited for sequential
steps retrieval methodologies

works for simultaneous optimal
estimation retrieval techniques.

Channel Selection Methods: {
Two Schools of Thought

Rodgers method

follows a statistical iterative
approach

— channels are incrementally added
after being tested against an increase
in degree of freedom.

This methodology is suited for
simultaneous optimal estimation
retrieval techniques.

Both methods:

a constant channel selection is
normally used

derived as an average from
multiple optimal selections
computed over different
geophysical regimes (polar, mid
latitudes, tropical, land, ocean,
desert).
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e NUCAPS required all sky operational products:

— Cloud cleared radiances

— Cloud top pressure and fraction

— Surface temperature

— Vertical temperature

— Water vapor

— Trace gases: O3, CH,, CO, CO,, SO,, N,0, HNO,

e Future candidates:
— NH3(Ammonia) HCO,H (Formic Acid), CH;COOONO, (“PAN”)

* Most channels are largely contaminated by clouds, temperature and water vapor signals.
* A “trace gas” is a gas which makes up less than 1% of the volume of the Earth’s atmosphere.
*  Trace gas radiative signals are in the range of the instrument noise.

* Answer: Spectral purity combined with a sequential retrieval approach is essential for the retrieval of the
full list of NUCAPS products, particularly for trace gases, under all sky conditions.

In depth description available in:

A.Gambacorta and C.Barnet, Methodology and information content of the NOAA NESDIS operational channel selection for the
Cross-Track Infrared Sounder (CrlS), IEEE Transaction on geoscience and remote sensing.

Vol. 51, No. 6, 2013. DOI: 10.1109/TGRS.2012.2220369
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Brightness temperature difference ( ABT ) terms represent the sensitivity of each channel to a given

perturbation species and are indicative of the degree of “spectral purity” of each channel.

 Perturb these gases (left column) by that amount or percentage (right column), you obtain a perturbation

(ABT) in brightness temperature (figure above).
* The magnitude of ABT describes how sensitive a channel is to the perturbed species.

* You select those channels that tend to be sensitive to only your species of interest with minimum
interference from the other species.

*You still account for the residual interference as an error term in the retrieval measurement error
covariance.

5
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CO Channel Selection

A test case study from the 1 May
2016 (Ft. McMurray, Alberta Fire
Case)
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* Why you are showing the CO case?

* Only when switched to high spectral resolution, CrlS spectrum (red curve, bottom part)
shows the distinctive signature of CO absorption (red and black curve, top figure). :

e Blue cross symbols: CO high resolution channel selection.
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7 May 2016 NUCAPS
retrieval over North
America
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Highlighting the Ft.
McMurray, Alberta Fire

Pressure level: 496.62 hPa

120+ ppbv over fire
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1J7Z| CO channel selection for

Ft. McMurray, Alberta fire case

100 e T "'k']t' =678I """""
9 = 90.0
\ Zlond = 87,1
| TPW = 0.84 gq/cm?
05 = 368.8 DUz=12 km
CO = 121 ppb ’
z=10 km
Z=08 km
72=6 km-
YIRS |
25 z=4 km,
z=2 km|
000, TRRTTr I i .
0.00 0.01 0.02 0.03 0.04

Instrument Sensitivity(AT) for 5% change in CQ, K/km

The selection was made
on multiple geophysical
regimes (polar, mid-
latitude, tropics, and fire)
to

 ensure global applicability.

e examine polluted vs relatively
clear regimes.

We are testing CO selection
over focus areas to ensure
global optimality and to serve
users needs
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e |Initiative is based on 2 recently funded JPSS proposals.

1. Greg Frost: “Understanding emissions and tropospheric chemistry
using NUCAPS and VIIRS”

2. Brad Pierce: “High Resolution Trajectory-Based Smoke Forecasts using
VIIRS Aerosol Optical Depth and NUCAPS Carbon Monoxide Retrievals “

* Models are used to interpolate the sparse aircraft observations to the
satellite temporal, spatial, and vertical sampling characteristics for detailed
validation

 NUCAPS (and AOD f/ VIIRS) will be used within IDEA (Infusing Satellite Data
into Envir. AQ Applications)

http://www.star.nesdis.noaa.gov/smcd/spb/aq/

10


http://www.star.nesdis.noaa.gov/smcd/spb/aq/

B

S 7L Future Work:

|

Ve

M SCIENCE & TECHNOLOGY CORP.

Maintenance and Optimization

e We will re optimize and deliver the channel selection
once the new version of the RTA is delivered

 Expected improvements
— NON LTE and water vapor regions

e Continue to run NUCAPS various global cases
e Channel selection for |ASI

e Continue to ensure that users obtain the best products
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Tailoring NUCAPS trace gas products to user needs
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Doing Science within an Operational Framework

* Who cares about this problem?

e Can we find a robust, stable scientifically credible solution?

* |s the solution operationally viable, i.e. cost effective?



Sounding Initiative: A User-Oriented Approach to Development

I N P U I See NOAA Test Bed Conceptin Ralph et al. 2013 BAMS

User Need Requirements Develop new

Data Problem ) capability
A Innovation

Loops are maintained by
active & collaborative

Appl ication User-Developer Partnerships
Revise Evaluate This leads to:
& Test (1) Improved user/developer

& Refine understanding

(2) Products tailored to user

r applications
OUTPUT - Operationalize User-Vetted Recommendations

- Develop/Enhance Applications




NOAA PGRR Sounding Initiative: NUCAPS CO and CH4

INPUT

STC NUCAPS Team in

and Quality Control (QC)

Need for Averaging Kernels (AK) collaboration with:

\J

What are the fundamental, physical limits?

What are things we can change & tailor?

OUTPUT

m NESDIS/STAR
experimonal NOAA/ESRL/CSD

CIRES + CIMSS

products

Working with multiple users
in multiple applications to
ensure that everyone
benefits

Application

Try, Test, Evaluate
Revise, Refine

Present NOAA/STAR with fully vetted recommendations and solutions

Operationalize AK product and QC changes




Auxiliary Data Distribution — Averaging Kernels

Our primary partners in this initiative:
Brad Pierce (PGRR PI): High resolution trajectory-based smoke forecasts
Greg Frost (PGRR PI): Understanding emissions and tropospheric chemistry using NUCAPS and VIIRS

* At present, the NUCAPS trace gas user community is largely made up of scientists, not forecasters or air quality
monitoring agencies yet

* Users have need for Auxiliary products that are not available in Operational CLASS product to cast light on the

quality of products and aid in evaluation/characterization — Specifically the Averaging Kernels (AK) and Degrees of
Freedom (DOF), both metrics of uncertainty and information content

* We developed the capability to distribute AK and DOF to users in netCDF files.

NUCAPS stores all the building blocks with which to calculate AK and DOF in binary files (that are currently
discarded for operational products, but available when run off-line)

For each granule of measurement and a target parameter (e.g., CO, CH4), we generate a netCDF file that contains
all the relevant retrieval and auxiliary information that enables users to do meaningful characterization.

Each netCDF files is ¥2.5MB in size

These netCDF files are experimental products and available only upon user request.

We will evaluate product value, fine tune its design and eventually make recommendations for operationalization



Quality Control — A necessary step in using Satellite Data

NUCAPS CO without QC

NUCAPS CO with QC
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NUCAPS QC indicates quality of T/q from IR and MW retrieval steps
Designed to meet system requirements for global retrieval statistics; 1K Tand 10% q



Can we adjust NUCAPS QC and improve Retrieval Yield?

. . ) CH4ger (ot P=496.6) (1306 ) .
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Can we tailor QC to specific parameters? — CO

Night Time
AM orbit
(~01h30)

Night time DOF for
accepted cases has
less variation

There is a clear
difference between
night time DOF for

accepted vs
rejected cases

QC should typically
filter out those
retrievals with low
DOF (or quality) and
retain those with
high DOF

The larger the DOF,
the more
information is
available in the
radiances

Degrees of Freedom
s 3}

o
o

Degrees of Freedom

Accepted Retrievals (QC = 0)
DOF = ~1.1
NUCAPS CO; 05/01/2016; AM orbit over USA

Rejected Retrievals (QC # 0)
DOF =~1.1

# retrievals

20 NUCAPS CO, 05/01/2016

NUCAPS CO; 05

# retrievals

Day Time
PM orbit
(~13h30)

Degrees of Freedom
(DOF) as indicator of
information content

Mean DOF =1.2
No matter what the
time of day or QC

Daytime DOF has the
same variation and
systematic patter
irrespective of QC

There are many CO
retrievals with

DOF >1 in rejected
cases (and vice versa)
suggesting
opportunity to
develop CO-tailored
QC. The quality of
NUCAPS CO appears
to be largely
independent of T/q
Qc



Night Time
AM orbit
(~01h30)

DOF for rejected
cases has less
variation and the
average is lower
than the DOF for
accepted cases
suggesting that
current QC
successfully filters
out the low quality
CH4 retrievals

Can we tailor QC to specific parameters? — CH4
NUCAPS CO, 05/01/2016

| | | I }
I ‘ ‘ 0.5 ’ e e

| ‘
Acce
DOF = ~0.6

T T T

NUCAPS CH4; 06/03/2013; AM orbit over USA

pted Retrievals (QC = 0)

! “ 7.0L
Rejected Retrievals (QC # 0)
DOF =~0.4

DOF

NUCAPS CH4; 06/03/2013; PM orbit

over USA

# retrievals

# retrievals

Day Time
PM orbit
(~13h30)

Accepted retrievals
have higher DOF
than rejected cases
for both day and
night time suggesting
a stronger
dependence of CH4

on T/q QC

Accepted retrievals
have high DOF
variability suggesting
a strong dependence
on prevailing atm
conditions

There are some CO
retrievals with

DOF > 0.5 in rejected
cases suggesting
opportunity to tailor
QC for CH4



NOAA PGRR Initiative: NUCAPS CO and CH4

INPUT

Need for data at
multiple scales

\J

Develop objective
methods for non-

i uniform data
A Innovation

Application |
STC NUCAPS Team in
Data at range of . _
space-time scales to collaboration with:
model dynamic
processes

NOAA/ESRL/CSD
CIRES
NASA/JPL, etc.

OUTPUT - Empowered Users/Developers

Adoption of new methods
- Improved Trace Gas Climatologies, etc



Characterizing Atmospheric Chemistry

Normalized Power

The objective is to understand how NUCAPS trace gases scale with respect to TPW in order to
constrain the modeling of emission, chemistry and transport.

(km) 2000. 1000. 500.  250.  125.  (km) 2000. 1000. 500.  250.  125.

R , -
[ \ TPW power spectra P CH4avg power spectra
™ —— NUCAPS obs. [ —— NUCAPS obs.
S — Model - NUCAPS sampling ~ Model - NUCAPS sampling
01 F "'\"%\ <~ Model - Full Grid sampling 01 <~ Model - Full Grid sampling| 3
0.01 0.01 E
N\i\\'\ ~ \:
0.001 0.001 |- \/ﬁd—
[ TPW [ 700-200mb average CH,
- 13 days between 6/10/13 and 7/10/13 13 days between 6/10/13 and 7/10/13
0.0001 & ‘ 0.0001 &, —ttl . o
3 4 S [ 7 8 9 2 3 N 5 6 7 8 3 4 S 6 7 8 9 2 3 “ S 6 7 8
0.001 0.001
wavenumber i’ wavenumber '

Average normalized power spectra for TPW (left) and 700-200 mb average CH, (right) for the
NUCAPS data and the WRF-Chem model output. Dashed line is the -5/3 power law, and length scale is
shown on the top axis. Thin lines are regression fits between 200 and 1000 km length scales.

Figures by Stuart McKeen



Spatial Variability in Satellite Data

Night Time
AM orbit
(~01h30)

Standard deviation of €
NUCAPS T at different ©
spatial scales

“Variance scaling”
methods allow the
characterization of
nonlinear
atmospheric
processes and cross-
scale energy transfer.
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Satellite data have
sampling challenges
different to any
other data source.

We need to find
methods that
aggregate spatially
non-uniform data in
objective manner
and do not introduce
systematic effects in
end result.

Collaboration with
Stuart McKeen
(ESRL, CIRES)

Brian Kahn and Van
Dang (NASA/JPL)

Figures by Van Dang
NASA/JPL



Temporal Variability in Satellite Data

Alaska (60—70N, 165—90W), 5 day average

Carbon Monoxide

12 years of AIRS retrievals

140 .
= Experiments in temporal
Cco 5120 averaging.
8 100
80 Aqua and SNPP have repeat
cycles of 16 days. How does
1920 Methane the long term temporal
pattern change when we
average different sets of
CH4 days together?
Surface Temperature
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Figure by Colby Francoeur, STC



Lessons Learned

 The NOAA Sounding Initiative allows Users and Developers to collaborate

and more effectively work towards solutions — we are all learning in the
process

* There is a user need to not only improve the retrieval quality, but also the
data product design, i.e., to to tailor the type of information made available
in the data product files

» Given that QC removes data, we need to understand how the systematic
patterns in data sampling affect analyses and propagate into applications,
especially those that are concerned with dynamic, complex processes

» Qur efforts will lead to products tailored to user needs AND applications
tailored to satellite data






Evaluation of NUCAPS CO Retrieval and High
Resolution Smoke Trajectory Forecasting

Brad Pierce (NOAA/NESDIS/STAR)

Collaborators:

Nadia Smith, Antonia Gambacorta and
Chris Barnet (STC)

Jim Davies and Kathy Strabala (CIMSS)
Greg Frost and John Holloway
(NOAA/ESRL)

Shobha Kondragunta (NESDIS/STAR)

(May 1, 2016) — 9:57 p.m., Mayor Blake has declared a State of
Local Emergency in Fort McMurray localized to Gregoire.

(May 4, 2016) —Mandatory evacuation of Anzac, Gregoire Lake
Estates and Fort McMurray First Nation.

(May 16, 2016) The evacuation zone has increased north of the city
of Fort McMurray.

(May 18, 2016) A voluntary, phased re-entry for the safe return of
Fort McMurray residents will begin June 1 if future wildfire
conditions do not delay restoration efforts.

Fort McMurray wildfire Case study




YIRS ROD and AQ1 JUI6UOUO
Smoke mask FRP (MW) P, ug/m) 0T CS P P N CAPS t E D R
— <100+ 10050 e sopi000 D L s _—_— ] L J race g as
00 02 [ 1} 08 08 10

eeeeee

O Include averaging kernel, apriori,
interpolation and inverse matrices for
applying to model (or insitu) profiles for
data assimilation (or validation)
activities.

Dominican
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O Files also include surface parameters,
degrees of freedom, and combined
microwave and infrared quality flags.

Q Will be used within CSPP for IDEA-I
NUCAPS smoke forecasts and also in
collaboration with colleagues at
NOAA/ESRL for NUCAPS CH4 and CO
retrieval validation activities.
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CSPP NUCAPS trace gas EDR

O Include averaging kernel, apriori,
interpolation and inverse matrixes for
applying to model (or insitu) profiles for
data assimilation (or validation)
activities.
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RAQMS CO (ppbv)

Global Assimilation 4 Regional Prediction Validation SONGNEX 2015

. Shale Oil and Natural Gas Nexus

45 —|

Bealtime Air Quality Modeling System \v :

Evaluate RAQMS vs insitu CO during o
NOAA/ESRL SONGNEX 2015 for indirect
NUCAPS CO validation "l W
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NUCAPS verses RAQMS Column CO May 06, 2016 AM Orhbit




NUCAPS verses RAQMS (AK) Column CO May 06, 2016 AM Orbi
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RAQMS CO (ppbv)

RAQMS vs NUCAPS AM Orbit

(May 1-16, 2016)
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High Resolution Trajectory-Based Smoke Forecasts

1 Goal: Provide low latency, web-based, high resolution forecasts of
smoke dispersion for use by NWS Incident Meteorologists (IMET) to
support on-site decision support services for fire incident management

teams.

= Project utilizes VIIRS AOD and NUCAPS CO retrievals to
Initialize trajectory-based, high spatial resolution smoke dispersion

forecasts.

= Project is an extension of Infusion of satellite Data into
Environmental Applications-International (IDEA-I) trajectory
based aerosol forecast capabilities and will be tested and released
within CSPP prior to transition to Operations at NESDIS.

JPSS Proving Ground and Risk Reduction Fire and Smoke Initiative



VIIRS RGB and AOT 20160506
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IDEA-I High resolution (NAM 4km) trajectory forecast
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From Andy Edman/NWS
SPECIAL WEATHER STATEMENT
NATIONAL WEATHER SERVICE TWIN CITIES/CHANHASSEN MN
127 AM CDT SAT MAY 7 2016

...SMOKY CONDITIONS TO PERSIST THROUGH THE OVERNIGHT HOURS...

WIDESPREAD SMOKE FROM BOTH THE LARGE CANADIAN WILDFIRES AND A
SMALLER WILDFIRE NEAR LAKE HATTIE IN HUBBARD COUNTY MINNESOTA HAS
BLOWN INTO CENTRAL MINNESOTA...PARTICULARLY WITHIN AND NEAR THE
TWIN CITIES METROPOLITAN AREA...DUE TO STRONG WINDS FROM THE
NORTHWEST. VISIBILITIES HAVE BEEN REDUCED TO BETWEEN 1 AND 3
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AR gEiDOr'ﬂb Heights Contoured

MILES...AND AIR QUALITY HAS BEEN SIGNIFICANTLY IMPACTED.
3 = b . )
ki 4\ ~.l & ';"
& e & _k g t: A
\:.’;': Sr
g
J{aﬂ
)
S awaii
2 1 i o
“\ m Generated: 2018-05-0921:51:092

= ——— : 40 k. N
Ver ngitude Latitude
. — - ! Action Day

https://www.airnow.gov/




VIIRS RGB and AOT 20160509
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2016050979 High Resolutian WIIRS AQD Tr ectmries
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VIIRS True Color Image May 9, 2016 20:15 UTC

Smoke from Fort McMurray fire imbedded with low pressure
system over northern Canada

Questions?

Hudson Bay
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NOAA « NESDIS | Understanding
Il Emissions and
Tropospheric

. Chemistry using

. .}:' 2/, " NUCAPS and VIIRS

| A ‘J A JPSS Proving Ground/Risk Reduction Project

NOAA OAR ESRL: G. Frost, S. McKeen, S.-W. Kim, R. Ahmadov,
M. Trainer, Y. Cui, W. Angevine, T. Ryerson, J. Roberts,
C. Warneke, C. Granier, K. Rosenlof, J. Brioude

STC: C. Barnet, N. Smith, A. Gambacorta
NOAA NESDIS STAR: R. B. Pierce
NOAA NESDIS NCEI: C. Elvidge




Project Overview

Goal: Use aircraft data and atmospheric models to characterize
NUCAPS CH, and CO retrievals

Objectives:

e \alidate atmospheric chemical-transport models with aircraft
observations

e Simulate spatial and temporal variability of CH, and CO

e Evaluate NUCAPS CH, and CO retrievals with validated model

e Assess ability of JPSS datasets to constrain modeled CH, and CO

End Users: Researchers and forecasters at NOAA and elsewhere

Close collaboration of NOAA ESRL team with STC NUCAPS retrieval
team and NESDIS STAR analysis team is absolutely critical to this
project’s success and adds value to PGRR investment



ESRL Research Assets P\

ESRL employs unique combination of observational
platforms, analy5|s approaches, and human expertise

http://www. eer noaa gov



http://www.esrl.noaa.gov
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http://www.esrl.noaa.gov/csd/projects/senex/

Detecting Source Signatures with Aircraft Data
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Pressure (hPa)

CrlS CH, Vertical Sensitivit

CriS - CH,
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Cris Sensitivity(AT/AZ) for 5% change in CH, mixing ratio, K/km

Xiaozhen Xiong et al., CrlS Trace Gas Data Users Workshop, 18 Sept 2014



NUCAPS vs. WRF-Chem Model Comparison

Brad Pierce, Stuart McKeen



NUCAPS CH, Science Retrievals:

Initial Data Processing Issues

Many granules not processed due to
failures in pre-processor code, possibly from
too stringent ATMS QC threshold

“Acceptable” QC (QC = 0): Daytime data
rejection >> nighttime over land, likely from
too stringent CrlS QC threshold

Very noisy CH, signal. Noise filter or averaging
may be needed.

CrIS averaging kernels not initially available

Chris Barnet



Improved NUCAPS Science Code
Quality Control Thresholds

Before QC Changes
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CrlIS Averaging Kernels Now Available
in Science Code Output

Model without AKs Model with AKs

RAQMS vs NUCAPS (700-200mb} CH4 SENEX 2013
LI | | L

RAQMS (with AK) vs NUCAPS (700-200mb) CH4 SENEX 2013
—T — T T —
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Brad Pierce



Time
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Analyzing Scale Dependence of Variance
Compare SENEX-2013 aircraft and WRF-Chem model CO
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Stuart McKeen



Comparing Average Power Spectra: Aircraft and Model
SENEX 2013 flights within the boundary layer and at high altitude (~500mb)

14 Daytime PBL transects (300-700 m AGL) 7 Hi Altitude transects (480-530 mb)
[ [ .
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SENEX-2013 flight day
14 transects, 10:00am-6:00pm EDT, 7 transects, day and night,
with N > 4096 for 1-Hz data with N > 2048 for 1-Hz data
21.6 Hours of flight time 5.4 Hours of flight time

Stuart McKeen



Normalized Power

Comparing Average Power Spectra: Aircraft and Model
CH, and H,0 mixing ratios within the boundary layer and at high altitude (~*500mb)

14 Daytime PBL transects (300-700 m AGL) 7 Hi Altitude transects (480-530 mb)
410.km 100.km  33.km 10.km  3.3km  200.km 100.km 33.km 10.km 3.3km

~

Normalized Power

10°F 0%
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Power spectra for CHzmand H,O show similar slopes and tendencies.
At high altitude the slope is about -5/3 for longer (>50 km) length scales.

Model H,O vapor captures variability for length scales > 3AX in the PBL, > 7AX at 500mb.

Adding/Removing model Oil/Gas emissions impacts CH, power spectra for both the PBL
and high altitude transects.

Stuart McKeen



Comparing Average Power Spectra: Aircraft and Model

Spectral Slope (unitless)

Data at high altitude (~*500mb)
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Stuart McKeen



Comparing Average Power Spectra: NUCAPS and Model
Total precipitable water (TPW) data, 6/10/13
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Normalized Power

Comparing Average Power Spectra: NUCAPS and Model
TPW and CH, data, 13 days between 6/10/13-7/10/13
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Spectral Slope (unitless)

Comparing Average Power Spectra: NUCAPS and Model
6/10/13-7/10/13
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Some Next Steps

Use averaging kernels to scale model vertical sensitivity
to match CrlIS

Incorporate updated NUCAPS data from science code
processing and filter with revised quality control flags

Examine alternative scale variance approaches beyond
Fourier analysis to evaluate NUCAPS data

Examine NUCAPS CH, and CO during other recent
aircraft field experiments (2015 and beyond)



A Surface-to-Space Atmospheric Carbon Observing
System for Decision Support

Arlyn Andrews
NOAA Earth System Research Laboratory

—

STAR JPSS 2016 Annual Science Team Meeting
8-12 August 2016



Outline

* Current and planned surface, aircraft, and
satellite measurements of atmospheric CO,
and CH,

* Magnitude of important carbon emissions and
sink signatures

* A vision for a future observing system to
provide decision support services

Focus here is on CO,, but story for CH, is similar.



There is broad and growing consensus that rising

atmospheric CO, is a planetary emergency:

The Paris Agreement at the 215t Conference of the Parties of the
UNFCCC was negotiated by representatives of 195 countries.

The agreement opens for signature on Earth Day, 22 April 2016.
Some 120 countries, including the US and China, are expected to

sign.

PARIS2015

CONFERENCE DES NATIONS UNIES
SUR LES CHANGEMENTS CLIMATIQUES

COP21-CMP11

United Nations
Framework Convention on
Climate Change



Data Transparency: New Dynamic at COP-
21 in Paris

Posted by Angel Hsu, Andrew Moffat and Kaiyang Xu on Dec 22, 2015

"-—'"“ o From the Paris Climate Negotiations
&'3'.1”.5]

The Paris Agreement and decision together mention “transparency” 30 times. Language is often
open to interpretation, yet the Agreement’s mandate is clear: each country is to regularly provide
standardized national GHG emissions inventories and “information necessary to track progress
made in implementing and achieving its nationally determined contribution” (Article 13). This
provision, part of an agreement signed by all Parties including the U.S. and China, marks a step
forward toward gaining clarity on what the world is doing to address climate change.

There is an urgent need to transition carbon research efforts into a state-of-the
science greenhouse gas information system for decision support. Long-term

monitoring of atmospheric CO, and CH, will be an essential component of this
system.



Several recent reports describe measurement requirements for carbon

observations to advance science and to support policy:

_—[de;

CARBON STRATEGY

A U.S. Carbon
Science Plan‘

 VERIFYING GREENHOUSE
GAS EMISSIONS =~

METHODS

TO SUPPORT
INTERNATIONAL
CLIMATE

lak,-Robert B. Jackson, AGREEMENTS

ChristophejslsrSabie; and
le ScienceWorkin 00

OCEAN

ACIDIFICATION

A NATIONAL STRATEGY TO MEET THE
CHALLENGES OF A CHANGING OCEAN




GLOBALVIEW-CO2, 2013
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* Current knowledge of global CO, and CH, budgets is based primarily on in situ
measurements, with satellite data products becoming available during the past decade.



The Evolving Near-Infrared Atmospheric

Carbon Measurement Capabilities
viSat SCHIAMACHY
N

If carefully coordinated, these missions can be
integrated into an ad hoc constellation and their
measurements can be combined to produce a
continuous data record.

PAST

However, none of these
missions provides the
capabilities needed to
identify carbon/climate
tipping points

PRESENT

TanSAT+ .
FengYun 3G,
/.

NEAR FUTURE

LATER

- Slide courtesy of Dave Crisp, NASA JPL




Tracking emissions and sink changes with atmospheric data:
A very hard problem



Tracking emissions and sink changes with atmospheric data:

A very hard problem

In Situ Large-Scale CO, Observations Working
Group:

Bender, M., S. Doney, R.A. Feely, I. Fung, N.
Gruber, D.E. Harrison, R. Keeling, J.K. Moore,
J. Sarmiento, E. Sarachik, B. Stephens, T.
Takahashi, P. Tans, and R. Wanninkhof

Note: the report covers oceanic and
atmospheric observations, but for this talk
focus is on atmospheric measurements.

A Large-Scale CO. Observing Plan:
In Situ Oceans and Atmosphere (LSCOP)

A Report of the In Situ Large-Scale CO,
Observations Working Group

A contribution to the implementation of the
U.S. Carbon Cycle Science Plan, April 2002



Our future observing system should have the following characteristics:

e Regional spatial resolution, down to 10° km? on the continents and 107
km? over the oceans, with an accuracy of 0.1 Gt C/yr. This resolution
will enable meaningful quantification of processes regulating surface
carbon exchange. An ability to see the effects on atmospheric CO9
of specific processes and mechanisms on these spatial scales will allow
a marked increase of confidence in our understanding and predictive
capability.

e Integration of satellite observations. The in situ measurements should
be able to stand on their own, but will be merged with satellite CO,4
data if and when these become available, providing crucial accuracy
to the latter. Space-based observations of the COs mole fraction in
the atmospheric column are expected to have nearly complete spatial
coverage, but lower chemical resolution and accuracy.

e Assimilation of all available data. Data assimilation models must be
an integral part of the observing system. The models should assimilate
weather and CO» observations, and remotely sensed indicators of pri-
mary productivity. They should be high resolution in time and space,
dynamically consistent, and include carbon processes|

Large Scale CO, Observing Plan, April 2002



Magnitude of atmospheric signature of various carbon fluxes:

Table 2-1: Rate of change in integrated vertical column abundance for specific CO,
sources and sinks.

Source Assumptions ppm /day

Los Angeles Basin 12 x 10° people, 4,000 km?, 1100 mol +10
C/person/day

Netherlands 16 x 10° people, 40,000 km?, 500 mol +0.6
C/person/day

Germany 83 x 10° people, 350,000 km?, 580 mol +0.4
C/person/day

Photosynthetic Uptake Harvard Forest, July -1.2

U.S. Carbon Sink 1 Gt C/yr, constant in time, uniform| -0.08
over the lower 48 states

Southern Oceans ApCO2 = -30 patm, wind 15 m/s -0.06

Eastern Equatorial Pacific ApCO2 = 100 patm, wind 7 m/s +0.04

If residence time of air over Los Angeles Basin is ~3 hours, then column signal
downwind would be 1.25ppm.



Signal comparisons and measurement requirements for continental-scale fluxes

Source or Sink Emission Rate Column CO, signal
(GT C / year) downwind of

continent
(ppm)

US fossil fuel emissions 1.4 0.7

20% emissions 0.28 0.14

reduction

Biological Uptake 5.8 2.9

during July

Climate Induced 0.2 0.1

terrestrial anomalies

Detection of subtle signals resulting from changes in emissions and from climate-
induced biological flux anomalies will require sensitivity of ~0.1 ppm in X,
maintained over many years.



Space-based observations of megacity carbon dioxide
Eric A. Kort,"? Christian Frankenberg,2 Charles E. Miller,” and Tom Oda>*

a) b)
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Figure 1. Observed Xcp, urban dome of Los Angeles from June 2009 to August 2010. (a) Nightlights map of the
Los Angeles megacity and surroundings. Selected GOSAT observations within the basin (pink circles near 34°N,
118°W) and in the desert (red triangles near 35°N, 117-118°W). (b) Time-series for basin and desert observations averaged
in 10-day bins. (¢) The difference between 10-day block averages of basin and desert observations. The dashed black line
shows the average difference (3.2 £+ 1.5 ppm). All error bars plotted are one-sigma. Note Bakersfield is located near
35.4°N, 119.0°W.

GEOPHYSICAL RESEARCH LETTERS, VOL. 39, L17806, do1:10.1029/2012GL052738, 2012



Power Plant Plume Sampling by the NOAA WP-3D Aircraft

Texas: 16 Sept 2006 400
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Delta CO2, ppm

Monticello (18.3 MTon CO,/yr 1.98 GW)
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* Current and planned satellite 400

CO, sensors do not have large
enough field of view for
emissions monitoring.

- 395

390
 Geostationary or Low Earth

Orbiting mapping satellites
have been proposed to
monitor emissions from large
point sources and urban areas.

- 385

380

375

OCO-2 swath width is ~10km. Figure
shows A-train afternoon orbit with
10x10 km pixel size.



Boundary Layer versus Column CO,:

CarbonTracker July 2005 (mean) CO, sampled at 13:30 LST

column

e R 3 e
range 22.1 (361.1 to 383.3) umol mol-" range 7.9 ppm (373.0 to 381.0) umol mol-’

HJH:F—) [CO,)umol mol'  NOAA Earth System Research Laboratory @
CarbonTracker CT2015 release v

350 355 360 365 370 375 380 385

* Relevant signatures of CO, and CH, emissions are very small in the column --
detection with satellites will be extremely challenging.

* Insitu measurements can be made very precisely, but measurements are sparse and
variability in proximity to sources is large.



Pressure Altitude, km

Satellite Sensor Averaging Kernels
PASSIVE ACTIVE (Laser)
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Combination of thermal-IR and near-IR satellite measurements should enable
separation of boundary layer versus free-troposphere signals with rigorous data
assimilation techniques.




Commercial aircraft are an underutilized platform for atmospheric sampling
and could provide critical data for evaluating satellite retrievals and for flux
estimation:

Japanese CONTRAIL program has been making continuous CO2 measurements on Japan
Airlines flights since 2005:

90N

* Fjve aircraft

e 20 Airports SO

e >2000 vertical profiles =
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European In-service Aircraft for a
Global Observing System (IAGOS)
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Plans to add CO, and CH, as soon as certification is finalized.

Figure courtesy of Andreas Volz-Thomas



IJAGOS-CORE Flight Routes

> 8300 flights July 2011 - May 2016

8086 Flights from 20110701 to 20160405

+80 Airlines
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NOAA already has the WVSS-2 commercial aircraft program for measuring water
vapor from more than 100 commercial aircraft:

united Parcey

Photo Credit: UPS Dispatch
Contact for Usage: Randy Baker/UPS; Email: airirtb@ups.com

_ | S oy
N i) e
28 KAt
18 Kit
AN e 5 Kt
29 July 2015 - 30 July 2015 — ~ A

28-Jul-2015 15:00:00 -- 30-Jul-2015 14:59:59 (71535 obs loaded, 69563 in range, 20643 shown)



Final Points

New investment and coordination of existing resources will be required to realize a
global greenhouse gas information system for decision support.

* Sophisticated data assimilation systems are needed that can utilize in situ, near-IR and
thermal-IR measurements.

* A thorough and coordinated approach is needed to evaluate retrievals from current and
future greenhouse gas missions and to establish continuity across missions.

* Careful observing system design experiments are needed to evaluate cost, risk, and
information content of proposed new measurements.
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Pressure

Methane profile at ~55 N in July 2006
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~10% of total CH, columrx

400 —
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~65% of total CH, column

800

1000

~25% of Total CH, column

1000

1414
CH, (ppb)

Primarily sensitive to
sources really really far
away from measurement

Primarily sensitive to sources
~1000’s of km away

Primarily sensitive to sources ~100’s of km away
from measurement



Pressure

Methane profile at ~55 N in July 2006
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Chemistry, transport, and tropopause height

Transport and Chemistry

Boundary layer height, transport, and chemistry



Pressure

Estimating Fluxes Using Surface Network
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Pressure

Estimating Fluxes Using Total Column Data
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Need accurate model calculations of
transport and chemistry over very long
length scales (¥1000’s of km)



Estimating Fluxes Using Methane Total Column and Profiles from a GEO Orbit
Bousserez et al., ACP 2016

Use of Thermal IR and Near IR radiances
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CH A flux cumulative sensitivity [%]

Sensitivity of Total Column and Lower-Tropospheric Methane (at high
latitudes) to Methane Fluxes Using the Adjoint of the GEOS-Chem Model
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Pressure

Estimating Fluxes Using Profile (or Lower Tropospheric Methane Measurements)
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Example of Lower-Tropospheric Methane from GOSAT and TES:
GOSAT and TES Total Column Averaging Kernels

Normalized TES and GOSAT Averaging Kernels
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Averaging Kernel




Comparison of GOSAT Total Column and Aura TES FT/Strat Column (~850 hPa to TOA)

GOSAT Total Calunn (July 2009) 7ES750hPa TOA(deM

Precision ~15 ppb Precision ~15 ppb
Bias ~-17 to 2ppb Bias ~26 ppb
Parker et al., GRL 2011 Worden et al., AMT 2012; Alvarado et al., 2015

Both data sets use optimal estimation = a priori, vertical sensitivity (averaging kernels),
and aposteriori uncertainties for noise and interferences are provide in the product files



Some Math: Derivation of Averaging Kernel and Uncertainties

C =C%+Cyh"A(x — x%) + cairz h's§;
i

EL = Etot —Cy
C, = Cit + Cair by (x, — x[) + Cair( b, — huA'{J]IE.:IS)(xu —xy) + Cairz_h‘si
i

Divide above equation by the column of dry air in the lower troposphere and re-arrange and combine
terms and we get:

R, =X04a(x —x%)+ Cyp/CHT Z hs,
i

Now we have an equation that is similar to that described in Rodgers (2000).
Note amplification of uncertainties by about a factor of 4 due to C;,./C{"" term

Worden et al., AMT 2015



Pressure (hPa)
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Reduced sensitivity of lower
tropospheric estimate to stratosphere
and upper tropospere = Reduced
uncertainties due to transport and
chemistry

14

Typical Averaging Lower Trop “column
averaging kernel peaks at 900 hPa

-> Greater sensitivity to nearby
methane sources



CH, PPB
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Comparison to surface data (via GEOS-Chem model) suggests that data are

biased low by ~65 ppb)



Comparison between data and model (using averaging kernel and a priori
constraints)reveal regional enhancements over methane sources
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Lower Tropospheric Estimates from CRIS and TROPOMI

e TROPOMI ~1000X soundings relative to GOSAT ~same precision and accuracy as GOSAT

e CRIS ~ 10000X soundings relative to TES “same accuracy and better precistion than TES

* Precision of GOSAT/TES estimate ~30 ppb so precision of TROPOMI/CRIS estimate ~< 1 ppb

* Greatly increased precision and sampling allows us to better diagnose accuracy using
surface network and aircraft data

CRIS Methane Retrievals Based on Aura TES Optimal Estimation Composition Retrieval Algorithm

Retrieved
[Ppb] —
1950
1900
1850
~ 1800
£1750
1700




Summary

Lower tropospheric estimates based on CRIS/TROPOMI measurements can quantify
boundary layer methane with ~1ppb precision or better at 100 km length scales

These data could potentially provide fluxes with greatly reduced uncertainty (~10x reduction)
due to transport and chemistry error, one of the limiting errors for using satellite-derived
estimates of methane fluxes to evaluate the processes controlling the global methane cycle.

Key to this effort is an optimal estimation based methane retrieval algorithm in order to
quantify and characterize lower-tropospheric methane = subtraction approach depends on
knowledge of vertical resolution, a priori constraints, and a posteriori uncertainties of both
TIR and NIR based methane estimates.



A New Global HCHO Retrieval Technique
based on Principal Component Analysis of
Satellite Radiance Data: Implementation with
OMPS and Preliminary Results

Can Li
NASA GSFC Code 614 & ESSIC, UMD
Email: can.li@nasa.gov

Joanna Joiner, Nick Krotkov, Laura Dunlap
Trace Gas Session
34 Annual JPSS Meeting
August 11, 2016
College Park, MD




Why Formaldehyde (HCHO)?

* |[ntermediate oxidation product of volatile organic
compounds (VOCs)

— Small global background from oxidation of methane
— Relatively large regional sources (NMVOCs emitted
from biogenic, anthropogenic, and biomass burning
sources)
e Short-lived (lifetime: hours) -
le.qg., Barkley et al., 2008;
Fu et al., 2007; Palmer et al., 2003; Zhu et al.,
2014]
e Why NMVOCs? —
2 (e.g., isoprene)




Space-based Detection of HCHO

Absorption of UV in ~325-360 nm

Weak signals, various interferences (BrO, O, NO,,
rotational Raman scattering or RRS, aka the Ring effect)

DOAS-type algorithms using hyperspectral
measurements to separate HCHO signals from
interferences

First demonstrated for [Chance et al., 2000]
Products available from le.g., De Smedt et al.,
2015; Gonzalez Abad et al., 2015], le.g., De
Smedt et al., 2012], le.g., Wittrock et al.,
2006]

le.g., Zhu et al., 2016]




PCA-based Approach

* Based on successful PCA SO, algorithms

e Extract spectral features directly from satellite radiance
data

e Use these features in spectral fitting to minimize
interferences
* Preliminary implementation with OMPS :
— PCs from each row, each orbit
— Window: 328.5-356.5 nm
— 8 PCs in fitting (no strong dependence on # of PCs)
— Additional reference spectrum: BrO cross section
— A priori profiles from GMI simulated climatology

— A table lookup approach for Jacobians for each pixel: O; and
cloud from NASA OMPS products




Principle Components and Residuals

Accum. Var. = 99.9999142% Accum. Var = 99.9999810%
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~ Accum. Var = 9.9999937% " Accum. Var = 9.9999974%
r=-033p <005 : r= 0.77p <005 |

“Accum. Var = 99.9999982% ~2013/08/01 Orbit: 009121
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o Example PCs from # 20, Orbit 9121 reveal
NAfﬂ clear, known physical features [Li et al., GRL, 2015]




OMPS Capable of Detecting HCHO Signals

(b) OMPS HCHO (PBL Profile) 2013/08
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independent from model
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[Li et al., GRL, 2015](}



Comparison with OMI DOAS HCHO

[
o n

(@) o
HCHO (10" molec./cm?)

Two independent
retrievals show fairly
consistent spatial patterns
in HCHO.

OMPS HCHO ~15-20%
smaller than OMI,
probably due to several
instrumental and
algorithmic factors (e.g., a
priori profiles etc.).

o W

-180-150 -120 -90 -60 -30

HCHO (10" molec./cm”)

[Li et al., GRL, 2015](§€



Seasonal Pattern: OMPS HCHO vs. Global Fire
Emission Database - Australia

OMPS PCA HCHO Retrievals for 2013
(2) OMPS HCHO 2013/01 (b) OMPS HCHO 2013/04  (c) OMPS HCHO 2013/07 (d) OMPS HCHO 2013/10

. 4

p—
(3]

HCHO (10" molec./cm®)

o

o

=2}

(5]

0

onthly Burned Area (ha)

GFED Monthly Burnt Area (indicator of fires)

OMPS PCA HCHO retrievals show consistent spatial and seasonal
patterns with fires in regions where seasonal biomass burning
emissions dominate sources of NMVOCs (and HCHO). Biogenic
emissions also contribute in the growing season (January).




Seasonal Pattern: OMPS HCHO vs. Global Fire

Emission Database — South & Southeast Asia
OMPS PCA HCHO Retrievals for 2013

(2)

HCHO (10" molec./cm’)

(¢) GFED 2013/01 (2) GFED 2013/07

Monthly Burned Area (ha)

GFED Monthly Burnt Area (indicator of fires)




Work Underway

e OMPS PCA retrievals biased low — more detailed
comparison has been planned in collaboration with
BIRA

e Algorithm also implemented with OMI and will be
implemented with TROPOMI

e Airborne HCHO measurements regularly taken over
and near the San Francisco Bay Area (the Alpha Jet
and COFFEE" payload) [

!Compact Formaldehyde
Fluorescence Experiment (Hanisco
et al @NASA GSFC & Marrero et al
@NASA Ames)




Conclusions

The good news:

(also demonstrated by Gonzdlez Abad et
al. [2016]).

A long-term data record will be crucial for
investigating how biogenic emissions respond in a
changing climate.

More development underway.

Inter-instrument consistency still an issue, but the

PCA approach may offer a way to mitigate the
Issue.
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Applications of satellite NO2 observations in US
National Air Quality Forecasting Capability

Pius Leel, Daniel Tong!23, Lok Lamsal4®, Li Pan'?, Charles Ding'®, Hyuncheol
Kim12, Tianfeng Chail?, Kenneth E. Pickering®, Shobha Kondragunta’, and Ilvanka
Stajner’, Barry Baker?

1) NOAA ARL; 2) UMD CICS: 3) GMU CSISS; 4) USRA:
5) NASA GSFC: 6) UC-Berkeley; 7) NOAA/NESDIS/STAR; 8) NOAA NWS
9) NRC

8/22/2016 Air Resources Laboratory 1



The Great Recession

< Starting — Ending time: December 2007 — October 2009;

< Cause: Bursting of the housing bubble in 2007, followed by a subprime mortgage
crisis in 2008;

<+ Impacts:

>

>
>
>

Unemployment rate: 4.7% in Nov 2007 = 10.1% in Oct 2009.
Income level: dropped to 1996 level after inflation adjustment;
Poverty rate: 12% = 16% (50 millions);

GDP: contract by 5.1%;

<+ Worst economic recession since the Great Depression

Question: What does it mean to Air Quality (and Emissions)?

8/22/2016

Air Resources Laboratory 2



<« Emission Indicator — Urban NOx in Summer
> Short lifetime = proximity to emission sources
> Urban NO2 dominated by local sources;
> High emission density = low noise/signal ratio;

<+ NOx Data sources
> Satellite remote sensing (OMI-Aura NO2).
» Ground monitoring (EPA AQS NOXx);

> Emission data ( NOAA National Air Quality Forecast Capability
operational emissions);

» Deriving the trend: (Y2-Y1)/Y1X100%

< Selection of urban areas

8/22/2016 Air Resources Laboratory 3



NO, Regulatory Actions Since 2005

2003 — 2008: NO, Budget Trading Program (SIP Call)
- Summer time power plant emission reductions in 20 states
- Point sources can pay for reductions at other facilities (trading)
- 2500 large combustion units affected.

2005: Clean Air Interstate Rule (CAIR)

- NO, reductions of 53% by 2009 (2003 baseline). Affects 28 states
- Thrown out by courts in 2008.

State-specific rules beyond Federal CAIR have led to further NO,
reductions in some states.

2011: Cross-State Air Pollution Rule (CSAPR)
- Replacement of CAIR
- Add five additional mid-West states to reduce NOx during ozone season.

Tier 1l Tailpipe NO, Emission Standards — 5% reduction in fleet
emissions per year over 2002 to 2010.

Contributed by Ken Pickering



Ozone Monitoring Instrument (OMI)
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One of four sensors on the EOS-Aura platform (OMI, MLS, TES, HIRDLS)

Courtesy of OMAR Torres Launched on 07-15-04
Instrument Characteristics
-Nadir solar backscatter spectrometer Data Quality Control

- VCD quality flag;

-Spectral range 270-500 nm (resolution™~0.6 nm)
- Cloud fraction;

-Spatial resolution: 13X24 km footprint
- Row Anomaly;

-Swath width: 2600 km (global daily coverage)  Outliners (5% at each end)

-13:45 (+/- 15 min) Local equator crossing time
(ascending node)



OMI Observed NOx Change (July)

Tropospheric NO2 [10" molec cm™]
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ontributed by Lok Lamsal



AQS: EPA Ambient NO2 Monitoring

» Method: Chemiluminescence
> Interferences with PAN, O3 and alkyl nitrates
> Uncertainty higher at lower end

+ Select early morning rush hours (6-9AM): higher values and less
photochemistry




Inter-Comparison of OMI, AQS and NAQFC
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Inter-Comparison of OMI, AQS and NAQFC
(Continued)
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Morning Rush Hours vs Early Afternoon
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Seven-year NOx Changes

Los New  Philadel- Washing-
City- | Aflanta- ~ Boston:  Dallas:  Houston: o/ Mean:
Angeles: ~ York:  phia-  ton, DC:
OML: | 2%  -37%  -34%. W%  -40%  -32%  -26%  -47%. o -35%.
AQS: 43%. 3% 3% 25%  -3T%. A% 3% -48%. | -38%.
NAQFC. | -31%.  -28%  -24%.  -28%  -13%.  -22%.  -25%.  -28%. o -25%.

» Both observations (OMI and AQS) revealed -5%/yr reduction rate;
» NAQFC adopted change corresponds to -3.5%/yr;



NOx Changes
Prior to, during and after the Recession

Los New  Philadel Washing-
Stage  Sources Atlanta Boson  Dallas  Houston Mean
Angels  York phia ton, DC
OMI 5P -11.7 94 -15 5.1 -3 -1.5 0.6 -12.3 -1.3
Before
AQS 9.9 -11 5.1 0.7 -0 55 55 -18.7 6.0
OMI 5P 55 -15 3.9 -19 -131 4.2 -11.7 -13.0 9.1
During
AQS 175 -1 130 -14.0 -10.3 -13.6 -1 -3 -10.3
OMI 5P 6.0 -3 -1, 0.4 30 3.2 -1.1 -1, -1
After
AQS 14 6.1 0.1 0.2 6.4 54 -6.1 53 -34

<+ Distinct regional difference;

<+ Average NOx changes are consistent for OMI and AQS data;
o -6%/yr --7%/yr prior to Recession;

o -9%/yr - -11%/yr during Recession;

<+ -3%/yr after Recession (Recovery?).
oIy ( v?) (Source: Tong et al., 2015)



Rapid Refresh of NO, Emissions

Question: Can satellite and ground data be used to
rapidly refresh NOx emissions?

Fusing AQS & OMI

AF = ASXNgXfs+AGXNgXfg
" s NsXfs+NgXfg
j State-level Projection
: ”‘ ""”“LJ'HJ‘“JLJ'l ]J

Comparlson of OMI and
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(Source: Tong et al., GRL, 2016) 13



000000

Effect of Using

Effect of Using

EPA Projection
L

5 "-, 23 ‘v"‘.4 ? !

d Obs.

Effect on O, Forecast

Difference

Fuse

Performance Metrics (July 2011 over CONUS)

MB (ppbv) NMB (%) RMSE (ppbv)

Hourly = Max§8 | Hourly  Max§ | Hourly  Max8
Op. NAQFC 11.9 9.9 29.7 203 2.1 21.5
Fused Obs 11.5 9.1 28.7 20.1 2.7 214

(Source: Tong et al., GRL, 2016)



Summary

+ Revealed consistent NOx responses to the 2008 Economic
Recession by OMI and AQS (-6%, -10%, and -3% reduction
per year before, during and after the Recession);

+ Demonstrated how to use space and ground observations
to 1) evaluate emission updates; and 2) rapidly update
NOx emissions to support national air quality forecasting.

References:

Tong, D.Q., L. Pan, W. Chen, L. Lamsal, P. Lee, Y. Tang, H. Kim, S. Kondragunta, I.
Stajner, 2016. Impact of the 2008 Global Recession on air quality over the United States:
Implications for surface ozone levels from changes in NO, emissions. Geophysical
Research Letter, Accepted.

Tong, D.Q., L. Lamsal, L. Pan, C. Ding, H. Kim, P. Lee, T. Chai, and K.E. Pickering, and I.
Stajner, 2014. Long-term NO, trends over large cities in the United States during the
2008 Recession: Intercomparison of satellite retrievals, ground observations, and
emission inventories, Atmospheric Environment, 107,70-84,
doi:10.1016/j.atmosenv.2015.01.035.



Satellite Isoprene Flux (molecules/cm?/s)

JPSS and Marine Isoprene

SNPP-VIIRS, MODIS and SeaWiFS was used to
produce marine isoprene emissions for use in
NAQFC and other NOAA models
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Continuation of Global
Anthropogenic and Volcanic SO,
Monitoring from OMI to OMPS
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Outline

Backeround and motivation

PCA algorithm — data driven, straightforward to

implement, small noise and artifacts
Application to OMI — operational algorithms for new

OMI PBL and volcanic SO, data

Application to OMPS — implementation of OMI PCA
algorithms with OMPS shows good consistency
between two instruments
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NASA SO, processing

Developed new PCA algorithm [Li et al., 2013]

— data driven,

— efficient,

— smallest noise and artifacts

— Does not require soft calibration => good consistency

Application to OMI — operational algorithms for new OMI
PBL and volcanic SO, data

Application to OMPS — implementation of OMI PCA

algorithms with OMPS shows good consistency between
two instruments

Data are available on our web site:
http://so2.gsfc.nasa.gov




~ Execution Speed of the PCA SO, Algorithm

e ~4 min per OMI orbit (~70,000 pixels) using
simplified SO, Jacobians LUT ;

e 5 days used for reprocessing 10-year OMI data for
the current operational PBL product;

e ~65 min per OMI orbit using full LUT - can be
reduced to ~10 min if cross-section is used in
fitting for SCD and then converted to VCD using
AMEF;

e ~20 s per OMPS orbit (~10,000 pixels) using
simplified SO, Jacobians LUT



N@*ﬁ‘;‘ OMI: New Operational OMI Volcanic SO, Product
Greatly Reduces Bias and Noise over Background Areas

Linear Fit

150 -150 -1200 90 -

50, (DL}

SO, Standard Deviation (DU)

{b) Linear Fit
6l

20
Latitude

Retrieval noise reduced by a
factor of two

OMI TRL Retrievals, August 5, 2006 [Li et al., AMTD 2016]



ass

OMPS: Reduced Background noise
and artifacts: volcanic SO,

L Old OMPSLFTRL * © - h New OMPS PCA /.

EE— | — ""_' h — —

50, DU]

OMPS NRT LF TRL retrievals for 12/08/2015,
a few days after the December 3 2015
Mt. Etna eruption.



Reduced Background noise

and artifacts: PBL SO,

{c) RMS over the East Pacific (red box)
[ OMIBRD

20 =~

15 =

L OMI PCA
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*PCA algorithm reduces retrieval noise by a factor of two
as compared with the BRD algorithm

SO, Jacobians for PCA algorithm calculated with the
same assumptions as in the BRD algorithm




N@ﬁ When combined with wind data and careful,
| innovative data analysis ...

Fraction missing (%6)

An independent “top-down” global SO, emission inventory [McLinden et al., NG 2016];
Annual emissions quantified for ~500 large sources, ~40 missing or unreported in
“bottom-up” inventories, or ~¥6-12% of the total anthropogenic sources;

Emissions quantified for 75 volcanoes — large differences between OMI measurements
and the Aerocom database.




N(%A New OMI Operational PCA Volcanic SO,
~ Greatly Reduces Low Bias in the old LF SO, for Large Eruptions

OMI LF OMI PCA

SO, Mass = 363 3 kt SO, Mass — 693 7 kt
80.2461DU ) SO.llZSSDU -

96 -94 -92 -90 -88 96 _-94 92 -90 -88

e Sierra Negra eruption in 2005, max SO, from new operational PCA
algorithm ~1100 DU, in agreement with the offline ISF algorithm
[Lietal., 2016]

e Kasatochi eruption in 2008: PCA total SO, ~1700 kt, consistent
with ISF and OE algorithms for OMI and GOME-2, a factor of two
more than LF with known low bias [Krotkov et al., 2010].




c

NM{‘ Good consistency between OMI and OMPS

Annual Mean PBL SO, Retrievals for 2012

150 -120 g ; 3 3 150

No soft calibration or L2 correction
[Zhang et al., 2016]




OMPS SO, mass (unit: kt)

Daily regional SO, loading over the selected areas

in 2012 (PBL retrievals)

E China Mexico
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OMPS SO, mass (unit: kt)
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[Zhang et al., AMTD 2016]

OMPS SO, mass (unit: kt)
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Daily OMI/OMPS regional volcanic SO, loading
Hawaii (PCA 3-km/TRL retrievals)

OMPS PCA TRL
OMI PCA TRL

SO, Mass (kt)

2006 2008

(0

Daily spatial
- correlation

y = 1.12x+0.07 ]

OMPS SO, (kt)

Probability Density Function (%)

02 04 06 08 1.0
OMI SO, (kt) Correlation Coefficient (1)

[Lietal., 2016]




g Five days with r < 0.3, why?

v’ Five days with r < 0.3: 02/05/2012, 10/02/2012, 05/14/2013, 11/06/2013, and
11/09/2014.

v’ For all five days, the plume was covered by OMI pixels near the nadir but by OMPS
pixels near the edge of the swath.

-160 -155 -160 -155
S0, (DU) S0, (DU)
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

11/06/2013




| OMI+OMPS

(181 kt)

v Merged OMI+OMPS provides full
coverage and fine spatial detail

v" Agrees with OMPS only SO, mass to
within 3%

[Lietal., 2016]



NSQ—JA New OMI and OMPS anthropogenic SO, retrievals
R with comprehensive LUT for Jacobians

Monthly Mean, August 2012 Monthly Mean at 2 pm Local Time

(a) OMI (c) Surface Concentration

8.50
7.00

S0

S0, (ppb)

4.00

2.50

1.00

v" Preliminary new OMI and OMPS pollution SO, retrievals both reveal emission
sources over the Ohio River valley (circles are sources with > 50 kt emissions in

2006).
v’ Surface monitoring stations show qualitatively consistent pattern.

v’ If assuming the same mixing ratio for the lowest 100 hPa (~1000 m) of the
atmosphere and no SO, above, 4 ppb translates into ~0.3 DU in column loading.



N%M Years of OMPS PBL SO, Research Product Now Available on
NASA’s SO, Website:
http://so2.gsfc.nasa.gov

TOMS images (1979-2008) | AIRS images (2003-present) | OMI images (2004-present) | OMPS images (May 2012-present)

Global monthly OMI Boundary Layer SO, maps

Global monthly OMPS Boundary Layer SO, maps

Latest Daily (OMI/OMPS) Images of SO, (click on a highlighted rectangle)

Red = daily volcanic regions, = daily pollution regions, = long-term pollution images
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Conclusions

The PCA SO, retrieval approach — data-driven, good
quality, straightforward to implement.

Operational OMI PCA PBL and volcanic SO, data
show significant improvement over previous OMI
data, also compare well with OMI DOAS SO, data

using TROPOMI prototype algorithm [Theys et al.,
2015].

Research OMPS PBL and volcanic SO, data based on

PCA algorithms show good consistency with OMI
data.



The capability of the OMPS Linear Fit SO, (LFSO2)
algorithm for implementation at NDE

Jianguo Niu
System Research Group Inc.at NOAA/STAR

C. Trevor Beck, Lawrence E. Flynn
NOAA/NESDIS/STAR

Kai Yang
University of Maryland

by Jianguo Niu System Research Group Inc.



Goal for LFSO2 implementation at NOAA

. Provide near real time alerts of volcanic SO,
clouds.

. Provide O, corrections when large amounts of
SO, are present.

Provide accurate SO, total column amounts to
address the shortfall of the existing products in
the Version-8 ozone algorithm.



Residuals and Linearization

We linearize the problem with differentials at Q= Q, ===, R=R,
2
N, (4,)-Ny(4,)= AQdN( ) AEM [AR(&O)+ > c;(4, —AO)JJdN(%) +e
dQ |, Q d= E<E, j=1 R=R
2
N, (1) Ny (4,)= AQdN( o) AEM (AR(AO)+ZCJ.(/13—;to)‘JdN(’%) +e
dQ =0, d= E=E, j=1 R=R,
2
N, ()= Ny () = a0V gz N iy e (1, - [N
dQ Q=0, d= E=E, =1 dR R=R,
2 .
N, ()N () =20 e NG G e (-2 [N
dQ Q=0 d= E=E, =t dR R=R

(1)

(2)

N,(A): radiative transfer model computed at N,(Q,, =,, RyA).

N .(A): measured N-value.
N_.(A) - No(A) : VBTOZ Algorithm output residuals.



15-Granule Bias Estimates

The ozone retrieval provided residual includes biases along-orbit. To eliminate these residual
biases, A 15-granule implementation technique is designed. Residual averages <{(A)> over
three five-granule intervals (corresponding to ~10° latitude) are calculated at the 12
wavelength bands and 35 cross tracks. Each individual average residual within these three
averaged intervals are calculated by interpolation. The corrected residual,

P(A) = N, (A) - Ngo(A) - <P(A)> is called the “adjust residual”, then:

dN(4,) _dN(4,) : i JdN(4,)
A AQ———=~ AE———22 AR(A A, =4
‘//( ) 40 | iE |- + ( o)"‘JZ:;,CJ( 2 o) R o, T &
2
win)=aaMNU) 2N e e e (- ) [N
dQ Q=0, d= E=E, =1 drR R=R, (3)
2
wr)=aoNE) e NG ey S e (- g [N
dQ Q=0Q, d= E=E, =1 dR R=R,
2
(i) =202 NE) RGeS (- ) [N
dQ Q=0, d= E=E, j=1 dR R=R,

These linear equations can be converted into a matrix expression.



Matrix Formulation

dN(/lz) dN(/iz) dN(/Iz) (/1 _ﬁv)dN(/Iz) (/1 _/1)2 dN(lz)
dQ d= drR © 77 R © 77 dR
p)) [ dNG) ONG) ON(R) () GONGR) (e ONG) |
w(4,) dQ d= drR > 7% R > 77 4R -
Wa) |7 NG NG NG (NG (i) ([
. dQ d= drR Y AR YR Cl
W(/111) """ 2
dN(/111) dN(ﬂ“ll) dN(/lll) (1 ) )dN(ﬂ’ll) (/1 ) )2 dN(/lll)
dQ d= drR SR O R

The sensitivities differ depending upon the assumed height of the SO, layer.
Estimates of the total column SO, using this Matrix formula is obtained for

three different heights: Lower Troposphere (TRL), Middle Troposphere (TRM)

and Lower Stratosphere (STL). Other techniqgue is used to estimate Planetary

Boundary Layer (PBL) SO,.




I I ) R

s_AlgorithmFlag_PBL
s_AlgorithmFlag_STL
s_AlgorithmFlag_TRL
s_AlgorithmFlag_TRM
s_QualityFlags_PBL
s_QualityFlags_STL
s_QualityFlags_TRL
s_QualityFlags_TRM
s_STLO3

s_TRLO3

s_ TRMO3
s_ColumnamountSO2_STL
s_ColumnamountSO2_TRL
s_ColumnamountSO2_TRM

s_deltaRefl331

Retrieval Parameters

32 bit integer

32 bit integer

32 bit integer

32 bit integer

32 bit integer

32 bit integer

32 bit integer

32 bit integer

32 bit float

32 bit float

32 bit float

32 bit float

32 bit float

32 bit float

32 bit float

PBL algorithm flag

STL algorithm flag

TRL algorithm flag

TRM algorithm flag

PBL quality flag

STL quality flag

TRL quality flag

TRM quality flag

STL corrected total column of O3
TRL corrected total column of O3
TRM corrected total column of O3
STL total column of SO2

TRL total column of SO2

TRM total column of SO2

Delta Reflectivity at 331 nm

by Jianguo Niu System Research Group Inc.

105 x 15

105 x 15

105 x 15

105 x 15

105 x 15

105 x 15

105 x 15

105 x 15

105 x 15

105 x 15

105 x 15

105 x 15

105 x 15

105 x 15

105 x 15

Unitless

Unitless

Unitless

Unitless

Unitless

Unitless

Unitless

Unitless

Dobson

Dobson

Dobson

Dobson

Dobson

Dobson

Percent

0,1,11

0,1,2,11,12

0,1,2,11,12

0,1,2,11,12

0~ 65535

0~ 65535

0~ 65535

0~ 65535

0~ 1000

0~ 1000

0~ 1000

-10~ 2000

-10~ 2000

-10~ 2000

-100 ~ 100



Retrieval Parameters

I N o B N

s_ChiSquareLfit 32 bit float Chi-square of linear fit 105 x 15 Uniteless

s_dN_dSO2_STL 32 bit float dN/dSO2(STL) 12x105x15  Per Dobson -1~ 100
s_dN_dSO2_TRL 32 bit float dN/dSO2(TRL) 12x105x15  Per Dobson -1~ 1000
s_dN_dSO2_TRM 32bitfloat  dN/dSO2(TRM) 12x105x15  Per Dobson  -1~100
s_Slope 32bitfloat  Cinlinear equ. 105 x 15 Uniteless -1~1
s_Qterm 32 bit float C, in linear equ. 105 x 15 Uniteless -1~1
s_ResidualAdjustment 32 bit float Averaged residual of nvalue 12x105x15  Uniteless -10~ 10
s_ColumnamountSO2_PBL 32 bit float Planetary Boundary Layer (PBL) SO2 105x 15 Dobson -300 ~ 1000
s_ColumnamountSO2_PBLbrd 32 bit float PBL SO2 by BRD method 105 x 15 Dobson -10 ~ 2000
s_ColumnamountSO2_STLbrd 32 bit float STL SO2 by BRD method 105 x 15 Dobson -10~ 2000
s_ColumnamountSO2_TRMbrd 32bitfloat ~ TRM SO2 by BRD method 105x 15 Dobson -10 ~ 2000
s_SO2indexP1 32 bit float Partial adjust residual for 310 and 311 105 x 15 Uniteless -100 ~ 100
s_SO2indexP2 32 bit float Partial adjust residual for 311 and 313 105 x 15 Uniteless -100~ 100
s_SO2indexP3 32 bit float Partial adjust residual for 313 and 314 105 x 15 Uniteless -100 ~ 100

by Jianguo Niu System Research Group Inc.



Products from the LFSO2 algorithm

Umkhr-0: 0~5.5km

OMPS W8TOS trl S0, 2018/01,/03
10 =100 —G0 -E0 —70

—1z0 =10 —100 g0 B0 =70 B0

L 1
0.00 02z 044 067 082 1171 133 156 1.78 Z.00

PBL: 0~2km

OMPS VATOS pbl S0, 2016,/01/03
110 =100 —g0 -E0 -70

—1z0 =10 —100 g0 B0 =70 B0

L 1
0.00 02z 044 067 082 1171 133 156 1.78 Z.00

Umkhr-1: 5.5~10.3 km

OMPS VBTOS trm S0, 2016/01/03
—100 —50 —E0 —70

L,
&
+
&
<
DU
L 1
000 0.22 044 087 0.89 1.11 1.33 166 1.78 Z.00
Umkhr-3: 14.7~19.1km
OMFS WBTCS stl S0, 2016/01/03
10 =100 50 -E0 =70
"I
s

—120 =10 —100 g0 B0 =70 B0

L 1
0.00 02z 044 067 088 111 133 156 1.78 Z.00




Latitude

50

—20

Strategy for running LFSO2

Strategy far near real time LFS02 processing

Longitude



Estimates minimum detectable SO, for single IFOV

_ # IFOV Average (DU) | STD (DU)

5480 0.0037 0.069
TRM 5480 0.0057 0.09
TRL 5480 0.0125 0.18
PBL 5480 0.0624 0.6

OMPS STAR WETOZ TRM 502 (DU} 07,/02/2015
— G0 —45 ] 45 a0

—135 -0 —45 il 45 a0 135

—0.20 0 -0.08 0.04 016 0.28 0.4 0,52 0.64 0,76 0.88 1.04%

by Jianguo Niu System Research Group Inc.



SO, in 5¥10km (TRM)
over East China

From PEATE SO, website From Star LFSO2

Suomi NPP/OMPS - 01/12/2016 03:24-06:52 UT SNPP/OMPS VETOS TRM SOE 01/12/2[}16

104 108 112 116 120 124 138 132 136

80, mass: 0.006 kt; Area: 412 km?; SO, max: 0.94 DU at lon: 117.23 lat: 39.69 ; 05:09UTC
105 110 115 120 125 130

T
L
o
SO, column TRM [DU]

104 108 112 116 120 124 18 132 126

105 110 115 120 125 130

DU

[ - ; . ; . : L |
oo 02 04 OB 08 1.0 1.2 14 1B 1.8 2.0




Example-1:
Iceland Bardarbunga volcano eruption

PEATE algorithm’s product STAR products

Updated FEATE OMPS STL S0Z (DU) ©9/04 /2014 COMPS STAR WBTOZ STL S0Z {(OU) ©9,/04,/2014

0.0 0.33 0.G7 1.04 1.33 1.67 L0 0.0 0.33 0L&7 1.04 1.33 1.67 200



OMPS STAR WBTOZ STL 507 (DU 99,/01/2014

.05 0.33 0.57 1.04% 1.33 1.67 00




Example-2:
Indonesia Kelud volcano eruption
February 14, 2014

STAR/PEATE updated original

STAR V8+NMSO2

SNPP/OMPS STAR VETOZ STL SOy (DU) 02/14/2014

100 105 10 115

o

B
b1 B oo o oSO Lo

50, mass 135827 kKt

o] Arec: 578118 km®
1| 50, max: 45.3540 DU _
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Example 3-1: Sicily Volcano eruption and transportation

NDE SNPP/OMPS VBTOZ STL SO, (DU) 12/03/2015

32 36 40 44 48 52

24 28

vZ B8Z ¢ H9¢ OF ¥+ 8F TS



Example 3-2: Sicily Volcano eruption and transportation

NDE SNPP/OMPS VBTOZ STL SO, (DU) 12,/04/2015

32 36 40 44 48 52

24 28

vZ B8Z ¢ H9¢ OF ¥+ 8F TS



Example 3-3: Sicily Volcano eruption and transportation

NDE SNPP/OMPS VBTOZ STL SO, (DU) 12/06/2015

32 36 40 44 48 52

24 28

vZ B8Z ¢ H9¢ OF ¥+ 8F TS



Example 3-4: Sicily Volcano eruption and transportation

SNPP/OMPS VETOS STL SO, (DU) 12,/07/2015
180

32 36 40 44 48 52

24 28

...................................................................................................................................

Y2 82 Z% 9% 0¥ FF &F TS

180
pu

0.0 0.2 o4 0B 0.8 1.0 1.2 1.4 1.6 1.8 2.0



Example 3-5: Sicily Volcano eruption and transportation

NDE SNPP/OMPS VBTOZ STL S0, (DU) 12,/08/2015

32 36 40 44 48 52

24 28

vZ B8Z ¢ H9¢ OF ¥+ 8F TS



Example 3-6: Sicily Volcano eruption and transportation

NDE SNPP/OMPS VBTOZ STL SO, (DU) 12,/09/2015

32 36 40 44 48 52

24 28

vZ B8Z ¢ H9¢ OF ¥+ 8F TS



Example 3-7: Sicily Volcano eruption and transportation

NDE SNPP/OMPS VBTOZ STL SO, (DU) 12/10/2015

32 36 40 44 48 52

24 28

vZ B8Z ¢ H9¢ OF ¥+ 8F TS



Example 4: Chile Calbuco volcano
4/23/2015 to 5/04/2015

OMPS STAR WBTDZ STL 502 {DU) 04,/23/2015
—135 —g0 —45 a 45 a0 135

—135 -0 —45 { 45 a0 135

0.0 033 .47 1.0 1.33 1.7 oo



Example-5: Ozone correction by assuming SO, in STL
for Indonesia Kelud volcano eruption case
February 14, 2014

4 NDE SNPP OMPS ¥8TOZ O, {OU) 02,/14/2014
45 an 135 100 105 110 115

CELIEYEED STAR OMPS YBTOZ 03 (DU) 92/14/201
—135 — G0 —45 0

LY ﬁ\i{
5 Lo
+ |
o |
] =]
o) |
I x
‘Q |
1 ]
o |
n ]
+ L
I -
— -
135 =T —45 a 45 a0 135 100 108 110 115
[ . . [ |
100,60 166.67 233,33 300,00 366,67 433,33 500,60 22000 24000 28000 2BOOO 30040 32040 340480 360400 38000 40000 42000
SNPP/OMPS STAR VBTOZ STL SO, (DU) 02/14/2014
100 108 1o 115 NDE SMNPP OMPS VBTOZ STL LFS0, correcled O, (DU) D2/14,/2014
T H\h 100 108 110 116
LY
: e W
50, rmass 135.827 Kt - + L
- Area: 578115 km? ‘
NI S0y, max: 45,9540 DU " @ &
o ot len: 106.017 lot: —9.0562¢ \
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1 ]
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" I
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100 105 110 115
100 105 110 115
L ]
0.0 500 10,40 1540 20,60 25,80 30,60 35.860 40,80 45,80 50,60 L L]

22000 24000 28000 28000 20000 32000 340,00 38000 3B0.00 400,00 42000



Daily PBL and TRL SO, maps over the US
January to June 2016

OMPS VBTOS pbl S0, 2016,/01 /01 OMPS V&TOS trl S0, 2016/01,/01
- —50 —&0 70 - — - —g0 _E0 _

0.0 022 044 4AB7 082 111 1.33 156 1.78 =200 Q.00 022 044 Q67 08% 111 1.33 158 1.78 Z.00



Summary

A 15-granule implementation provide a reliable alert to
volcanic SO, cloud.

LFSO2 retrieval provides a total column O; correction
when thick SO, appears in the atmosphere.

Provide accurate SO, total column amount for V8TOZ
product.

Shown that OMPS Nadir Mapper possesses high
sensitivity to monitor SO, as a pollutant in the
atmosphere.



Marco Fulle - www.stromboli.net

DEVELOPMENT OF MULTI-SENSOR
SO, PRODUCTS FOR JPSS

Michael J. Pavolonis

Physical Scientist

National Environmental Satellite, Data, and Information Service
Center for Satellite Applications and Research

JPSS Science Team Meeting

11 August 2016l
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Motivation
| Hazard Avoidance | volcanic Ash Tracking

60 al y (12-11um, 11-8.5um, 11um) B £l B et
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The Next “Big One”

Mone-Inyo Craters
past 5,000 years

Every few
months |

Tambora, 1815
(> 100 km?)

Yellowstone Caldera
600,000 years ago

(~1,000 km?,
not depicted)




End Users

 Volcanic Ash Advisory Centers

e Meteorological Watch Offices

 Weather Forecast Offices

* Volcano Observatories (including the USGS)
« Military

e Operational modeling community (dispersion, weather, and
climate)

 Research Community
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Ultra-Violet (OMPS)
Source: NASA GSFC

NPP/OMPS - 11/28/2014 15:03-15:08 UT - Orbit 15993
S0, mass: 179.520 ki; Area: 619136 km?; SO, max: 82.46 DU at lon: -23.29 lat: 14.38 ; 15:05UTC
-35 -30 -25 -20

-25
SO, column 5 km [DU]

4.8 6.0 7.2

Major Strengths:
« Very sensitive to the presence of SO, under many conditions including

In the presence of clouds (liquid, ice, and aerosol) and over bright
surfaces

e Sensitive to SO, loading, some sensitivity to SO, height



Ultra-Violet (OMPS)

Weakness: Sensitive to solar zenith angle

Suomi NPP/OMPS - 01/04/2015 13:41-13:44 UT
SO, mass: 3.783 kt; Area: 64812 km®; SO, max: 9.97 DU at lon: -20.05 lat: 65.53 ; 13:43UTC
-35 -30 -25 -20 -15 -10 -5 0

Sfource:ﬁﬂNASA GSFC

No information
when SZA > 90°

Increased noise
as SZA
increases to 90°

%

i b o
SO, column 8 km [DU]
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Ultra-Violet (OMPS)

spatial scale of many SO, plumes

28.60 28.680 29.00

7

S0, column TRM [DU]

28.60 28.80 29.00

Carn et al., 2013



Ultra-Violet (OMPS)

Suomi NPP/OMPS (Zoom) - 06/25/2016 23:44-23:47 UT
SO, mass: 0.103 kt; Area: 4792 km?; S0, max: 1.72 DU at lon: -155.25 lat: 18.81 ; 23:45UTC
-164 -162 -160 -158 -156 -154

Source: NASA GSFC

Kilauea plume

-160 -158 -156
SO, column TRM [DU]

0.8 1.0 1.2




Hyperspectral Infrared (CrlS)

S02 brightness temperature index V3 [K] 3 September 2014 V

A5 ULB/BIRA-IASB/CNES/EUMETSAT  [MetOp-B] Night
40 M 10 o 10 30 0 50

e
-
¢

1912

|
0

Major Strengths:
e Provides information on SO, day and night

 Provides sensitivity to SO, loading and height



, Hyperspectral Infrared (CrlS
Z 7 22

2

Zi/
a NesSS. LEeSS Sensitive to Iower l{oposp eric

S02 brightness temperature index V3 [K] 25 June 2016

ASI — ULB/BIRA-IASB/CNES/EUMETSAT  [MetOp-B] Day
175 170 165 160 -1550 150 145 140 -135 -130 125

21:93 18:10
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Hyperspectral Infrared (CrlS)

spatial scale of many SO, plumes

28.60 28.680 29.00

7

S0, column TRM [DU]

28.60 28.80 29.00

Carn et al., 2013



Narrow-band Imager (VIIRS)

False Color Imagery (12-11um, 11-8.5um, 11um)
SNPP VIIRS (07/16/2015 - 11:30:19 UTC)

soari
QEIHHO

W

Major Strenﬁs:
« Provides high spatial resolution imagery of SO, clouds and plumes

under many conditions day and night.




Narrow-band Imager (VIIRS)

N th A R"raece~Aann~an nt AlA
N the presence or clouo

False Color Imagery (12-11um, 11-8.5um, 11um)

SNPP VIIRS (06/25/2016 — 23:38:14 UTC)

.




Narrow-band Imager (VIIRS)
i 7

False Color Imagery (12—11pm 11-8.5um, 11um)
' SNPP VIIRS (09/07/2014 14:12 UTC) - &




False Color Imagery (
SNPP VIIRS (09/03/2014 — 13:46 UTC)

66 66.50

. Annotation KePr .
(annotation colors are not related to colors in ur
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6250 63 6350 64 6450

12-11pum, 11-8.5um, 11um)

24 29 20

A multi-sensor SO,
analysis is needed

Suomi NPP/OMPS - 09/03/2014 13:49-13:51 UT

SO, mass: 0.983 ki; Area: 75083 km®; SO, max: 3.19 DU at lon: -13.24 lat: 65.75 ; 13:50UTC NASA GS Fc
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VOLcanic Cloud Analysis Toolkit (VOLCAT)

1). Unrest Alerts 2). Eruption Alerts 3). Volcanic Cloud Tracking

__ATST 40 258PM 8% =3

False Color Imagery (12-11um, 11-3.9um, 11um)
SNPP VIIRS (11/30/2014 - 20:29 UTC)

L,

[ Messag...(2) T (41U) UUU-aUo

Call FaceTime Add Contact

| FRM:mpav@ssec.wisc.edu
SUBJ:NOAA/CIMSS
Volcanic Cloud Alert
MSG: (3)
1 ASH ALERT(S)
http://volcano.ssec.wisc.e
du/alert/report/465

g -

180 200 220 240 260 280 300 3200 1 2 3 4 5 6 7 8 9 10
11 um BT [K] Ash/Dust Loading [g/m?]

19



Spectrally Enhanced Cloud Objects
(SECO) Method for SO, Detection

Automatically extract coherent SO, features from OMPS
and CrlS using cloud object analysis

Construct an a priori probability from OMPS and CrlS
and utilize it in VIIRS implementation of SECO method

Final SO, detection results are at the VIIRS resolution
and are overlaid on VIIRS imagery

The fused JPSS SO, detection results can then be used
to aid in SO, detection and tracking from GEO satellites



SO, Retrieval Options

Utilize existing OMPS SO, loading products

A variation on published methods (e.g. NUCAPS,
Carboni et al. 2012; Clarisse et al., 2014) will be used to
retrieve SO, loading and effective height from CrlS

Optimal estimation readily allows the results from one
sensor to influence another through the a priori. Thus,
the result from OMPS or CrlIS, which ever is deemed to
be of higher quality, can be used to constrain the VIIRS
retrieval, while allowing for small-scale spatial
variability to be captured

Many details TBD — this is R&D, not manufacturing!
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Colaporations

Fusing information from many sensors is challenging.
Collaborations with hyperspectral UV and IR SO, remote
sensing groups at NASA and in academia are needed.

In addition, a collaborative effort with the USGS, academia,
and international partners (e.g. IMO) is needed to validate
the fused JPSS SO, analysis.

International collaboration is needed to work towards best
practices for combining measurements from multiple satellite
sensors — connection to WMO SCOPE-Nowcasting.

Collaboration with the dispersion, weather, and climate
modeling communities are critical to ensure that the impact
of the information is maximized

24



Sumirmnary
7

In support of NOAA's mission, NOAA's role In
generating environmental intelligence related to
SO, needs to be expanded (and integrated with
Information on volcanic ash) in collaboration with
NASA, USGS, and international partners.

The JPSS satellite series is a critical component
of the SO, observing system

A collaborative JPSS initiative is needed to
ensure that the JPSS sensors are being fully
utilized for SO, monitoring

25



“Big Data”

VOLCAT Processing
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BACKUP SLIDES



Nuances/Exceptions are Prevalent

False Color Imagery (12-11um, 11-8.5um, 11pum)
SNPP VIIRS (01/04/2015 - 03:45 UTC)
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False Color Imagery (12-11um, 11-8.5um, 11um) .
SNPP VIIRS (04/10/2015 — 23:30 UTC) A multi-sensor SOZ

analysis is needed

Suomi NPP/OMPS - 04/10/2015 23:35-23:39 UT
SO, mass: 0.000 kt; Area: 0 km?; S0, max: 1.64 DU at lon: -155.50 lat: 18.86 ; 23:37UTC
-164 -162 -160 -158 -156 -154 -152

vinformation on
= = .
ﬁS:soz '

-164 -162 -160 -158 -156 -154 -152
SO, column 8 km [DU]

0.0 0.4 0.8 i2 1.6 20 24 28 392 36 4.0



Optional Overlay Options: lat/lon grid, volcanoes, coast lines, VAAC boundaries, automated
feature annotations

Image Probe: cursor readout of lat/lon and data value

Image Markup Tools: users can generate and export polygons and annotated images

SO,: alerting, tracking, and characterization

Incorporation of Non-Satellite Tools: volcano web cameras, dispersion/trajectory modeling,
and infrasound

Source: @

default H
. Overlay options

Sector: @ Use Map

Kamehatia 1 km |
Instrument: @

@ AHI

Ml

MODIS
Satellite: @

HIMAWARI-8

COMS-1

@ Aqua Image Probe
Terra
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LEO and GEO satellite imagery are routinely
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VOLCAT Goals

1). Unrest Alerts

2). Eruption Alerts
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VOLCAT Goals
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VOLCAT Goals
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VOLCAT Goals

1). Unrest Alerts 2). Eruption Alerts 3). Volcanic Cloud Tracking

__AT&T 4G 2:58 PM 78 %

False Color Imagery (12-11um, 11-3.9um, 11um)
SNPP VIIRS (11/30/2014 - 20:29 UTC)

Call FaceTime Add Contact

Feb 21, 2013 1:25 PM

| FRM:mpav@ssec.wisc.edu
SUBJ:NOAA/CIMSS
Volcanic Cloud Alert

MSG:
1 ASH ALERT(S)
) du/alert/report/465 P

©

180 200 220 240 260 280 300 3200 1 2 3 4 5 6 7 8 9 10
11 um BT [K] Ash/Dust Loading [g/m’]

5). Dispersion Forecasting

39



http://volcano.ssec.wisc.edu
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Volcanic Cloud Detection

The VOLCAT detection approach is multi-faceted and
employs several different conceptual models to
identify volcanic clouds across the spectrum of
eruption cloud types.
— Spectral cloud objects [spectral signature]
— Plume [spectral signature + geometric properties]
—Putt [some spectral sighature+cloud-growthl]
—Major-Explosion{cloud-growth]

— Tracking in time [spectral signature + feature tracking]




Marco Fulle - www.stromboli.net

Spectrally Enhanced Cloud Objects
(SECO)

JGR - Pavolonis et al. (2015a)
JGR - Pavolonis et al. (2015b)
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IR Window Imagery and Ash Probability
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