Cloud Session

Introduction

Andrew Heidinger
NOAA/NESDIS/STAR
Cloud Team Lead
Cal/Val Team Members

<table>
<thead>
<tr>
<th>PI</th>
<th>Organization</th>
<th>Team Members</th>
<th>Roles and Responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrew Heidinger</td>
<td>NOAA/NESDIS/STAR</td>
<td>Yue Li, Denis Botambekov and Tom Kopp (AERO)</td>
<td>Cloud Mask, Cloud Height and CCL</td>
</tr>
<tr>
<td>Michael Pavolonis</td>
<td>NOAA/NESDIS/STAR</td>
<td>Corey Calvert (CIMSS)</td>
<td>Cloud Phase/Type</td>
</tr>
<tr>
<td>Steve Miller</td>
<td>CIRA</td>
<td>Dan Lindsey, Yoo-Jeong Noh, Curtis Seaman, John Forsythe</td>
<td>Cloud Base and CCL</td>
</tr>
<tr>
<td>Andi Walther</td>
<td>CIMSS</td>
<td>Sam Tushaus</td>
<td>Daytime Optical Properties, Precipitation (RR)</td>
</tr>
<tr>
<td>Pat Heck/ Pat Minnis</td>
<td>NASA LaRC</td>
<td></td>
<td>Nighttime Optical Properties</td>
</tr>
<tr>
<td>Mike Foster</td>
<td>CIMSS</td>
<td>Denis Botambekov, Jay Hoffman</td>
<td>Long-term Monitoring / Reprocessing</td>
</tr>
<tr>
<td>Bob Holz</td>
<td>SSEC</td>
<td>Greg Quinn</td>
<td>Validation Tools</td>
</tr>
<tr>
<td>Ping Yang</td>
<td>Texas A&M</td>
<td></td>
<td>Cloud particle scattering models.</td>
</tr>
<tr>
<td>William Straka and</td>
<td>ASSIST</td>
<td></td>
<td>Algorithm implementation into SAPF and verification of</td>
</tr>
<tr>
<td>Ruiyue Chen</td>
<td></td>
<td></td>
<td>implementation</td>
</tr>
</tbody>
</table>
Cloud Product Enterprise Status

• All algorithms updated in April 2016.

• ASSIST provided multiple days of global output. Report generated.

• Algorithms and ATBD updates delivered to ASSIST on August, 2016 for January 2017 update.

• Updates included
 – ECM
 • includes a thin cirrus flag as requested
 • 3.75 micron test revised and table updated (tbd)

 – ACHA updated with improved
 • microphysical model
 • ocean inversion calculation
 • latitudinal variation in cirrus property first guess

• CSPP Leo / CLAVR-x updated with Enterprise algorithms delivered to ASSIST.
 – International user base is growing steadily
The NOAA Enterprise Cloud Algorithms are distributed through UW/SSEC CSPP LEO.

CSPP LEO runs NESDIS CLAVR-x.

Provided good feedback for VIIRS Enterprise cloud products before operational in NDE this fall.

Roughly 50 downloads

Active communication with a Russian Remote Sensing Company that sells services to the Russian Weather Agency.

Goal is to release updates in step with our deliveries to SAPF. (ahead of operations but in-sync with ASSIST)

CSPP LEO supports VIIRS DNB usage. We hope to transition this to SAPF.

Example CSPP LEO CLAVR-x image provided by Russian CSPP customer
Enterprise Cloud Algorithms Compared to Others

- The Enterprise cloud algorithms generated by the ASSIST were included in a recent algorithm intercomparison conducted by the International Cloud Working Group (ICWG).
- Data was for HIMAWARI/AHI but code was EXACTLY the same as delivered to ASSIST in April 2016.
- The cloud height comparisons are shown here.
- The comparison on the right shows each agency’s data compared to NASA/CALIPSO.
- Data labelled NOAA are the Enterprise results.
- Data are stratified into single-thick, single thin and multilayer.
- Enterprise does relatively well in all 3 stratifications.
- ICWG is developing an analogous leo analysis for VIIRS.
• With support from JPSS-RR, the ECM is fully capable of using and benefiting from the VIIRS DNB coupled with the CIRA lunar model.

• The lunar analog of the daytime cloud optical and microphysical properties (DCOMP) is also ready for transition (when time is right).

• VIIRS cloud product rain rate also being developed for use in solar or lunar illumination. Provides a complement to the ATMS precip

• RR also funded the fusion of VIIRS and CrIS to provide MODIS-like IR channels. Algorithms being modified to make use of these data.

• An enhanced Cloud Cover Layers (eCCL) from VIIRS is also being developed to meet the requirements from NWS. Fusion of VIIRS and CrIS also helps this.

• It is time to extend the PATMOS-x AVHRR record onto VIIRS. Reprocessing over limited domains has shown this to be feasible. PATMOS-x VIIRS would expose the existing PATMOS-x AVHRR/GOES community to VIIRS. (not a RR proposal)
Current Issues

• ECM Performance in SAPF lags behind the same code implemented in CLAVR-x.
 – ASSIST has found some potential causes.
 – We hope tuning will solve this.

• ECM and other cloud products show “blockiness” due to lack of smoothing of ancillary data.
 – SAPF has the ability but the impact of smoothed NWP ancillary data on all algorithms is being assessed by ASSIST.

• ECM is still not tuned on SAPF output.
 – ASSIST has provided the ability to dump-out all ECM input from the Framework so that Cloud Team may train against it. Until now, we have had to use CLAVR-x.
 – Running the SAPF over the amount of data needed is still a challenge.

• The gfortran 4.4.7 restriction from OSPO limits the implementation of some known improvements into the SAPF.

• The M5 and M7 calibration errors do limit our ability to meet spec in several products.
Introduction to Cloud Talks

1110 - 1130 Impact of VIIRS Enterprise Cloud Products for NWP (Heidinger)
1130 - 1150 The Newly Operational VIIRS Cloud Base and CCL (Noh)
1150 - 1300 Lunch
1350 - 1410 Enterprise Cloud Mask Status (Kopp)
1410 - 1430 JPSS Hydrological Initiative Activities (Forsythe)