Potential Solution to Resolving Data Artifacts in VIIRS Aerosol Detection Product over Land

Hai Zhang¹, Pubu Ciren¹, Shobha Kondragunta², Istvan Laszlo², Lorraine A. Remer³, Hongqing Liu¹, Jingfeng Huang⁴, Mi Zhou¹, Ivan Valerio¹

1. IMSG; 2. NOAA; 3. UMBC; 4. UMD

Outline

- VIIRS Aerosol Detection Product (ADP)
- Demonstration and analysis of the data artifacts in ADP dust detection
- Dust RGB images using IR bands
- Dust detection using IR bands based on dust RGB method

VIIRS Aerosol Detection Product (ADP)

- Detect smoke and dust using two aerosol indices:
 - Absorbing Aerosol Index (AAI)

$$AAI = -100 \left[\log_{10} \left(\frac{R_{412}}{R_{440}} \right) - \log_{10} \left(\frac{R'_{412}}{R'_{440}} \right) \right]$$

- R_{412} and R_{440} : TOA reflectance at 412nm and 440nm bands
- R'_{412} and R'_{440} : Rayleigh reflectance at 412nm and 440nm bands
- Dust Smoke Discrimination Index (DSDI)

•
$$DSDI = -10 \log_{10}(\frac{R_{412}}{R_{2130}})$$

• R₄₁₂ and R₂₁₃₀ : TOA reflectance at 412nm and 2130nm bands

VIIRS Aerosol Detection Product (ADP)

• The detection is based on thresholds of AAI and DSDI, which are different over land and ocean

Surface type	Aerosol type	AAI thresholds	DSDI thresholds	Other
Land	Dust	> 10	≥ 0.0	
	Smoke	≥ 5.0 thin ≥ 9.0 thick	≤ -3.0 thin ≤ -2.0 thick	0.2 <r<sub>412 <0.4 thick</r<sub>
Ocean	Dust	> 4.0	≥ -10.0	
	Smoke	≥ 4.5 thin ≥ 10.0 thick	≤ -10.0 thin ≤ -4.0 thick	R ₂₁₃₀ < 0.1 thin

An example of smoke mask shown on eIDEA (https://www.star.nesdis.noaa.gov/smcd/spb/aq/eidea/)

VIIRS RGB 20170802

VIIRS RGB and Smoke Mack 20170802

VIIRS RGB and smoke mask 20170802

The dust mask is not shown on eIDEA because of the problems in the following slides

Problems in dust detection over land

- False detection
- Undetected dust
- Geometry dependent
- Demonstrated in the following cases

VIIRS 20161217

Dust storm near Texas/Mexico boundary

Two overpasses

RGB

RGB and dust mask (yellow)

7

2043 UTC

VIIRS 20161217

Dust storm near Texas/Mexico boundary

Two overpasses

RGB and dust mask (yellow)

NPP track for 20161217

Since the sun is to the west of the nadir, the overpass at 1902 is in forward reflection geometry and the overpass at 2043 is in backward reflection geometry.

VIIRS AAI 20161217

2043 UTC

An example with the area close to the center of the granule (20170331)

The false detection is more serious in the areas close to the nadir

Simulation study of AAI vs aerosol load in the three geometries

20161217

20170331

- Obtain the geometries in the boxes (same area in the three cases)
- Obtain the surface reflectance from surface reflectance database (built from multi-year VIIRS data)

Parameters for the three cases

Case number	description	Lat,lon bound	geometry (sza, vza,azi)	Surface reflectance M1,M2, M3, M5, M11
1	20161217 overpass 1	Lat 29.8N-31.8N Lon 105W-103W	forward (54.27, 65.26, 110.86)	0.05, 0.056, 0.067, 0.126, 0.196
2	20161217 overpass2		backward (60.37, 57.52, 55.80)	0.070, 0.081, 0.098, 0.185, 0.275
3	20170331		nadir (29.11, 13.29, 128.71)	0.076, 0.087, 0.103, 0.182, 0.269

Simulated AAI vs AOD (using LUT in Enterprise AOD algorithm)

• Good sensitivity in forward direction, some sensitivity in backward direction, no sensitivity near nadir

Dust and smoke are similar in AAI

Dust RGB

- Used by EUMETSAT (European Organization for Meteorological Satellites) on MSG (Meteosat Second Generation) (<u>https://www.eumetsat.int/website/home/Data/Training/TrainingLibr</u> ary/DAT 2042669.html?lang=EN)
- Three IR bands are used: IR8.7, IR10.8 and IR12.0
 - Brightness temperature at IR10.8 is less than that at IR12.0
 - Surface emissivity in 10.8 μm is similar to that in 12 μm
 - More absorption for dust in 10.8 μm than in 12 μm
 - Brightness temperature is close in IR10.8 and in IR8.7
 - Surface emissivity in 10.8 μm is higher than that in 8.7 μm
 - More absorption for dust in 8.7 μm than in 10.8 μm

Dust RGB

- R: bt12 bt10.8 (bt– brightness temperature)
- G: bt10.8-bt8.7
- B: bt10.8
- Using this method, dust shows as magenta color over desert

https://www.eumetsat.int/website/home/Data/Training/TrainingLibrary/DAT 2042669.html?lang=EN

The three cases plotted in dust RGB image

Use thresholds to detect dust in IR bands

Determine thresholds through visual inspection of the dust cases

	thresholds
R: bt12 – bt10.8	> 0
G: bt10.8-bt8.7	< 0.5 in North America < 4 in North Africa and Arabian Peninsula
B: bt10.8	> 273

20161217 1902

20161217 2043

20170331

Dust mask (brown color regions) using IR bands for the three cases

20170612 RGB

20170612 RGB IRDM (IR dust mask)

20170612 RGB ADP

Another case with no dust

20150909 North Africa and Arabian Peninsula

0.0 0.2 0.4 0.6 0.8 1.0

IRDM

ADP

20150909 North Africa and Arabian Peninsula

False detection in ADP

IRDM

ADP

Another case in North Africa 20130823

0.2 0.4 0.6 0.8 1.0

ADP

Summary

- Current ADP dust detection over land using deep blue bands has many areas of false detections
 - Less or no sensitivity of AAI to the aerosol load in some geometries and surface conditions
- An alternative dust detection method based on IR bands is proposed
- Case studies show that using IR bands for dust detection can greatly reduce false detections