STAR JPSS (2008)

2017 Annual Science Team Meeting

14-18 August 2017 • NCWCP • College Park, MD

The Future with JPSS

NOAA Center for Weather and Climate Prediction Conference Center • 5830 University Research Court • College Park, MD 20740

Evaluation of the VIIRS Enterprise Processing System AOD using AERONET over Different Geographic Regions

Hongqing Liu and NOAA STAR Aerosol Cal/Val Team **Multi-spectral aerosol retrieval** Applied to VIIRS and ABI/AHI at pixel level **Retrieval** Coverage Daytime cloud and snow/ice-free areas Land: dark and bright Ocean: non-glint deep water AOD at 0.55µm: from -0.05 to 5.0 High-quality retrievals meet requirement Larger RMSE over land

.3

xample of Accurate Retrievals Regional

Retrievals of Biased xample Regional

• Surface Reflectance

- Simultaneous retrieval of AOD@550nm and surface reflectance with two reference channels
- Aerosol Models
 - Once AOD and surface reflectance are determined, difference between calculated and observed reflectance at residual channels are used to select optimal aerosol model from four candidates (urban, generic, smoke and dust)

- AOD over-estimation
- Higher positive bias for fine-mode aerosol dominated cases (high AERONET AE)
- Majority (70%) of retrievals pick dust model

• Angular Dependence

Beijing (2)

• Retrieval error against zenith, azimuth, scattering and glint angles

Beijing (3)

Retrievals with finemode dominated aerosols would generate better results

 Problem in aerosol model selection

• Retrieval with urban aerosol model

Beijing (4)

• Insignificant angular dependence of retrieval errors

• Case Study (04/17/2013 05:57GMT)

Inputs:

PW	1.14337 cm
OZCONC	0.350851 atm-cm
PSL	1004.41 hpa
SFCTEMP	290.059 K
HGT	13.8458 m
WNDDIR	325.130 degree
WNDSPD	3.28555 m/s
REFLMI	0.322285
REFLM2	0.289493
REFLM3	0.258971
REFLM4	0.227863
REFLM5	0.235482
REFLM6	0.176977
REFLM7	0.282510
REFLM8	0.299651
REFLM9	0.00642178
REFLM10	0.299211
REFLMII	0.243100
BTM12	313.225 K
BTM15	292.967 K
BTM16	291.786
LAT	39.7449
LON	116.487
SOLZEN	37.2535 degree
SATZEN	57.5084 degree
SOLAZI	-134.700 degree
SATAZI	-93.8151 degree
HEIGHT	30.4856 m

Beijing (5)

AERONET AOD550 = 0.727 AE=1.25

	Dust	Generic	Urban	Smoke	
AOD550	1.079	0.498	0.507	0.769	
Resi@M1	0.035	0.070	0.071	0.021	
Resi@M2	0.016	0.038 0.038 0.0		0.021	
Resi@M11	0.137	0.528	0.527	0.700	
Residual	0.082	0.309	0.308	0.404	
SfcR@MI	0.0929	0.1318	0.1304	0.1547	
SfcR@M2	0.1030	0.1436	0.1421	0.1675	
SfcR@M3	0.1160	0.1577	0.1561	0.1822	
SfcR@M5	0.1786	0.2304	0.2285	0.2609	
SfcR@MII	0.3202	0.4434	0.4389	0.5160	
Posidual dominated by MIL (2 12mm)					

Residual dominated by MII (2.13µm)

- Revise the estimation of surface reflectance at MII
 - Current scheme uses the reverse of MII->M5 relationship
 - Derive a new direct relationship from M5 to M11

• Case Study - Revisit

AERONET AOD550 = 0.727 AE=1.25

• Compared with current EPS retrieval, estimated surface reflectance at MII for fine mode aerosols is much closer to the correct value, and the residual is not significantly biased to MII band.

•Dust is still the best solution.

•Average of two best solutions (dust and generic weighed by residual) 0.794 is closer to the AERONET measurement.

	Dust	Generic	Urban	Smoke	
AOD550	1.079	0.498	0.507	0.769	
Resi@M1	0.035	0.070	0.071	0.021	
Resi@M2	0.016	0.038	0.038	0.021	
Resi@M11	0.056	0.038	0.041	0.087	
Residual	0.049	0.051	0.052	0.053	
SfcR@MI	0.0929	0.1318	0.1304	0.1547	
SfcR@M2	0.1030	0.1436	0.1421	0.1675	
SfcR@M3	0.1160	0.1577	0.1561	0.1822	
SfcR@M5	0.1786	0.2304	0.2285	0.2609	
SfcR@MII	0.2472	0.2952	0.2934	0.3234	

Retrieval with new M5->MII surface relationship

- Retrieval over Beijing is slightly improved by using new M5->M11 surface reflectance relationship
- With modification, less dust retrievals are picked as the best solution: dust 36% (70%); generic 2% (2%); urban 30% (14%); smoke 32% (14%)
- More improvement is achieved if best two solutions are weighted averaged by the residual

- AOD under-estimation
- Majority (52%) of retrievals pick smoke model, while AERONET Angstrom Exponent shows many dust cases dominated by low AE

- Retrievals

 with dust
 model
 would
 generate
 better
 results
- Problem in aerosol model selection

m

Inputs:

PW	1.51776 cm
OZCONC	0.253983 atm-c
PSL	966.612 hpa
SFCTEMP	306.494 K
HGT	331.854 m
WNDDIR	212.892 degre
WNDSPD	3.59268 m/s
REFLMI	0.262927
REFLM2	0.229963
REFLM3	0.200540
REFLM4	0.177515
REFLM5	0.165452
REFLM6	0.175586
REFLM7	0.270887
REFLM8	0.329367
REFLM9	0.0115250
REFLM10	0.285928
REFLMII	0.195022
BTM12	316.778 K
BTM15	304.850 K
BTM16	303.218 K
LAT	8.28619
LON	4.16135
SOLZEN	40.53 degree
SATZEN	40.63 degree
SOLAZI	-141.99 degree
SATAZI	-98.14 degree
HEIGHT	371.975 m

AERONET AOD550 = 1.186 AE = 0.34

	Dust	Generic	Urban	Smoke
AOD550	1.254	0.570	0.606	0.769
Resi@M1	0.023	0.035	0.036	0.009
Resi@M2	0.006	0.019	0.019 0.019	
Resi@M11	0.201	0.194	0.193	0.198
Residual	0.1167	0.1141	0.1139	0.1143
SfcR@MI	0.0269	0.0739	0.0738	0.0810
SfcR@M2	0.0289	0.0812	0.0811	0.0891
SfcR@M3	0.0364	0.0921	0.0919	0.1005
SfcR@M5	0.0677	0.1355	0.1353	0.1457
SfcR@MII	0.1320	0.1728	0.1726	0.1789

Residual dominated by MII, difference is very small, hard to select correct model; dust high AOD associated with low surface reflectance STAR IPSS 2017 Annual Science Team Meeting 17

August 2017, College Park MD

Inputs:

PW	2.16383
OZCONC	0.246923
PSL	965.934
SFCTEMP	308.135
HGT	357.818
WNDDIR	217.665
WNDSPD	2.76619
REFLMI	0.206205
REFLM2	0.180127
REFLM3	0.156760
REFLM4	0.141377
REFLM5	0.127727
REFLM6	0.164988
REFLM7	0.249692
REFLM8	0.294279
REFLM9	0.00300334
REFLMI0	0.228132
REFLMII	0.133368
BTM12	311.346
BTM15	303.350
BTM16	301.711
LAT	8.08027
LON	4.37263
SOLZEN	36.08
SATZEN	20.74
SOLAZI	146.94
SATAZI	-97.84
HEIGHT	395 444

AERONET AOD550 = 1.273 AE = 0.578

	Dust	Generic	Urban	Smoke
AOD550	1.232	0.620	0.679	0.700
Resi@M1	0.065	0.098	0.096	0.056
Resi@M2	0.017	0.039	0.037	0.026
Resi@M11	0.015	0.005	0.007	0.014
Residual	0.040	0.061	0.060	0.036
SfcR@MI	0.0115	0.0504	0.0499	0.0558
SfcR@M2	0.0136	0.0540	0.0535	0.0596
SfcR@M3	0.0207	0.0617	0.0612	0.0673
SfcR@M5	0.0463	0.0968	0.0962	0.1037
SfcR@M11	0.1139	0.1450	0.1446	0.1492

Residual dominated by MI, difference is very small, hard to select correct model; dust high AOD associated with low surface reflectance STAR IPSS 2017 Annual Science Team Meeting 17

August 2017, College Park MD

llorin (4)

Retrieval with new M5->MII surface relationship
 No improvement

EPS Original Retrieval

New M5->M11 Relationship

26.3%

Smoke

9.1%

Urban

6.2%

Jaipur (2)

Dust and smoke models give better results than generic and urban models

- Validation statistics depend on the satellite-ground matching method
 - Left: 27.5 km radius on satellite retrievals centered on the Jaipur station, at least 750 high quality pixel retrievals
 - Right: 5 km radius, at least 5 high quality retrievals

STAR JPSS 2017 Annual Science Team Meeting 17 August 2017, College Park MD

21

- AOD over-estimation
- Low AOD dominated area
- 66% of retrievals pick smoke model and 27% of retrievals pick dust.

• Angular Dependence

Railroad Valley (

• Retrieval error against zenith, azimuth, scattering and glint angles

•All aerosol models overestimate.

•Surface reflectance

 Retrieve surface reflectance from low AOD cased via atmospheric correction

• Evaluation of the surface reflectance relationship (M5->M3 derived globally) over this station does not reveal significant error

 SfcRef@M3 of majority retrievals fall within expected range

•No significant season variation

SfcRef@M3:0.072±0.029

Season

Retrieved M3 Surface Reflectance

Rugged terrain

Date:	2013.157
AERONET AOD550:	0.052
EPS Mean AOD550:	0.276
Solar Zenith Angle:	19.10°
Viewing Zenith Angle:	11.89°
Solar Azimuth Angle:	-142.06°
Viewing Azimuth Angle:	78.16°
Scattering Angle:	150.83°
Glint Angle:	12.54°

Retrieved AOD550

$\mathbf{B}_{\mathbf{D},\mathbf{D},\mathbf{D}}$

50.0 1550.0 1650.0 1750.0 1850.0 1950.0 2050.0 2150.0 2250.0 2350.0 2450.

Input ToaRef@M3

Date:	2012.328
AERONET AOD550:	0.009
EPS Mean AOD550:	0.017
Solar Zenith Angle:	59.20°
Viewing Zenith Angle:	59.09°
Solar Azimuth Angle:	-175.33°
Viewing Azimuth Angle:	70.62°
Scattering Angle:	87.87°
Glint Angle:	55.71°

38.65

38.45

-116.05

DUST

Latitude

450.0 1550.0 1650.0 1750.0 1850.0 1950.0 2050.0 2150.0 2250.0 2350.0 2450.0

0.400 0.500

Longitude -115.85

0.600 0.700 0.800

GENERI

STAR JPSS 2017 Annual Science Team Meeting 17 August 2017, College Park MD

SMOKE

URBAN

- VIIRS Enterprise Processing System AOD retrieval over land is evaluated using AERONET measurements over different geographic regions.
- Aerosol model selection can be improved by introducing a new set of surface reflectance relationship over East Asia.
- Lack a more absorbing dust model might be the cause of the negative bias over Africa.
- Evaluation of retrieval performance is sensitive to the validation domain selection over certain areas.
- Retrieval would have difficulty over rugged terrain areas.

Global Evaluation

EPS Original Retrieval

New M5->MII Relationship

New M5->MII Relationship Average of best two solutions

Regional Evaluation

	Domain	L	ongitude	Ι	Latitude	
Nor	thern North America	180°	W - 60° W	7 50°	N - 80° N	J
	Northern Asia	60°	E - 180° E	50°	$N - 80^{\circ}$ N	J
	Europe	20°	W - 60° E	40°	N - 70° N	I
We	stern North America	130°	W - 100° V	$V 10^{\circ}$	N - 50° N	I
Eas	stern North America	100°	W - 60° W	10°	N - 50° N	I
	South America	80°	W - 40° W	60°	S - 10° N	N
	South Africa	20°	W - 40° E	40°	S - 15° N	N
	India	60°	E - 100° E	0°	- 30° N	
	Eastern Asia	100°	E - 140° E	10°	S - 50° N	N
	Australia	110°	E - 160° E	_50°	S - 10° S	
				$\gamma \gamma \gamma \mu \gamma \rho$		

STAR JPSS 2017 Annual Science learn Meeting

August 2017, College Park MD

Eastern Asia

• Eastern North America

Western North America

Europe

Africa

India

South America

Northern North America

Northern Asia

Australia