

Enterprise Cloud Height Status, Progress and Applications

Andrew Heidinger Yue Li, Steve Wanzong JPSS Cloud Team

How AWG CLOUD HEIGHT (ACHA) Works

ACHA Input

ACHA Output

Optimal Estimation

cloud height cloud temperature

cloud pressure errors

Users of Enterprise Height Products and Software

Software

- Japanese Meteorological Agency (JMA): (ACHA run in their own system).
- Australian Bureau of Meteorology (ABOM): ACHA run for local AMV generation.
- Taiwan Central Weather Bureau: Enterprise algorithms run in CSPP.
- Naval Research Laboratory: ACHA run to support a MURI project.
- CIRA: ACHA part of suite run in CLAVR-x to support solar energy forecasts.
- CSPP: Both LEO and GEO versions.
- NASA NPP MODIS Continuity Project uses ACHA in CLAVR-x in its processing chain.

Products

- NWS Aviation Weather Center: ACHA, BASE and CCL from global geos and polar VIIRS.
- Boeing: ACHA from all GEO sensors.
- NESDIS Operations AMVs (GEO and VIIRS).
- NCEP All-sky radiance assimilation stratification (clear and by cloud layers).
- NCEP RTMA (tbd).

OSPO/NDE Operational Status

Enterprise Cloud Algorithms Operational Status

- The NOAA Enterprise Cloud Products (Mask, Phase, Height, Day/Night Optical) became operational on July 7, 2017 and available on PDA.
- Data should be available to public via CLASS on August 23.
- Operational version (v1r1) was that from June 2016.
- Updates delivered January 2017 and August 2017 are not yet running in NDE.

Images show about 8 hours of NDE Enterprise Output. Top image is the 11 micron BT and the bottom image is the NDE operational cloud-top pressure product.

Global Views of NDE Output

Issues:

- A few missing granules per day on all days tested.
- Edge of granules are missing. VIIRS maximum zenith angle is larger than maximum supported by CRTM/SAPF

Issues Contd.

Cloud Top Temperature Uncertainty is not correctly written to file.

NDE vs Calipso

60°N-60°S, Phase matching, single layer						
Type	Bias (km)	StdDev(km)	Corr	Counts	Within Specs- Accuracy	Within Specs- Precision
All clouds	-0.3	1.26	0.96	69060	81.9%	82.3%
Water	-0.02	0.80	0.83	46050	90.7%	90.8%
Ice	-0.87	1.74	0.75	23010	64.5%	65.7%

Histogram Distribution of differences between VIIRS and Calipso

- Phase matching and single layer filtering is applied to 06/20/2017
- Calipso from the same day is collocated and compared
- An independent comparison using current Clavr-x product is provided and shows similar performance
- Current cloud height retrieval indicates a slightly larger estimation, which makes a positive impact compared to NDE (next two slides)

CLOUD COVER LAYERS APPLICATION

Cloud Cover Layers Application

Pixel-level Cloud Products (Mask/Phase/ACHA+Base)

Gridded (10 km) Cloud Cover Layers

Merging VIIRS and GEO for AWC

- Image contains one day of cloud-top altitude (ft).
- Arctic data is from SNPP VIIRS
- Non-Arctic data is from the global geostationary constellation.
- Global-geo has been served to NWS AWC since 2014.
- We plan to add VIIRS now that products are operational (see image on right)
- Data will be served to AWC via CIMSS.
- PSDI support will be sought to move all of this in NESDIS ops.
- Products will include the CCL supported under JPSS-RR.

AMV APPLICATION

VIIRS Arctic AMVs for day 2017, August 02

- Initial NWP impact shows mostly neutral to slightly positive NWP impact.
 Reported by Iliana Genkova at IWW13 in June 2016.
 - -Planned for operational use in the GSI Quarter 3 Fiscal Year 2017.
- All supported sensors use the same AMV software in the Enterprise framework.
 Includes both leo and geo sensors.

100 - 1000 hPa	All Levels
Accuracy	5.89
Precision	3.48
Speed Bias	0.52
Average Speed	21.79
Sample Size	12784

- Data is from 1 February 30 June, 2017.
- GOES-R Metrics: 7.5 ms-1 Accuracy; 4.2 ms-1 Precision.
- QI > 80

100 - 1000 hPa	All Levels
Accuracy	6.10
Precision	4.16
Speed Bias	-0.25
Average Speed	15.72
Sample Size	1339

- Data is from 1 February 30 June, 2017.
- GOES-R Metrics: 7.5 ms-1 Accuracy; 4.2 ms-1 Precision.
- QI > 80

ACHA Algorithm Changes since 2016

Multi-layer Solution

- ACHA always accounted for multi-layer clouds when detected, now temperature of lower layer has been added to the O.E. state vector.
- Very promising performance but varies with spectral content.

Microphysical Models

- Made this a compile-time option and expanded the number of options.
- Analysis has shown this does impact cloud heights appreciably.

Sounder/Imager Fusion

- Finalized use of CrIS data to make CO₂ slicing heights which are used in ACHA O.E.
- Paper drafted and results shown here.
- Studying use of NUCAPS heights and transitioning to operations.

Spectral Channels

- ACHA has always supported many 1,2 or 3 channel combinations. Now we support some 4 and 5 channel combinations. Default for VIIRS remains 8.5, 11 and 12 microns.
- Paper drafted on optimal channel combinations revealed by CALIPSO/CALIOP.

Multi-Layer Cloud Height

- AWG Cloud Height can now directly retrieve height of lower cloud layers.
- It can also determine its own multilayer scenes. (experimental)
- Limited to high thin over low cloud.
- Important for the CCL application and low level AMV targets.

Impact of Ice Crystal Habit Choice on Cloud Height

Example VIIRS Scene

- MODAWG uses the Aggregate Column Habit as did MODIS C6
- This was chosen to improve VIS and IR consistency in optical depth
- The images below show the cloud-top pressures predicted solely based on a direct inversion using the 8.5, 11, 12 µm channels and each habit.
- Unfortunately, Agg Col solutions often go very high and are not optimal.
- \bullet The Empirical model is based on spectral consistency between 8.5-11-12 μm

SAIELLITE SASSIEM PROGRAMMENT OF THE PROGRAMMENT OF

Imager/Sounder Merge

- VIIRS lacks IR bands in CO₂ or H₂O absorption bands that are present on GOES-16 and MODIS.
- Leveraging from the NASA SNPP MODIS Continuity Project, we developed a methodology to merge with CriS to improve performance.
- Currently, we make MODIS CO₂ bands from CrIS and run a MODIS-ish CO₂ slicing. (top right)
- These sounder heights for ice clouds are spatially smoothed (lower left)
- The smoothed sounder heights are added as a new constraint to the ACHA IR Optimal Estimation.
- Benefits
 - Utilizes sounder spectral information
 - Preserves imager spatial resolution
- Applications
 - Polar Winds (need high spatial for tracking)
 - Radiance Assim better cloud stratification
 - Climate better cloud depiction consistency with MODIS/GOES-16
- Future
 - Submit publication
 - Explore using NUCAPS as the sounder height source.
 - Look again at VIIRS pixel level CrIS Bands (Fusion)

Conclusions

- ACHA is operational now in NDE.
- Performance seems as expected with a few lingering issues.
- We hope CCL from VIIRS can join global-geo CCL for AWC.
- ACHA's use in AMV application appears to be successful.
- We hope the use of ACHA for VIIRS/CrIS All-sky Radiance Assimilation is also successful.
- Several algorithm developments are ongoing and hold promise for improved performance.

The End, Thank You!

Challenge of Cloud Height Consistency

- Image shows cloud top temperature (top) and cloud pressure (bottom) from GEWEX Cloud Assessment.
- Variation among sensors and groups is large.
- Sensors with IR abs channels can use slicing or sorting techniques.
- Sensors with only IR window channels rely on microphysical techniques which are more problematic.

Additional AMV Stats

101 - 400 hPa	Upper Levels	
Accuracy	6.38	
Precision	3.58	
Speed Bias	0.51	
Average Speed	26.94	
Sample Size	5528	

- Data is from 1 February 30 June, 2017.
- GOES-R Metrics: 7.5 ms-1 Accuracy; 4.2 ms-1 Precision.
- QI > 80

401 - 700 hPa	Middle Levels	
Accuracy	5.72	
Precision	3.30	
Speed Bias	0.59	
Average Speed	20.03	
Sample Size	5525	

- Data is from 1 February 30 June, 2017.
- GOES-R Metrics: 7.5 ms-1 Accuracy; 4.2 ms-1 Precision.
- QI > 80

701 - 1000 hPa	Lower Levels	
Accuracy	4.87	
Precision	3.40	
Speed Bias	0.28	
Average Speed	10.97	
Sample Size	1731	

- Data is from 1 February 30 June, 2017.
- GOES-R Metrics: 7.5 ms-1 Accuracy; 4.2 ms-1 Precision.
- QI > 80

101 - 400 hPa	Upper Levels	
Accuracy	6.55	
Precision	3.61	
Speed Bias	-0.70	
Average Speed	19.13	
Sample Size	597	

- Data is from 1 February 30 June, 2017.
- GOES-R Metrics: 7.5 ms-1 Accuracy; 4.2 ms-1 Precision.
- QI > 80

401 - 700 hPa	Middle Levels	
Accuracy	5.76	
Precision	4.64	
Speed Bias	-0.09	
Average Speed	13.39	
Sample Size	656	

- Data is from 1 February 30 June, 2017.
- GOES-R Metrics: 7.5 ms-1 Accuracy; 4.2 ms-1 Precision.
- QI > 80

701 - 1000 hPa	Lower Levels	
Accuracy	5.58	
Precision	3.46	
Speed Bias	1.60	
Average Speed	9.82	
Sample Size	86	

- Data is from 1 February 30 June, 2017.
- GOES-R Metrics: 7.5 ms-1 Accuracy; 4.2 ms-1 Precision.
- QI > 80

Additional CALIPSO Stats

CLAVR-x vs Calipso

60°N-60°S, Phase matching, single layer						
Туре	Bias (km)	StdDev(km)	Corr	Counts	Within Specs- Accuracy	Within Specs- Precision
All clouds	0.07	0.96	0.97	71997	85.0%	85.2%
Water	0.18	0.77	0.85	51539	91.0%	91.0%
Ice	-0.2	1.3	0.85	20458	70.0%	70.3%

NDE vs Calipso, No phase matching

Туре	Bias (km)	StdDev(km)	Corr	Within Specs- Accuracy	Within Specs- Precision
All	-1.25	2.91	0.77	56.5%	34.4%
Tropics	-1.77	3.48	0.79	55.9%	29.6%
Poles	-0.65	2.48	0.61	54.8%	42.0%
Midlat	-1.09	2.70	0.72	56.5%	37.4%
Single Layer	-0.18	2.22	0.84	75.0%	74.3%
Single Layer-thin	-0.85	2.87	0.66	57.1%	66.0%
Single Layer-thick	0.04	0.94	0.96	82.3%	82.4%
Multi layer	-1.84	2.11	0.71	24.8%	47.8%

- Correct phase identification is critical for ACHA retrieval
- ACHA performs equally well in different latitude regions, including the Poles
- ACHA performs significantly better under single layer situation than multilayer
- We can now retrieve multilayer cloud height (up to two layers), which is promising to improve general ACHA performance