

Use of Multiple Satellite Products in Assessing NOAA Global Forecast Model: Footprints of Aerosol-Cloud Interactions

Zhanqing Li

Youtong Zheng, Lei Zhang, Seoung-Soo Lee University of Maryland Daniel Rosenfeld The Hebrew University of Jerusalem

Theme 1

Conventional satellite products (column and cloud top quantities) deal with classical model problems

Evaluation of Model Performance

Observations

t Surface data

Aircraft Data

Comparison Cloud Fraction - July

Yoo and Li (2012, Climate Dyn)

0 10 00 70 10 50 50 70 80 00 100

Comparison of Low Clouds from GFS & MODIS

INVERSITA OF INVERSITA OF INVERSITA OF INVERSITA OF INVERSITA OF

The new SC scheme does not destroy stratocumulus clouds off the west coasts of America and Africa as the old scheme does. (Han &Pan 2011)

Cloud Fraction

Is it possible the negative bias might related to the biomass burning aerosols ?

Many observations and modeling studies show that absorbing aerosols above the marine stratocumulus clouds tends to increase the cloud cover.

Most biomass burning events occur during Aug (Jan) in the south(central) Africa but fewer during April.

worldview.earthdata.nasa.gov/

Low-level cloud fraction

ShTELLITE STORE TO A

Change of Cloud Fraction with Aerosol from CloudSat, CALIPSO, MODIS

- Significant increase in CF for both cases;
- Stronger increase in CF for ACA (ACA_H) than N-ACA (ACA_L) cases;
- For N-ACA cases, CTH increases slightly, while for ACA cases, CTH significantly decreases;
- Stronger increase in CF for ACA_H than ACA_L cases

Liu and Li (2017, in preparation)

Theme 2

Un-conventional satellite products (cloud base and vertical profile) have the potential in dealing with *future* model problems

NPP: Building a Bridge to a New Era of Earth Observations

Launched on 26/10/2011

Suomi/NPP VIIRS Imager **375 m** thermal resolution

This made it possible to retrieving N_a and W_b

New Satellite Sensor, Novel Algorithms

- ARYLATO
- Generation of new remote sensing products and quantify their uncertainties for operational application
- Demonstration of their potentials to improve the weather forecast if the information can be ingested into the system.

High spatial resolution is required to resolve the vertical structure of convective clouds. Lower resolution misses all but largest and deepest clouds.

Satellite

Measurement concept for T-r_e based CCN retrievals

Zhu et al. (2014, GRL)

FELLITE

Retrieval of Cloud Base Updraft

Algorithm development

Cloud base temperature, height, boundary layer moisture:

Zhu et al., GRL, 2014 Zheng and Rosenfeld, GRL, 2015

Cloud base updrafts:

- (1) Temperature gradient method: Zheng et al., JAS, 2015
- (2) Cloud base height method: Zheng and Rosenfeld, GRL, 2015
- (3) CTRC method: Zheng et al., GRL, 2016,

CCN (Cloud condensation nuclei): D Rosenfeld, Youtong Zheng, et al., PNAS, 2016

Ground-based validation

Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers

Daniel Rosenfeld^{a,1}, Youtong Zheng^{b,c,d}, Eyal Hashimshoni^a, Mira L. Pöhlker^{e,f}, Anne Jefferson^g, Christopher Pöhlker^e, Xing Yu^h, Yannian Zhu^{d,h}, Guihua Liu^h, Zhiguo Yue^h, Baruch Fischman^a, Zhanqing Li^{b,c,d}, David Giguzin^a, Tom Goren^a, Paulo Artaxoⁱ, Henrique M. J. Barbosaⁱ, Ulrich Pöschl^{e,f}, and Meinrat O. Andreae^e

Progress on Meeting Objectives (3

(3° ARYLAND

Application to aerosol-cloud interactions

VIIRS 2012/07/ Guibua Lin & Xi	19 19:22 N28.47 W	96.31 r = ref	9.6 g = retl3.7	1 TH THE !!	1 1 1 1 1	CE Perso	The west of the
299	461	392	416	326	382	405	1. 1. 2.
0.3	0.26	0,3	0.27	0.43	0.33	0.32	
19	19	18	19	16	19	19	- 95 C - 64
292	233 🛀	338	389	518	347		
0.31	0.45	0.33	0.3	0.24	0.34	See M	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
19	16	18	18	20	18		× .
235	224	177	476	746	e	8 2 8 2	444
0.37	0.43	0.65	0.29	0.19	a second	1.1	0.35
18	+17	12	17 6	21	1-1 × 3	No.	15
293	209	252	396	975	720	609	550
0.28	0.39	0.40	0.34	0.19	0.22	0.27	0.22
21	19	17	16	19	19	217	20
	102	233	328	370	357	380	170
7	0.64	0.43	0.31	0.37	0,33	0.26	0.63
1 S	16	16	18	19	18	21	13
As at	and the second	1				C	

The numbers in each area are, top: CCN (cm⁻³); middle: S (%), bottom: cloud base temperature (°C). Unstable clean tropical air mass flows northward (upward in the image) from the Gulf of Mexico. The Houston urban effect is clearly visible by more than tripling the CCN concentrations over Houston

What can the new products of cloud base height, updraft and CCN help weather and climate studies ?

For low LWP, rainfall occurrence is suppressed by aerosols (30-50%)
For large LWP, rainfall frequency is increased by aerosols (50%)

3. Light rain is suppressed by aerosols, heavy rain is enhanced !

Li et al. (2011, Nature-Geoscience)

The Effect of Cloud Base Height on Aerosol-Cloud Interactions

For low clouds (<1km), cloud thickness increases by a factor of 2! For high clouds (>2km), cloud thickness is not affected at all!.

Li et al. (2011, Nature-Geoscience)

Aerosols have the strongest impact on convective clouds, especially for the invigorated clouds!

Diurnal Cycle of Rainfall from Deep Clouds Contrast between Clean & Dirty Air

GFS Precipitation Model Error and Aerosol

Jiang et al. (2017, ACP)

2017/8/23

TELLITE

GFS overestimates light rain and underestimates heavy rain

2017/8/23

Looking Ahead

Data assimilation to improve NWP

o Impacts of updrafts on vertical structure and development of convective clouds

o VIIRS-retrieved cloud base height, supersaturations and CCN in an automatic

Summary

- Satellite products have long been employed in improving weather forecast. It's time to go beyond the conventional approach.
- We have developed a suite of novel satellite methods to derive cloud base updrafts, temperature, height, boundary layer moisture and CCN.
- Pilot work is under way to demonstrate the potentials of the new products in improving weather forecast.
- A new approach of data assimilation for using the new products is yet to be developed when our methods are ready for generating semi-operational products.