CMORPH:

A Multi-Sensor, Multi-Platform Blended Product of Global High-Resolution Precipitation

Pingping Xie
NOAA Climate Prediction Center

September 18, 2017

Overview

- CMORPH: CPC Morphing Technique
- Basic Notion

To construct high-quality, high-resolution global precipitation estimates through integrating information from ALL available sources:

- Level 2 PMW precipitation retrievals from all relevant LEO satellites
- IR precipitation estimates from GEO & LEO platforms
- Precipitation fields generated by numerical models
- Measurements from gauges and other in situ instruments (e.g. buoys)
- •

Timeline

- 2002: Version 0 started real-time operation
- 2009: Version 1 algorithm and system finalized
- 2014: Version 1 reprocessing completed for 1998 ~ present
- 2015: Version 2 prototype algorithm developed
- 2017: Version 2 test real-time production started

[1] Overall System Structure

- A Two-step approach
 - Integrating information from all satellites (LEO PMW + GEO IR)
 - Removing bias in satellite estimates through calibration against gauge data
- Joyce et al. (2004); Xie and Joyce (2017)

[2] Purely Satellite-Based Estimates

- PDF inter-calibration against a common reference (TMI)
- Propagation of L2 PMW retrievals from respective observation times to target analysis time along cloud motion vectors
- Cloud motion vectors computed from two consecutive GEO IR images 30-min apart using maximum cross correlation (MCC) technique
- Propagation performed in both forward & backward directions and the purely satellite-based raw CMORPH is defined as weighted mean of the two propagated PMW.

[3] Bias Correction

- Over land:
 PDF matching against
 CPC gauge analysis
- Over ocean: Adjustment against pentad GPCP

Final Outputs:

- 8kmx8km over the globe (60°S-60°N)
- 30-min interval from 1998 to the present
- Real-time operation at a latency of 2 hours

[4] Sample

2014-Aug-01 00:00Z

1st Generation CMORPH[5] CMORPH V 1 Outperforms TRMM/TMPA V7

Comparison of CMORPH V1
 / TMPA against Stage IV
 radar over CONUS

2nd Generation CMORPH

[1] Overall System Structure

- Developed with support from JPSS
- Upgrades upon CMORPH1
 - Pole to pole global coverage
 - 0.05°lat/lon grid
 - Improved snowfall rate
 - Better accuracy
 - Reduced latency (<1 hour)
- Strategy
 - Inputs from more sources
 - PMW SFR retrievals
 - GEO/LEO IR precip estimates
 - Model precipitation fields
 - Vectors
 - 2DVAR combining vectors from model and satellite estimates
 - Integration framework
 - Kalman Filter

2nd Generation CMORPH

[3] Improved SFR and Strong Convection Representation

2014-03-03 10:00-11:00UTC

Summary

- We appreciate it very much JPSS support to our CMORPH development work!
- Synthesizing information from different sources is demonstrated an effective mean to construct high-quality, high resolution precipitation estimates
- CMORPH has a track record of leading the world in the technology development and operational production
 - The NASA/GPM IMERG core algorithm (integration part) is adopted from CMORPH through code migration
 - The Japanese GSMaP is a variation of the CMORPH algorithm
 - The full-resolution IR created at CPC and used as input to the CMORPH is also used by IMERG and other global satellite precip products;
 - The MWCOMB, inter-calibrated PMW maps, is also used by several other preciper products
 - WE ARE THE FIRST TO PRODUCE BLENDED PRECIP ESTIMATES POLE TO POLE!