

JPSS LAND SURFACE ALBEDO EDR

Yunyue Yu NOAA/NESDIS/STAR Yunyue.Yu@noaa.gov

Shunlin Liang, Dongdong Wang, Yuan Zhou, Jingjing Peng UMD/CICS

Outline

- Cal/Val Team Members
- JPSS LSA Product Overview
- Validation and Monitoring
- Algorithm Improvement
 - Issues
 - New NDE Gridded LSA Product
 - Updates to Sea Ice Surface Albedo Algorithm
 - Validation
- User feedbacks
- Summary and Path Forward

Cal/Val Team Members

PI	Organization	Team Members	Roles and Responsibilities	
Ivan Csiszar	NOAA/NESDIS/SATR		Land Lead, Project Management	
Yunyue Yu	NOAA/NESDIS/SATR		EDR Lead, algorithm development, validation, team management	
		Jingjing Peng	Algorithm development, validation, monitoring	
Shunlin Liang	UMD/CICS		Algorithm development, validation	
		Dongdong Wang	Algorithm development, validation, monitoring	
		Yuan Zhou	Algorithm development, validation, monitoring	
Walter Wolf	NOAA/NESDIS/SATR		System Integration, Transition	
		Valerie Mikles	System Integration, Transition	
		Marina Tsidulko	STAR IT support	
Michael EK	NOAA/EMC/NCEP		User readiness	
		Weizhong Zheng	User readiness : Model albedo application, verification	
		Yihua Wu	User readiness : Model albedo application, verification	
Miguel Roman	NSAS/GSFC		NASA Land Science Investigator-led Processing System Lead	
		Sadashiva Devadiga	System support, product monitoring	

Overview: Current VIIRS IDPS LSA Product

- Operational Products
 - Single 1.5 min granule data
 - Combined 4 x 1.5 min granule data
- Production team
 - STAR Science Team : Scientific development and validation
 - JPSS DPE (Data Product Engineering) : Production

i is VIIRS band number, including the channels 1,4,5,7,8,10 and 11.

	Name	Туре	Description	Dimension	Unit		
	Primary Sensor Data(SDR)						
0.5	Spectral reflectance	input	TOA spectral reflectance at M1, 4,5,7,8,10,11	grid (xsize, ysize)	unitless		
	Solar zenith	input	Solar zenith angles	grid (xsize, ysize)	Degree		
	View zenith	input	Satellite view zenith angle	grid (xsize, ysize)	Degree		
0.25	Solar azimuth	input	Solar azimuth angles	grid (xsize, ysize)	Degree		
	View azimuth	input	Satellite view azimuth angle	grid (xsize, ysize)	Degree		
	SDR QC flags	Input	Level 1b data quality	grid (xsize, ysize)	unitless		
Derived Sensor Data							
	Cloud mask	Input	Cloud mask data	grid (xsize, ysize)	unitless		
	Snow mask	Input	Level 2 snow/ice mask data	grid (xsize, ysize)	unitless		
0.0	Surface type	Input		grid (xsize, ysize)	unitless		
	LUT and Configuration File						
	Coefficients LUT	Input	Regression coefficients for BPSA	2(two surface types)*18(sza) *18(vza)*23(raa)* 8(coef items)	Unitless		
	Output						
	LSA	Output	LSA values	grid (xsize, ysize)	Unitless		
	QF	Output	Associated pixel quality flags	grid (xsize, ysize)	Unitless		

- Several algorithm improvements have been made since S-NPP was launched.
- A set of surface-specific LUTs with consideration of surface reflectance anisotropy are used.
- Validation results suggest the VIIRS direct estimation approach can generate albedo retrievals with accuracy similar (or superior) to existing products.

Wang, D., Liang, S., He, T., & Yu, Y. (2013). Direct Estimation of Land Surface Albedo from VIIRS Data: Algorithm Improvement and Preliminary Validation. Journal of Geophysical Research, 118, 12577-12586 Comprehensive Assessment of VIIRS LSA

- Two years data over 23 sites
- Field measurements together with Landsat 7 ETM+ and Landsat 8 OLI maps (~3Tb)
- Intercomparison with MODIS product

Zhou, Y., Wang, D., Liang, S., & He, T. (2016). Assessment of the Suomi NPP VIIRS land surface albedo data using station measurements and high-resolution albedo maps. *Remote Sensing*, 8, 137, doi: 10.3390/rs8020137.

Independent Validation Study

Investigators from CAS used sophisticatedlydesigned spatial sampling technique to address issues of spatial scaling in validating coarse spatial resolution LSA products

 Validation results suggested superior quality of VIIRS data.

VIIRS LSA Long-term Monitoring

- Developed a long-term monitoring tool
 - Automatically validate against field measurements;
 - Generate global composite maps on a regular basis;
 - Send alerts when abnormal results occurs;
 - Update maps through WWW
 - http://www.star.nesdis.noaa. gov/jpss/EDRs/products_Alb edo.php

A global map of land surface albedo composite with VIIRS products of Sept, 2016

Active Fires

 Albedo >> Clouds

 Ozone Polar Wind

Issues of IDPS LSA Granule Product

- Issues of the current IDPS granule LSA algorithm:
 - Missing values
 - Current product: granule instantaneous, for clear-sky pixels only
 - Intraday residual variations
 - A direct estimation method is used for VIIRS to capture LSA variations of rapidly-changing surfaces.
 - Meanwhile, the albedo retrieved from a single observation may contain some levels of random noises.
 - Un-gridded product
 - End users need gridded product with common map projection.

Issues of IDPS LSA Granule Product: Illustration

New Method for Daily Mean Albedo

- Use of instantaneous albedo to calculate daily surface radiation budget may result in ~10% bias.
- We developed a method to estimate daily mean albedo directly from VIIRS data.
- The new method uses similar LUTs of regression coefficients, but considers variations of albedo and diffuse radiation ratio with solar angles.

Advanced Statistics-based Temporal Filtering

- Temporal filtering is a key step of the NDE LSA algorithm:
 - Improve accuracy
 - Reduce temporal variations
 - Exclude undetected cloud and shadow
 - Fill data gaps
- A sophisticated statistical based filtering approach was developed
- Capable of integrating multisource of information
 - VIIRS retrieval and its QF
 - Climatology (mean and variance)
 - Temporal correlation (historical observation)

Developing Gridded NDE LSA Product

- We developed a new high-level LSA product on the basis of VIIRS SA EDR, which has the following features:
 - Gap-filled
 - Noise-reduced
 - Having potential of generating gridded product, which is desired by user community.
- The software package in C programming language has been delivered.
 - C source codes
 - LUTs
 - Climatology data
 - Documents
- Improved Granule LSA product in NDE
 - Critical Design Review was passed in Sept. 2016.
 - Test Readiness Review is scheduled for August 2017.

Major steps of generating NDE LSA

Enterprise Algorithm Development

Example of NDE Gridded LSA

 Two global products of VIIRS LSA on April 1 2015 were shown here.

- Compared to the current granule product, the newly-developed NDE product represents several substantial er major improvements:
 - Gap-filled: continuous map
 - Noise-reduced: higher accuracy
 - Gridded: ready to user

Update to Sea Ice Surface Albedo Algorithm

- We applied a new sea-ice albedo LUT in NPP VIIRS albedo calculation. The seaice albedo become available in the NDE LSA product. The coverage is consistent with the sea ice concentration product.
- We generated a 5-km daily sea-ice albedo climatology and used it as background information for temporal filtering of sea-ice albedo.

2017078

from NDE algorithm

Continued Improvement of Sea Ice Surface Albedo

Validation of NDE LSA data

- The new NDE albedo was validated using field measurements and intercompared with other albedo products.
- Preliminary assessment results suggested substantial improvement over existing datasets:
 - Gap-free continuous data
 - Higher accuracy:
 - Snow-covered and snow-free
 - Better prediction over ethereal snow cases

Comparison of snow-free and snow-covered VIIRS albedo with gap-filled MODIS C5 and C6 data, and GLASS albedo data

Example of time series of one year VIIRS NDE albedo at Fort Peck

External Users of Albedo Product

• U. S. Users:

- NOAA National Weather Service Environmental Modeling Center (Michael EK, Jesse Meng, Weizhong Zheng)
- USDA Agricultural Research Services(Martha Anderson)
- USDA Forest Service (Brad Quayle)
- NOAA/NESDIS Center for Satellite Applications and Research (Jerry Zhan)
- NOAA/NESDIS National Climate Data Center (Peter Thorne)
- Academy -- University of Maryland (Konstantin Vinnikov, Shunlin Liang, Cezar Kongoli)
- Army Research Lab (Kurt Preston)

• Foreign Users

- EUMETSAT (Yves Govaerts)
- Météo France (Jean-Louis Roujean)
- Academy: Italy IASMA Research and Innovation Centre (Barbara Marcolla), Beijing Normal University (Qiang Liu)

Collaboration with EMC/NCEP Team

- The new gridded, gap-filled, noise-reduced product is developed to meet the requirements of modeling team and data analysis.
 - Working with the modeling team to test the application of new product
 - Customized the codes to generate tailored data sets.

Examples of albedo data customized for modeling team

Summary

- Accuracy of the current non-snow LSA retrievals are smaller than the L1RD threshold. The performance of snow LSA is also comparable (slightly better) than the existing albedo product, although RMSE of current snow retrievals are greater than the precision requirement.
- An improved NDE albedo product was developed.
- Initial evaluation suggested this new gridded, gap-filled, noisereduced NDE product represent substantial improvements over previous granule product and other existing products.
- LUT of retrieving sea ice surface albedo was updated.
- Additional maintenance and further algorithm refinement is critical to assure the production of high-quality gridded LSA product.

- Land-cover-specific LUT will further improve quality of albedo retrieval.
- Enterprise LSA development: TRR and ARR preparation
- Reprocessing LST data when the upstream data are ready.
- JPSS-1 LSA product evaluation and monitoring
- Level-3 gridded data production
- Further interactive with EMC/NCEP model team: intensive LSA model assimilation