GCOM-W1 AMSR2 Precipitation EDR Update

Patrick Meyers & Ralph Ferraro August 16th, 2017 STAR JPSS Annual Meeting

Overview

- Review of NOAA GCOM-W Precipitation EDR
 - GPROF2010V2
- Areas for Improvement
 - Precipitation detection over the Western US
 - SST Product Dependence
- Evaluation of GPROF2017

Program Requirements

JPSS Requirements - GCOM Precipitation Type/Rate				
EDR Attribute	Threshold	AMSR2 EDR		
Applicable conditions		Delivered under "all weather" conditions		
Horizontal cell size	5 km land (89 GHz FOV); 10 km ocean (37 GHz FOV size); 5-10 km sampling	5.0 km (land); 10 km (ocean)		
Mapping uncertainty, 3 sigma	< 5 km	~2.5 km		
Measurement range	o – 50 mm/hr	o – 75 mm/hr		
Measurement precision	o.o5 mm/hr	o.01 mm/hr		
Measurement uncertainty	2 mm/hr over ocean; 5 mm/hr over land	1.3 mm/hr (ocean) 3.6 mm/hr (land)		
Refresh	At least 90% coverage of the globe about every 20 h 20 hours (monthly average)			
Precipitation type	Stratiform or convective	Convective rain rate		
Latency	25 minutes	8 min		

Validation

Routine Monitoring

2.0 4.0 8.0

Rain Rate (mm/hr)

0.5 1.0

0.5 1.0 2.0 4.0 8.0 16 32 64

GPROF2010V2 (mm/hr)

16

32

http://cics.umd.edu/pmeyers/amsr2/

Applications

- bRR (Blended Rain Rate; below)
- eTRaP [Ensemble Tropical Rainfall Potential]
- Direct Broadcast

Detection Limitations

- False detection of precipitation based on Scattering Index and Tb thresholds
- Apply Turk (2016)
 cloud-free detection
 algorithm
- Use last IMS snow analysis for screening

Nighttime False Alarms

Linear Discriminant Analysis for Cloud-Free Scenes

FAR Reduction

0.464190 0.618437

0.593108 0.318920

Filtered :

SST Product Reliability

- Currently using non-operational Reynolds ¼° OISST
 - JPSS-RR suggests evaluating CMC SST

SST Product Sensitivity

- Would require validation with respect to requirements
- May require recalculation of a priori database

Evaluation of GPROF2017

- Collaboration with NASA/GPM
- Fully Bayesian retrieval
 - Separated by surface type, TPW, and near surface temp
- Trained with Dual-frequency Precipitation Radar

GPROF2010v3

GPROF2017

Notes on GPROF2017

- Ongoing work to improve Conv/Strat using environmental conditions [Veljko Petkovic]
- Need to evaluate ancillary products for potential transition into STAR operational framework

Algorithm	POD	FAR	CSI
GPROF2010V3	0.83	0.37	0.55
GPROF2017	o.86	0.10	0.78

Summary & Paths Forward

- Modifications of AMSR2 precipitation algorithm reduce false alarms and improve performance metrics
- Implementation and reprocessing of updated GPROF2010 algorithm
- Suitability testing of GPROF2017 for NOAA operations
- Leveraging more ancillary data
 - GOES-16 ABI & GLM
 - Environmental information