



# VIIRS SDR Calibration for Improvement of Ocean Color Products

### Junqiang Sun<sup>1,2</sup> and Menghua Wang<sup>1</sup>

<sup>1</sup>NOAA/NESDIS Center for Satellite Applications and Research E/RA3, 5830 University Research Ct., College Park, MD 20740, USA <sup>2</sup>Global Science and Technology, 7855 Walker Drive, Maryland, USA

8/16/2017 8:xx-8:xx AM

NOAA STAR JPSS Science Meeting 2017

14 August – 18 August 2017, College Park, MD





# Outline



- Introduction
- Solar Diffusor Stability Monitor (SDSM) Calibration
- Solar Diffusor (SD) Calibration
- Lunar Calibration
- Hybrid Approach
- Inter-sensor and In-situ Comparison
- Ocean Color Products Performance
- Summary



## **VIIRS Background**





- 22 spectral bands 410 nm to 12.013 µm spectral range
- 14 Reflective Solar Bands (RSB) : 3 image bands, 11-13, and 11 moderate bands, M1-M11
- The VIIRS RSB are calibrated on orbit by SD/SDSM calibration
- Monthly lunar observation through its space view (SV) since launch.
- For VIIRS, the angle of incidence (AOI) of the SV is exactly the same as that of the SD. Lunar observations should provide identical on-orbit gain change for VIIRS RSB as SD/SDSM calibration.

VIIRS RSB uncertainty specification is 2%, but ocean color EDRs (using M1-M7, NIR; also M8, M10, and M11, NIR-SWIR; recently I1) need to achieve ~0.2%. This has been achieved.



# **SD/SDSM Calibration Overview**





• Key assumption: SD degrades uniformly with respect to both incident and outgoing directions

J. Sun and M. Wang, "On-orbit characterization of the VIIRS solar diffuser and solar diffuser screen," Appl. Opt., 54, 236-252 (2015).

- SD and SDSM sun view screens:
  - Prevent RSB and SDSM saturation
  - Vignetting functions (VFs)
  - VFs measured prelaunch and validated by yaw measurements
  - SD bidirectional reflectance factors (BRFs)
- BRFs measured prelaunch and validated by yaw measurements
  - SD on-orbit degradation is tracked by the SDSM measurements at 8 wavelength from 412 nm to 935 nm
  - SDSM measures H-factors
  - *F*-factors, or *RSB* calibration coefficients, are the final calibration product



# **SDSM Calibration Algorithm**



- SDSM is a ratio radiometer, which views SD, Sun, and an internal dark scene successively in three-scan cycles.
- SD BRF for SDSM view direction

 $BRF_{SD,SDSM}(\lambda,t) = \rho_{SD,SDSM}(\lambda)H(\lambda,t)$ 

- $\rho_{SD,SDSM}(\lambda)$ : Prelaunch BRF for SDSM view direction
- $H(\lambda)$  is solar diffuser degradation since launch
- SD degradation, H factors, for SDSM view direction at the wavelength of the SDSM detector D

$$H(\lambda_D) = \left\langle \frac{dc_{SD,D}}{\rho_{SD,SDSM}(\lambda_D)\tau_{SDS}\cos(\theta_{SD})} \right\rangle_{Scan} \left/ \left\langle \frac{dc_{SV,D}}{\tau_{SVS}} \right\rangle_{Scan} \right\rangle_{Scan}$$



SDSM operations: Every orbit first few months, then once per day for about two years, and once per two days since May, 2014.

- Improvements
  - Robust and accurate VFs and BRFs from yaw measurements
     J. Sun and M. Wang
  - Ratio of the averages
  - Sweet spots selection

J. Sun and M. Wang, "Visible infrared image radiometer suite solar diffuser calibration and its challenges using solar diffuser stability monitor," Appl. Opt., 53, 8571-8584 (2014).



# **SDSM Calibration Performance**

**SD Degradation (H-Factors)** 



SD Degradation – First 70 days





## **SD** Calibration Algorithm



- SD is made of Spectralon®, near Lambertian property
- Solar radinace reflected by the SD

 $L_{SD}(\lambda) = I_{Sun}(\lambda) \cdot \tau_{SDS} \cdot \cos(\theta_{SD}) \cdot \rho_{SD,RTA}(\lambda) \cdot h(\lambda) / d_{VS}^{2}$ 

- $\rho_{RSD,RTA}(\lambda)$ : Prelaunch BRF for RTA view direction
- h(λ): SD degradation for SDSM view direction is used as the SD degradation for the RTA direction
- RSB calibration coefficients, F factors

$$F(B, D, M, G) = \frac{RVS_{B,SD} \cdot \int RSR_B(\lambda) \cdot L_{SD}(\lambda) \cdot d\lambda}{\sum_i c_i(B, D, M, G) \cdot dn^i \cdot \int RSR_B(\lambda) \cdot d\lambda}$$

• *B*, *D*, *M*, *G*: Band, Detector, HAM side, and gain status

J. Sun and M. Wang, "On-orbit calibration of Visible Infrared Imaging Radiometer Suite reflective solar bands and its challenges using a solar diffuser," Appl. Opt., 54, 7210-7223 (2015).



SD Calibration: Every orbit

- Improvements
  - Robust VFs and BRFs from yaw measurements
  - Improved H factors
  - Sweet spot selection
  - Time-dependent RSR



# **SD** Calibration Performance

**RSB** Calibration Coefficients (SD F-Factors)







### Band-averaged HAM 1 HG F-factors



- Very stable and smooth
  Different from MODIS: Much less degradation of the scan mirror
- But the input H-factor measured by the SDSM is for the SDSM view direction – KEY ISSUE



## **Lunar Calibration Algorithm**



- Moon is very stable in its reflectance
- RSB calibration coefficients, F factors, from lunar observations

$$F(B,M) = \frac{g(B)N_{t,M}}{\sum_{D,S,N} L_{pl}(B,D,S,N)\delta(M,M_N)},$$

- g(B): View geometric effect correction (ROLO lunar model and extra correction)

SNPP VIIRS is scheduled to view the Moon approximately monthly (about nine months every year)



- Advantages
  - Lunar surface reflectance has no observable degradation
  - Can be used for inter-comparison

J. Sun, X. Xiong, and J. Butler, "NPP VIIRS on-orbit calibration and characterization using the moon", Proc. SPIE, 8510,851011, (2012). X. Xiong, J. Sun, J. Fulbright, Z. Wang, and J. Butler, "Lunar Calibration and Performance for S-NPP VIIRS reflective Solar Bands", IEEE Trans. Geosci. Remote Sens., **54**, 1052-1061, (2016).



## **Lunar Calibration Performance**

**RSB** Calibration Coefficients (Lunar F-Factors)





Calibration coefficients Ratios





- Own Lunar model and correction beyond ROLO model
- New Lunar results much improved smooth, no oscillation 0.2% stability
- SD F-factors and lunar F-factors diverge, especially for short wavelength RSBs.
- SD F-factors have error



# **Non-Uniformity of the SD Degradation**





Slopes of H-factors in each individual event with respect to solar declination

- It was discovered by 2014 that SD degradation is not uniform
- Standard SD calibration brings non-negligible error into RSB characterization

J. Sun, M. Chu, M. Wang, "Degradation nonuniformity the solar diffuser bidirectional reflectance distribution factor," Appl. Opt., 55, 6001-6016 (2016).



# **Hybrid Approach**



- SD Calibration
  - SD degrades non-uniformly, resulting long-term drifts
  - Results are stable and smooth
  - Observation in every orbit
- Hybrid Approach

• Lunar Calibration

- No degradation issue
- Infrequent and no observation in three months every year

F-Factors Ratios are fitted to quadratic polynomials of time

 $\mathcal{F}(B, D, M, G) = R(B, t) \cdot F(B, D, M, G)$ 

 $R(B,t) = \left\langle f(B,M,t) \right\rangle_{M} / \left\langle F(B,D,M,0,t) \right\rangle_{D,t-15 < t_{i} < t+15,M}$ 

- Lunar calibration provides long-term baseline
- SD calibration provides smoothness and frequency

J. Sun and M. Wang, "Radiometric Calibration of the VIIRS Reflective Solar Bands with Robust Characterizations and Hybrid Calibration Coefficients," Appl. Opt., 54, 9331-9342 (2015).



## **Hybrid Calibration Performance**



### Calibration Coefficients (M1)



Band Averaged (M1-M4)



- Hybrid calibration coefficients (Hybrid F-factors) achieves long-term accuracy but also with short-term stability achieving ~0.2% level.
- Earth-based SDR studies show that Hybrid-method indeed mitigated the long-term defect and give stable timeseries.

J. Sun and M. Wang, "VIIRS Reflective Solar Bands Calibration Progress and Its Impact on Ocean Color Products," Remote Sensing, 8, 194 (2016).



## **Inter-sensor and In-situ Comparison**



#### **Aqua MODIS and VIIRS Radiance SNO Ratio**



### Water Leaving Radiance: nLw(551), M4



Chu, M., J. Sun, and M. Wang, "Radiometric evaluation of the SNPP VIIRS RSB sensor data records via inter-sensor comparison with Aqua MODIS", Proc. SPIE 9972, 99721R (2016).



### **Ocean Color Products Performance**

#### **Global Deep Water (Depth > 1km)**





*M.* Wang, et al, "Evaluation of VIIRS ocean color products," Proc. SPIE 9261, 92610E (2014).

Charts were produced by X. Liu and S.<sup>1</sup>Son.



# Summary



- Very rigorous RSB calibration has been achieved and demonstrated.
- "Hybrid-method" mitigation is the primarily important correction that removes the long-term worsening bias coming from within SD calibration at the SDR level.
- With our hybrid F-factor look-up-tables (LUTs), both the reprocessed mission-long and forward real-time VIIRS Ocean Color EDR products demonstrate very high quality performance.
- Forward delivery of publicly accessible science quality EDR with the hybrid F-factor LUTs has been implemented since May 2016.
- Our hybrid F-factor LUTs for all RSB have been adopted for the official operational VIIRS SDR reprocessing (as an option for high quality science quality EDRs).
- Per request, our hybrid F-factor LUTs have also been sent to NASA Ocean Biology and Biogeochemistry Program Group (OBPG) for their testing and processing.







Table 1. Specification for SNPP VIIRS RSBs and SDSM detectors.

| VIIRS Band | CW* (nm) | Band Gain | Detectors | Resolution* | SDSD Detector | CW* (nm) |
|------------|----------|-----------|-----------|-------------|---------------|----------|
| M1         | 410      | DG        | 16        | 742m x 776m | D1            | 412      |
| M2         | 443      | DG        | 16        | 742m x 776m | D2            | 450      |
| M3         | 486      | DG        | 16        | 742m x 776m | D3            | 488      |
| M4         | 551      | DG        | 16        | 742m x 776m | D4            | 555      |
| l1         | 640      | SG        | 32        | 371m x 387m | NA            | NA       |
| M5         | 671      | DG        | 16        | 742m x 776m | D5            | 672      |
| M6         | 745      | SG        | 16        | 742m x 776m | D6            | 746      |
| M7         | 862      | DG        | 16        | 742m x 776m | D7            | 865      |
| 12         | 862      | SG        | 32        | 371m x 387m | D7            | 865      |
| NA         | NA       | N         | 16        |             | D8            | 935      |
| M8         | 1238     | SG        | 16        | 742m x 776m | NA            | NA       |
| M9         | 1378     | SG        | 16        | 742m x 776m | NA            | NA       |
| M10        | 1610     | SG        | 16        | 742m x 776m | NA            | NA       |
| 13         | 1610     | SG        | 32        | 371m x 387m | NA            | NA       |
| M11        | 2250     | SG        | 16        | 742m x 776m | NA            | NA       |

\*CW: Center Wavelength; DG: Dual Gain; SG: Singla Gain; Resolution: Track x Scan at Nadir after aggregation



### **SD BRF and SDS VF** *BRF-VF Product (BVP)*









- Yaw carefully planned, cover all solar angle range for SD/SDSM calibration.
- Carefully derive BRFs and VFs from the yaw measurements is the crucial 1<sup>st</sup> step.
- Need to do it right just one time from yaw data.

J. Sun and M. Wang, "On-orbit characterization of the VIIRS solar diffuser and solar diffuser screen," Appl. Opt., 54, 236 -252 (2015). 18



# **RSB On-Orbit Calibration**



- 22 spectral bands 410 nm to 12.013 µm spectral range
- 14 Reflective Solar Bands (RSB) : 3 image bands, I1-I3, and 11 moderate bands, M1-M11
- The VIIRS RSB are calibrated on orbit by SD/SDSM calibration
- Monthly lunar observation through its space view (SV) since launch.
- For VIIRS, the angle of incidence (AOI) of the SV is exactly the same as that of the SD. Lunar observations should provide identical on-orbit gain change for VIIRS RSB as SD/SDSM calibration.



VIIRS RSB uncertainty specification is 2%, but ocean color EDRs (using M1-M7, NIR; also M8, M10, and M11, NIR-SWIR; recently I1) need to achieve ~0.2%. This has been achieved.