Evaluation of VIIRS performance in coastal waters and in its capacity to detect dark water and harmful algal blooms

Chuanmin Hu, <u>David English</u>, Jennifer Cannizzaro, Brian Barnes, Lin Qi Optical Oceanography Laboratory, College of Marine Science, University of South Florida

- 1. Performance for open-ocean and coastal waters
- 2. Performance for estuaries
- 3. Application for harmful algal blooms
- 4. Application for floating macroalgae blooms

1. Performance for open-ocean and coastal waters

Summary of USF Field Experiments in oceanic/coastal waters (2012-2016)

					Field	I
Region	Project	Cruise	Start Date	End Date	$\mathbf{R}_{rs}(\lambda)$	
Northern and Central Gulf of Mexico	GoMRI DEEPEND	DP01	05/01/15	05/08/15	7	n=35
		DP02	08/08/15	08/22/15	13	
		DP03	05/01/16	05/16/16	8	
		DP04	08/05/16	08/20/16	7	
Northeastern Gulf of Mexico	HAB event response	BE1408	08/04/14	08/05/14	8	- n=104
	NASA Big Bend	SC1209	09/28/12	09/28/12	8	
		CK1211	11/15/12	11/15/12	5	
		нісо	10/26/13	10/26/13	9	
			11/17/13	11/17/13	14	
			11/21/13	11/21/13	13	
			04/11/14	04/11/14	10	
		bb1606	06/08/16	06/08/16	4	
			06/10/16	06/10/16	2	
			06/13/16	06/13/16	2	
			06/14/16	06/14/16	3	
			06/20/16	06/20/16	4	
			06/21/16	06/21/16	3	
			06/22/16	06/22/16	1	
			06/23/16	06/23/16	3	
		bb1607	07/20/16	07/20/16	5	
		bb1610	10/03/16	10/03/16	10	
		_				_
South Atlantic Bight,	NOAA	NF-14-09	11/11/14	11/20/14	7	רו
Gulf Stream, and	VIIRS	NF-15-13	12/02/15	12/13/15	26	⊢ n=45
Bahamian waters	Cal/Val	NF-16-08	10/13/16	10/18/16	12	

Total # of field $R_{rs}(\lambda) = 184$

Summary of USF Field Experiments in oceanic/coastal waters (2012-2016)

'New' VIIRS MSL12

<u>'Old' VIIRS MSL12</u>

2. Performance for estuaries

Summary of USF Field Experiments in estuarine waters (2012-2016)

Field $R_{rs}(\lambda)$:

<u>VIIRS $R_{rs}(\lambda)$ match-up results</u>: variable processing schemes/spatial homogeneity filters; standard I2 flags applied

NOAA (v1 – aka "old") NOAA (v2 – "new") ← processing (most recent processing) Same Day (CV < 0.2) Same Day (CV < 0.2) 0.015 0.015 0.010 0.010 2 VIIRS RIS (NOAA) (NOAA 0.005 0.005 Rs 0.000 0.000 VIIRS CV<0.2 CV<0.2 -0.005-0.005(n=7-18) (n=6-17) -0.01 -0.01 -0.010-0.005 0.000 0.005 0.010 0.015 -0.010-0.005 0.000 0.005 0.010 0.015 Field Rrs Field Rrs Same Day (CV < 0.4) Same Day (CV < 0.4) 0.015 0.015 0.010 0.010 নি VIIRS Rrs (NOAA) (NOAA 0.005 0.005 Rrs 0.000 0.000 VIIRS CV<0.4 CV<0.4 -0.005-0.005 (n=16-27) (n=15-29) -0.010-0.01-0.010-0.005 0.000 0.005 0.010 0.015 -0.010-0.005 0.000 0.005 0.010 0.015 Field Rrs Field Rrs Same Day (No CV threshold) Same Day (No CV threshold) 0.015 0.015 410nm More VIRS Rrs>0.013 viore VIRS Rra>0.0 when no CV when no CV 443nm 0.010 L(not shown 0.010not shown ۲<u>ک</u> (NOAA) 486nm (NOAA 0.005 0.005

Rrs

VIIRS

No CV

(n=36)

-0.010-0.005 0.000 0.005 0.010 0.015

Field Rrs

0.000

-0.005

-0.01

No CV

-0.010-0.005 0.000 0.005 0.010 0.015

Field Rrs

(n=34-36)

Observations:

- Important: cannot directly compare processing schemes using data shown here! Why? Because the dates and locations of match-up pairs differed greatly amongst processing schemes. For example: only 4 match-up pairs were available when field and VIIRS Rrs(551) using all three processing schemes were valid.
- Relaxation of spatial homogeneity filter led to increased # of match-up pairs, but poorer match-up quality.
- Agreement between field and VIIRS $Rrs(\lambda)$ weakest at 410nm.

551nm 671nm

VIIRS Rrs

0.000

-0.005

-0.01

10

3. Application for harmful algal blooms

VIIRS captures phytoplankton vertical migration

Karenia brevis bloom (red tide), from Qi et al. (2017, Harmful Algae)

VIIRS captures phytoplankton vertical migration in the NE Gulf of Mexico

Rrs spectral changes in 100 minutes (left) agree with previous field measurement (right)

From Schofield et al. (2006, JGR)

VIIRS captures phytoplankton vertical migration in the NE Gulf of Mexico

Glider measurement from the same bloom shows thinner surface layer at 15:41 than at 14:00 within a diel cycle of *K. brevis* vertical migration (Hu et al., 2016)

Blue: 14:00; red: 15:41

4. Application for floating macroalgae blooms

VIIRS continuity in monitoring floating macroalgae in the Atlantic

From Wang and Hu (submitted)

VIIRS continuity in monitoring floating macroalgae in the Atlantic Color represent mean surface density during 2016 for 0 – 22N, 63 – 38W

From Wang and Hu (submitted). 0.1 on the color scale means 0.1% instead of 10%

CONCLUSIONS

- Considering that ~40% of the open ocean and coastal match-ups pairs for the Gulf of Mexico were collected in shallow (z=3-8m), optically complex coastal waters with variable bottom types, the overall agreement between field and satellite R_{rs}(λ) was impressive!
- For the Panhandle and Old Tampa Bay estuaries, performance degraded, but was still reasonable except for the 410-nm band.
- VIIRS observations of macroalgae slicks in global oceans were consistent with the MODIS data product
- VIIRS also showed unique capability to study short-term changes in surface harmful algal blooms
- The Rrs validation work is being summarized in a manuscript (Cannizzaro et al.), while other works have been published (Hu et al., 2016; Qi et al., 2017) or submitted (Wang and Hu).