

Validation of OMPS LP ozone profile retrievals from NASA GSFC version 2.5 against correlative satellite measurements

N. Kramarova¹, P.K. Bhartia², P. Xu³, M. DeLand¹, Z. Chen¹, G. Jaross² and L. Moy¹

Science Systems and Applications Inc., Lanham, MD, USA
 NASA GSFC, Greenbelt, MD, USA

³ Science Applications International Corporation, MD, USA

Key changes in version 2.5

- Stray light correction for the VIS wavelengths;
- Sensor pointing errors [L. Moy et al., AMT 2017];
- New cloud height detection [Chen et al., AMT, 2016].

OMPS-LP v2 algorithm

- 43 UV pairs and 17 VIS triplets;
- ■Radiances are normalized at 65 km for UV and 45 km for VIS ranges;
- Aerosol correction module is turned off

OMPS LP O_3 retrieval algorithm by [Rault and Loughman, 2013]

OMPS-LP v2.5 algorithm

- ■3 UV pairs and 1 VIS triplet;
- ■Radiances are normalized at 55 km for UV and 40 km for VIS ranges;
- •Include the explicit aerosol correction by using LP aerosol v1;
- Algorithm uses realistic a priori covariance matrices instead of Tikhanov regularization;

April-May 2017: Reprocessing LP data with the new 2.5 retrieval algorithm DONE

August 2017: Public release of the version 2.5 ozone profiles **DONE**

Sensor pointing corrections in version 2.5

 Static corrections of 1.12/1.37/1.52 km for the left/center/right slits, correspondently;

TH error, m	LEFT	CENTER	RIGHT
Version 2	0.58	1.18	1.75
Version 2.5	1.12	1.37	1.52

Time-dependent +0.1 km
 adjustments for all 3 slits on April
 25, 2013 and on September 5,
 2014 due to the spacecraft pitch
 and inclination adjustment
 maneuvers, respectively;

 Slit based, intra-orbital, seasonally varying TH corrections of ~0.3-0.4 km.

Moy, L., Bhartia, P. K., Jaross, G., Loughman, R., Kramarova, N., Chen, Z., Taha, G., Chen, G., and Xu, P.: Altitude registration of limb-scattered radiation, Atmos. Meas. Tech., 10, 167-178, doi:10.5194/amt-10-167-2017, 2017.

STAR JPSS 2017 Annual Science Team Meeting

Ozone Time Series

mzm Ozone nd, altitude 38.5km, Slit center, lat 2N

STAR JPSS 2017 Annual Science Team Meeting

Ozone Time Series

Ozone nd, altitude 22.5km, Slit center, boulder, [39N,105W]

Differences with Sonde (%), altitude 22.5km, boulder, [39N,105W]

STAR JPSS 2017 Annual Science Team Meeting

Ozone Seasonal Cycle

Overview of uncertainties in OMPS LP O3 retrievals [%]

Altitude [km]	Vertical res. [km]	Precision	TH error ±200 m	Drift in TH ~80m RSAS [%/yr]	Syst. error in measure ments	Backgrou nd aerosol effect
<15km	~2.0-6.0	~10-50	~5-10	~0.4-0.8	±3	??10-60
20 km	~1.6-2.8	6-10	~10	~0.8	±3	5
25 km	~1.7-2.2	5-8	~0	~0	±3	-
30 km	~1.8-2.8	6-9	~2	~0.16	±3	~<1
35 km	~2.2-3.0	7-10	~5	~0.4	±3	n/a
40 km	~1.6-2.0	6-8	~5	~0.4	±3	n/a
45 km	~1.5-1.8	6-7	~5	~0.4	±3	n/a
50 km	~2.2-3.0	8-12	~5	~0.4	±3	n/a

Relative drift against Aura MLS

UV LPv2.5, VIS LPv2.5

Conclusions

Systematic errors in LP version 2.5 (internal analysis):

- √ absolute sensor pointing error ±200 m (~5% above 35 km);
- √ quasi-random measurement errors (±3% everywhere);
- ✓ background aerosol (expected to be small after the explicit corrections in v2.5);
- ✓ drift in sensor pointing ~80m over 5 years (~0.4%/yr).

Comparisons with correlative satellite measurements:

OMPS LP v2.5 UV:

- within ±5% with Aura MLS, ACE-FTS and OSIRIS between 30-42 km;
- above 43 km bias of -6% -12%, within quoted uncertainties for LP/MLS;

OMPS LP v2.5 VIS:

- within ±5% between 20 and 30 km, except for high NH latitudes where differences are larger due to instrumental errors;
- ~-15% differences in the SH mid-latitudes (20S-60S) below 18 km;
- ~-30% differences in the tropical UTLS;

Absolute TH registration: comparisons with correlative satellite instruments did not reveal patterns in O3 biases consistent with the TH shift.

Drift in TH registration: drift in O3 relative to MLS and OMPS NP \sim 0.5%/yr (or 2.5% over 5 years) at altitudes above 35 km. The pattern is consistent with the detected 80-meter drift in TH.