

Ground-based validation

Irina Petropavlovskikh¹, K. Miyagawa¹, G. McConville¹, A. McClure¹, Eric Beach², L. Flynn³ and N. Kramarova⁴ ¹NOAA/CU ²NOAA/STAR ³NOAA/NESDIS ⁴NASA/SSA

Objective for validation activities

- Provide NOAA Dobson and Brewer TO and ozone-sonde data in near real time
 - WinDobson automation system ftp://aftp.cmdl.noaa.gov/data/ozwv/Dobson/WinDobson/
 - Brewer online daily processing, plots of satellite/Brewer https://www.esrl.noaa.gov/gmd/grad/neubrew/ProductDisplays.jsp#o3timeseries
 - Skysonde software for ozone-sonde data processing ftp://aftp.cmdl.noaa.gov/data/ozwv/Ozonesonde/
- Produce calibrated and quality assured data
 - Dobson data reprocessing to homogenize record, paper is in reviews (Evans et al, ACPD, https://www.atmos-chem-phys-discuss.net/acp-2017-383/), submission of new version of NOAA data to WOUDC and NDACC is planned at the end of 2017, data are updated on NOAA aftp web site (see links above)
 - Ozone –sonde data reprocessing for homogenization done, data available on NOAA aftp, paper is in preparation
 - Brewer/Dobson/sonde data comparisons, verification of 2014 Dobson calibration at MLO, assessment of seasonal biases
 - Dobson/Pandora 3 years comparison paper in reviews (J. Herman et al., AMTD, https://www.atmos-meas-tech-discuss.net/amt-2017-157/)
 - Dobson data correction for stratospheric temperature variability

TCO comparison between Dobson and OMPS overpass

NOAA NM (<50 km, 24 hour)

<u>ftp://ftp.star.nesdis.noaa.gov/pub/smcd/spb/ozone/irina/NPP/NM/V8/re</u> proc jun 2017/

NOAA NP (<250 km)

ftp://ftp.star.nesdis.noaa.gov/pub/smcd/spb/ozone/irina/NPP/NP/V8/re proc jun 2017/

NASA (<50 km)

ftp://toms.gsfc.nasa.gov/pub/omps_tc/overpass

NASA Profile (<250 km)

ftp://toms.gsfc.nasa.gov/pub/omps_np/overpass

Dobson

ftp://aftp.cmdl.noaa.gov/data/ozwv/Dobson/WinDobson/ + Windobson

Total ozone data, Boulder, 2012-2017 NOAA (R2=0.94) and NASA (0.94)

Total ozone data, Boulder, 2012-2017 NOAA (slope=0.95) and NASA (0.93)

Total ozone data, Boulder, 2012-2017 NOAA and NASA vs. DB, seasonal av.

- OMPS-NP: 2 % bias between NOAA and NASA version, NASA is higher, Dobson TO seasonal bias is corrected by daily GMI/MERRA2 effective temperatures, <250 km matching distance criteria might influence comparisons
- 2) OMPS-NM : still 2% bias, but it is reverse, NOAA is higher than NASA, smaller deviations

Total ozone data, MLO, 2012-2017 NOAA and NASA vs. DB, seasonal av.

MEAN= 5.3%

- OMPS-NP: 2 % bias between NOAA and NASA version, NASA is higher, Dobson seasonal bias is corrected by daily GMI/MERRA2 effective temperatures, <250 MEAN= 3.6% matching distance criteria might influence comparisons
- OMP-NM : still 2% bias, but it is reverse, NOAA is higher than NASA, smaller deviations

Total ozone data, MLO, 2012-2017 NOAA (R2=0.90) and NASA (0.91)

Apparent drift or step change in 2014, determined to be Dobson processing issue, ongoing work to correct for change in Q-table temperature sensitivity

Total ozone data, Lauder, 2012-2017 NOAA and NASA vs. DB, seasonal av.

- OMPS-NP: 1-2 % bias between NOAA and NASA, except in summer, NASA is still higher, bias varies across season
- 2) OMPS-NM : smaller bias, NOAA is higher than NASA (reversed from NP), smooth seasonal bias

Total ozone data, Lauder, 2012-2017 NOAA (R2=0.95) and NASA (0.95)

J1 option for 17x17 km resolution (along orbit) sampling will help to evaluate ozone variability.

Summary for Boulder, Lauder and MLO. NOAA and NASA OMPS vs Dobson

Monthly mean O3 pofile Time Series Comparison Umkehr , MLS V4.2, SBUV (NASA, aggregated), OMPS-NP (NASA V01, NOAA V8) MLO, BLD, LDR station

- Distance < 200 km, within +/-24 hours
- AK to MLS is applied
- A new WinDobson processing system was updated on January, 2012
- Reprocessed Total ozone is applied for Umkehr retrievals, AM and PM selected TO (old system used one daily value)
- No stray light correction is applied (provides improvement above 30 hPa, but distortion of profile below)
- Reprocessing of historical Umkehr data from primary R values (removal of old calibration parameters, homogenization)
- Operational Umkehr measurements are evaluated for cloud interference in the field of view

Ozone profile Datasets

- MLS, V04
- http://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/MLS/V04/L2GPOVP/ O3/
- OMPS –NP, V01 (NASA)
- http://avdc.gsfc.nasa.gov/pub/data/satellite/Suomi_NPP/L2OVP/NP_D AILYO3/du/
- SBUV (NASA) used 16 layers (aggregated)
- jwocky.gsfc.nasa.gov/pub/sbuv/aggregated
- OMPS-NP (NOAA), V8
- /pub/smcd/spb/ozone/irina/NPP/NP/V8/reproc_jun_2017

Umkehr AM PM

Case study: Lauder, June 2, 2016 Umkehr vs OMPS-LP V2 and NIWA Microwave

OMPS_LP V2, Dis= 437 km, dT = -2 hrs

MW, Dis= 0 km, dT = 2 hrs

Case study: Lauder, June 2, 2016 Umkehr OMPS-LP V2.5 and NIWA Microwave

OMPS_LP V2.5, Dis= 696 km, dT = -1 hrs

MW, Dis= 0 km, dT = 2 hrs

Case study: Lauder, June 2, 2016 Umkehr OMPS-LP V2.5 and NIWA Microwave

OMPS_LP V2.5, Dis= 696 km, dT = -1 hrs

Ozone sond, Dis= 0 km, dT = -1 hrs

Differences with Sonde (%), altitude 16.5km, lauder, [45S,169E]

Conclusions

- TO and ozone profiles from OMPS NM and NP, V8 appear to be stable over 2012-2017 time period over Boulder, MLO, and Lauder
- TO from NOAA and NASA processing of the OMPS NM show bias over Boulder and MLO, but not over Lauder.
- TO from NM and NP also show bias, station dependent
- Umkehr stray light correction distorts the lower potion of the profile, although it reduces bias above 16 hPa – further work is needed
- MLO Dobson record before 2014 needs further adjustment to account for change in the instrument temperature sensitivity
- Spatial and temporal matching in troposphere is important when comparing profile to profile – looking forward to J-1 OMPS-NM with 17x17 km resolution data along the track to detect ozone field inhomogeneity