

17 August 2017, College Park, MD, USA

NOAA in situ SST Quality Monitor Version 2 (iQuam2)

Current url: www.star.nesdis.noaa.gov/sod/sst/iquam/v2

Xinjia Zhou^{1,2}, Alexander Ignatov¹, Feng Xu^{1,3,4}, Kai He^{1,3}

¹NOAA STAR; ²CSU CIRA; ³GST Inc.; ⁴Fudan University, China

- NOAA is responsible for wide range of polar and geostationary satellite SST products (including swath – L2, gridded – L3) and blended/analysis L4 SSTs.
- High-quality, unified *in situ* standard is needed for consistent Cal/Val
 - Covers full satellite era 1981 pr
 - Includes all available normal-quality and high-quality *in situ* SSTs suitable for satellite Cal/Val (drifters, moorings, ARGO floats, ships)
 - Uniformly processes all *in situ* data using state-of-the-art QC, consistent with wider oceanographic, meteorological, and climate communities such as Met Office, NOAA NCEP, ICOADS. Preserve all heritage QFs for user's option.
 - Provides data in community consensus, user friendly format, via web interface with minimal latency, to support NRT Cal/Val applications
 - Reprocesses data periodically, to support long-term satellite consistent/climate data records (CDRs)

• In 2008, conducted inventory of available *in situ* SSTs for the use in Cal/Val

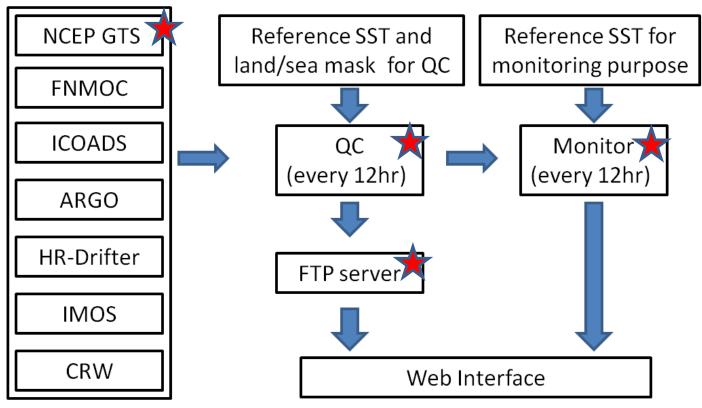
- ICOADS r2.40 (Sep 1981 Jul 2007; not available in NRT; suboptimal QC for satellite Cal/Val)
- FNMOC (Sep 1998 pr; available in NRT; suboptimal QC for satellite Cal/Val)
- NCEP GTS (Jan 1991 pr; available in NRT; no QC)
- Documented in: Xu, Ignatov, 2010: Evaluation of in situ SSTs for use in Cal/Val, JGR, 115, C09022.
- In 2009, launched *in situ* SST Quality Monitor version 1 (*i*Quam1) *www.star.nesdis.noaa.gov/sod/sst/iquam/ (google "iquam")*
 - Uses NCEP GTS data as feed (1991-pr)
 - Included drifters, tropical and coastal moorings, ships
 - State of the art UK MO Bayesian QC
 - Documented in: Xu, Ignatov, 2014: In situ SST Quality Monitor (iQuam), JTECH, 31, 164.

Today, *i*Quam has become a GHRSST community resource which is widely used nationally and internationally, to support Cal/Val and data assimilation for various blended and satellite SST products

- NOAA STAR/OSPO JPSS, GOES-R, Himawari, AVHRR (SQUAM, USA)
- JPL MUR (US) M. Chin
- U. Miami MODIS, VIIRS Teams (US) K. Kilpatrick, L. Williams
- Felyx (France/UK) J.-F. Piolle
- CMS (France) A. Marsouin
- JAXA (Japan) Y. Kurihara, M. Kachi
- Ocean University (China) L. Guan
- CMA (China) S. Wang
- SOA (China) Q. Tu
- NOAA geo-polar blended team (USA) P. Koner, J. Mittaz, A. Harris, E. Maturi
- NOAA NCEI/Silver Spring (USA) K. Saha
- NOAA NCEI/Asheville (USA) V. Banzon
- EUMETSAT (Germany) P. Dash, A. O'Carroll
- NASA GMAO (USA) Ricardo Todling, Santha Akella, Guillaume Vernieres
- ABoM (Australia) Irina Sakova, Helen Beggs

. . .

As iQuam user community grows, it requested several enhancements


- □ Extend time series to full satellite era (Sep 1981 on)
- □ Improve QC, by adding
 - the 2nd reference SST (CMC)
 - performance history check (*i*Quam check similar to the UKMO/CMS "black lists")
 - CMS black list; and individual QFs from data producers (ICOADS, ARGO, IMOS)
- Improve web interface
 - Redesign web engine (from flash player to High Charts)
 - Add daily (hourly) statistics
 - Enhance graphics (interactive display, and print/save functions)
- Add new in situ data
 - ARGO Floats (in NRT and post-processing modes)
 - High-Resolution Drifters
 - IMOS Ships
 - Coral Reef Watch buoys
- Change output data files to NetCDF4. (Maximally reconcile with GHRSST GDS2 satellite L2/L3 format).

The iQuam is a web-based near-real time system. It performs 4 major functions

- Ingests various *in situ* SSTs
- Performs a uniform Quality Control (QC)
- Monitors QCed in situ SSTs online
- Serves reformatted *in situ* SST data with quality flags appended

Quality Control in iQuam

Category	Check	Type of error handled	Physical basis
Preprocessing	Duplicate Removal	Duplicates arise from multiple transmission or data set merging	Identical space/time/ID
Plausibility	Geo-location checks	Unreasonable Geolocation	Range of single fields & Relationships among them
Internal	Tracking	Points falling out of track	Travel speed exceeds limit
consistency	Spike check	Discontinuities in SST time series along track	SST gradient exceeds limit
External consistency	Reference Check	Measurements deviating far away from reference	Bayesian approach (Ref. SST: daily OI SST v2 and CMC 0.2)
Mutual consistency	Cross-platform Check	Mutual verification with nearby measurements ("buddies check")	Bayesian approach based on space/time correlation of SST field
Performance consistency	Performance history check	Bad performance of single platform ID	Outlier rate exceeds limit (50%) in single platform
Heritage quality flags		s are preserved in iQuam2 out Drifters, IMOS Ship and CMS b	

iQuam2 quality level definition:

string quality_level:flag_meanings = "invalid not_used not_used low_quality acceptable_quality best_quality"; string quality_level:flag_values = "0b, 1b, 2b, 3b, 4b, 5b";

quality_level = 5 :

- ✓ Geo-location check pass
- ✓ Duplicate check pass
- ✓ Platform ID check pass
- ✓ Tracking check pass
- ✓ Spike check pass
- ✓ Performance history check pass
- ✓ Reference check probability < 0.5</p>
- ✓ Cross-platform check probability < 0.1

quality_level = 4 :

- ✓ Geo-location check pass
- ✓ Duplicate check pass
- ✓ Platform ID check pass
- ✓ Tracking check pass
- ✓ Spike check pass
- ✓ Performance history check pass
- ✓ Cross-platform check probability < 0.5

Or

- ✓ Geo-location check pass
- ✓ Duplicate check pass
- Platform ID check fail
- Tracking check fail
- ✓ Spike check pass
- ✓ Performance history check pass
- ✓ Reference check probability < 0.5</p>
- ✓ Cross-platform check probability < 0.1

quality_level = 0 :

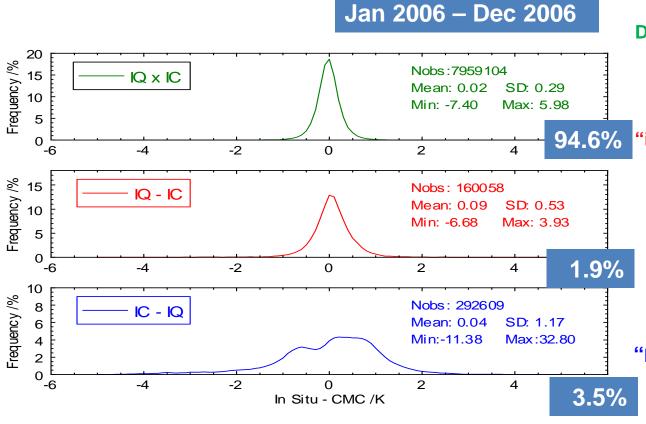
✓ Both references are unavailable

quality_level = 3 :

 \checkmark Fails to meet the criteria of ql = 5 or ql = 4

17 August 2017

	Total Num	% of QL = 5	% of QL = 4	% of QL = 3
Argo floats	12,469	92.8	2.1	5.1
Drifters	607,840	91.6	2.4	6.0
HR-Drifters	156,951	74.7	1.8	23.5
Tropical Moorings	25,942	95.7	2.1	2.2
Coastal Moorings	235,223	79.3	2.7	18.0
CRW Moorings	15,340	95.1	2.0	2.9
Ships	80,745	66.9	4.3	28.8
IMOS Ships	63,849	65.8	0.6	33.6

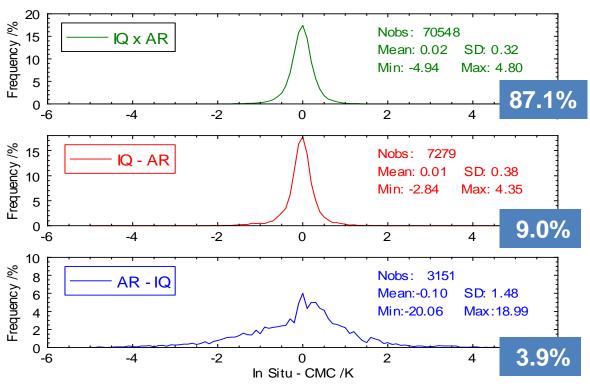

Based on our observation, QL = 0 is not exist

NOAA iQuam v2

Drifters QC *i*Quam vs. ICOADS

Data passing both QCs show a Gaussian distribution with Bias~0.02K and SD~0.29K

"iQuam leakages" (data pass iQuam QC but fail IC) are close to Gaussian shape but with degraded statistics. Suggests that this portion of data is noisier but still normal.

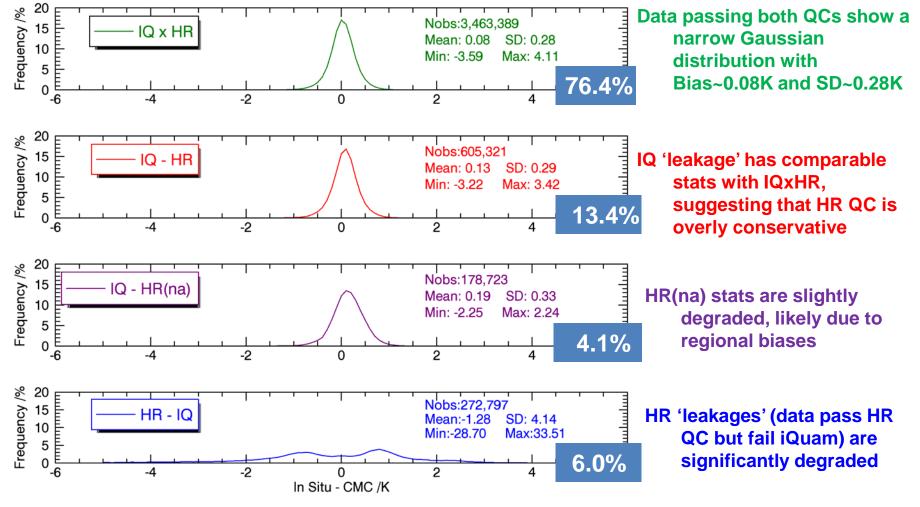

"IC leakages" (data pass IC QC but fail iQuam QC) significantly deviate from normal distribution with SD exceeding 1K.

ARGO floats QC iQuam vs. Heritage

Jan 2006 – Dec 2006

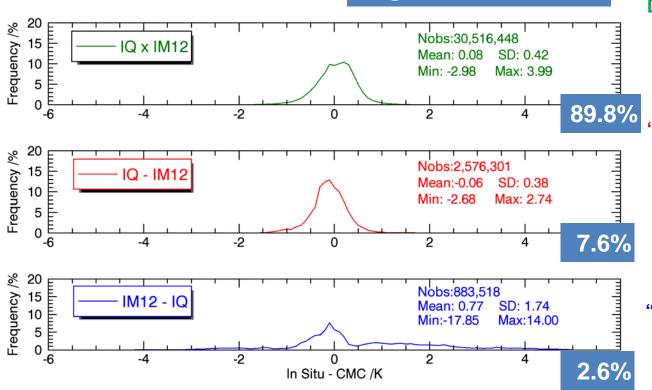
Data passing both QCs show a Gaussian distribution with Bias~0.02K and SD~0.32K

"iQuam leakages" (data pass iQuam QC but fail AG) are comparable with IQ x AG. This suggests that these data are normal but with little bit higher noise.


"AG leakages" (data pass AG QC but fail iQuam QC) deviate from normal distribution and SD over 1.4K.

HR-Drifter QC *i*Quam vs. Heritage

Jan 2012 – Mar 2015

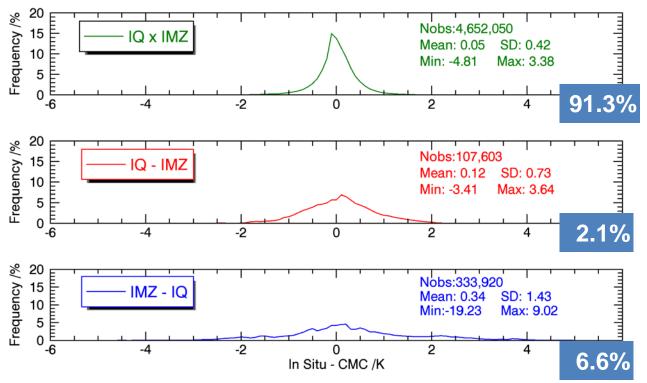

NOAA iQuam v2

IMOS IM12 Ships QC *i*Quam vs. Heritage

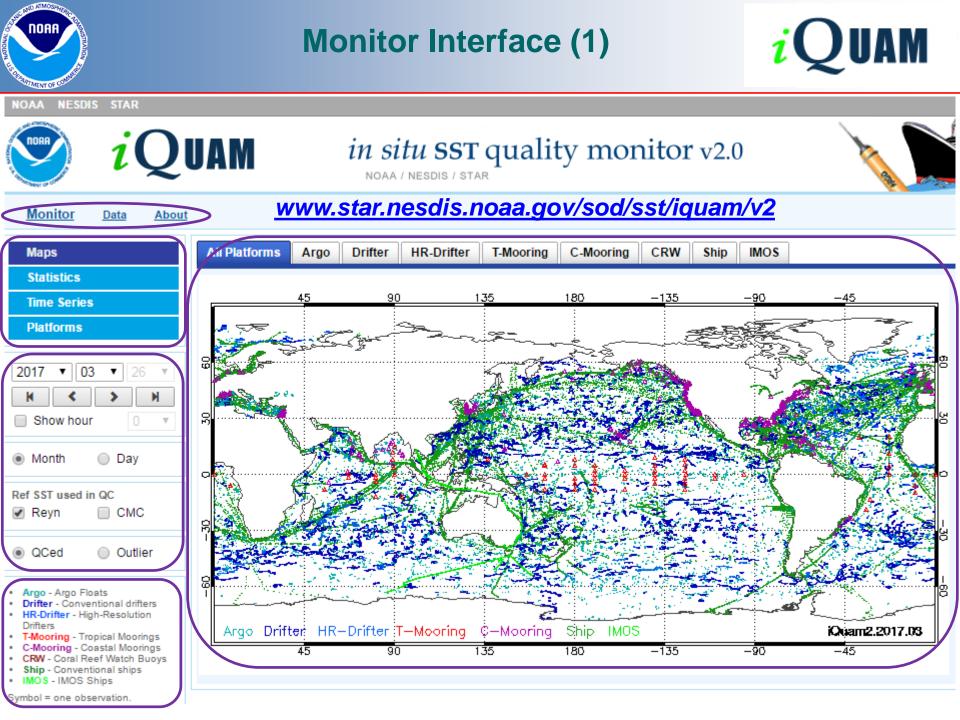
Aug 2012 – Dec 2014

Data passing both QCs show a Gaussian distribution with Bias~0.08K and SD~0.42K

"iQuam leakages" (data pass iQuam QC but fail IM12) are comparable with IQ x IM12. This suggests that the IM12 QC is overly conservative. It removes 7.6% of data.


"IM12 leakages" (data pass IM12 QC but fail iQuam QC) are significantly degraded. This suggests that iQuam QC is instrumental, for ~2.6% of data

IMOS IMZ Ships QC *i*Quam vs. Heritage

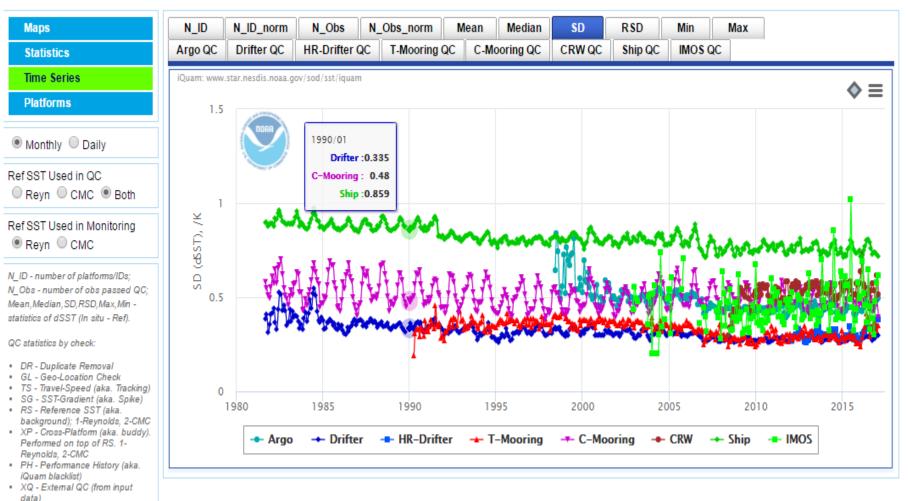

Aug 2012 – Dec 2014

- Data passing both QCs show a narrow Gaussian distribution with Bias~0.05K and SD~0.41K
- Stats for "iQuam leakages" (data pass iQuam QC but fail IMZ) are degraded. Suggests that IMZ QC contain valid and independent info that iQuam2 doesn't have. (~2% of the data)
- "IMZ leakages" (data pass IMZ QC but fail iQuam QC) are significantly degraded. Suggests that iQuam QC is instrumental to improve the quality of IMOS data (~6% of the data)

- 1. Using iQuam QL=5 is recommended. This is what we monitor in the *i*Quam web page and use for NOAA Cal/Val
- 2. All heritage QFs are also reported in iQuam. Our "confusion matrix" analyses suggest that they do not add much to the iQuam QFs. (The only heritage QF which was found unique, the IMOS IMZ, is included in the iQuam2 QL=5)
- 3. All individual iQuam QFs are also reported in data files. Advanced users are welcome to build their own QLs

Monitor Interface (2)

Maps	QC Statistics	- NOBS	QC Statist	ics - Per	cent									
Statistics	Platform	N_ID	N_Obs	N_	QC	AL	DR	GL	TS	\$G	RS	ХР	РН	x
Time Series	Argo	3,771	1 9,495		8,914	581	0	0	0	0	392	373	0	20
Platforms	Drifter	1,578	602,147	7 5	55,279	46,868	1,377	8,817	119	787	32,155	32,155	3,613	
	HR-Drifter	266	125,642	2 9	96,410	29,232	0	18,949	41	87	9,934	9,934	221	96,
2017 🔻 03 🔻 26 💌	T-Mooring	62	23,132	2 2	22,016	1,116	89	1	2	4	902	853	167	
н < > н	C-Mooring	294	215,950) 2	01,111	14,839	0	1	7,123	321	7,101	7,056	338	
	Ship	1,658	101,912	2 8	30,212	21,700	23	352	358	232	18,837	18,951	1,784	
Month 🔘 Day	IMOS	4	40,988	3 4	40,638	350	0	0	0	0	63	79	0	
ef SST used in QC	In situ - Ref S	ST Statisti	cs											
Reyn CMC	Platform	N_Mtc	hp ME	AN	MED	SD	RSD	MIN	MAX	SKEW	KURT			
ef SST used in Monitoring	Argo	8	,914	0.04	0.04	0.33	0.24	-6.77	2.79	-1.16	25.42			
Reyn © CMC	Drifter	543	,534	0.03	0.04	0.33	0.21	-5.22	3.89	-2.27	23.31			
V_Obs - number of obs;	HR-Drifter	96	6,410	0.04	0.04	0.26	0.19	-3.87	3.80	-0.86	14.28			
QC - number of obs passed QC; ,GL,TS,SG,RS,XP,PH,XQ - nobs	T-Mooring	21	,566	0.05	0.04	0.22	0.18	-1.35	1.71	0.39	3.02			
tected by each check:	C-Mooring	196	,685	0.07	0.06	0.34	0.24	-3.27	2.72	-0.11	7.03			
AL - All checks combined. DR - Duplicate Removal	Ship	78	,187	0.21	0.17	0.85	0.67	-4.78	6.20	0.07	1.25			
GL - Geo-Location TS - Travel-Speed (aka. Tracking)	IMOS	40	,638	0.10	0.10	0.29	0.21	-2.70	1.54	-0.43	2.85			
 SG - SST-Gradient (aka. Spike) RS - Ref SST (aka. background); 1 - Reynolds, 2 - CMC XP - Cross-Platform (aka. buddy). 	Histograms (Normalized at NOBS) Histograms (Normalized at MAX)													
Performed on top of RS. 1 - Reynolds, 2 - CMC PH - Performance History (aka. iQuam blacklist) XQ - External QC (from input data)	iQuam: www.stai	r.nesdis.noaa.	gov/sod/sst/iq	uam										
atistics are calculated over (In situ - f SST). situ: obs that passed iQuam QC ef1 = Reynolds: Ref2 = CMC	<u>≷</u> 20											rgo rifter R–Drifter		
r1 = Reynolds; Ret2 = CMC te: N_Mtchp - number of (in situ - f) match ups. (Smaller than N_QC e to missing Ref SST in some nts.)	Frequency 10													
more information, see <u>About</u> .														
	0	3 -2.5	5 -2	-1.5	5 -1	-0.5	. 0	0.5		1.5	2	2.5	3	


SST Anomaly /K NOAA iQuam v2

17 August 2017

Monitor Interface (3)

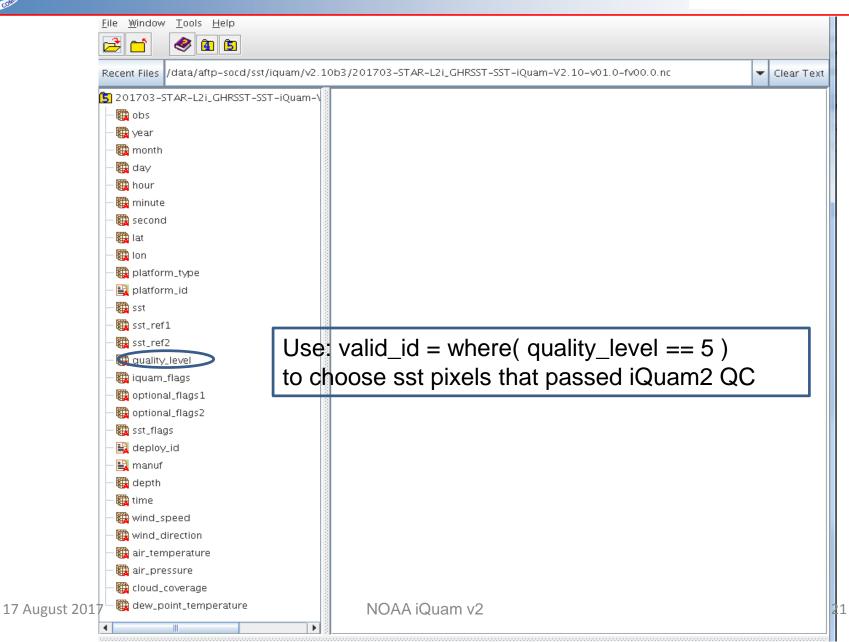
AL - All checks combined.

Monitor Interface (4)

Monitor Data About

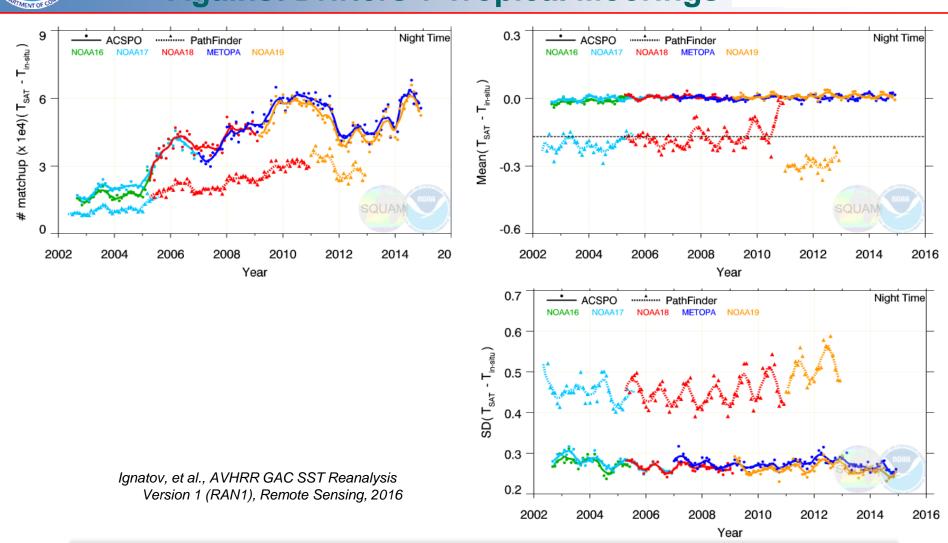
Maps	Argo	Drif	fter H	IR-Drifter	T-M	ooring	C-Moor	ing	Ship	IMOS											
Statistics	Showing	g 1 to 2	29 of 1,4	03 entries												Sea	arch:				
Time Series	ID		NOBS	N_QC	Err%	N_Mp	Mean	SD	Min	Max	AL	DR	GL,	TS	S G	RS	XP	PH	XQ	Lat	Lon
Platforms	<u>2AJ</u>	U <u>5</u>	7	4	42.9	4	-0.20	0.63	-0.69	0.73	3	0	0	0	0	2	3	0	0	-18.6	153.4
	<u>2</u> A	<u>KI2</u>	120	117	2.5	115	0.59	0.51	-2.14	1.76	3	0	0	0	0	3	3	0	0	-12.9	-22.1
2017 • 03 •	<u>2</u> A	<u>KI3</u>	17	17	0.0	15	0.50	0.31	-0.17	0.81	0	0	0	0	0	0	0	0	0	4.4	80.0
<< < > >>	<u>2A</u>	<u>KI4</u>	6	6	0.0	6	0.67	0.43	0.35	1.46	0	0	0	0	0	0	0	0	0	3.2	122.6
Monthly Daily	<u>2AR</u>	<u>884</u>	13	13	0.0	13	0.38	0.46	-0.10	1.13	0	0	0	0	0	0	0	0	0	57.1	2.2
	<u>2BO</u>	<u>к5</u>	7	1	85.7	1	1.58		1.58	1.58	6	0	0	0	0	6	6	0	0	52.9	-166.3
ef SST Used in QC	<u>2BU</u>	<u>H7</u>	2	2	0.0	2	-0.47	0.91	-1.12	0.17	0	0	0	0	0	0	0	0	0	50.8	-133.0
🔍 Reyn 🔍 CMC 💿 Both	<u>2CW</u>	/ <u>B2</u>	84	68	19.1	51	-0.25	0.80	-2.10	1.51	16	0	1	0	2	13	13	0	0	29.1	-93.7
Ref SST Used in Monitoring Reyn CMC	<u>2DT</u>	Q2	6	4	33.3	4	-0.04	0.68	-0.59	0.92	2	0	0	1	0	1	1	0	0	49.2	178.6
	<u>2FG</u>	6 <u>X5</u>	56	46	17.9	45	0.41	0.66	-1.05	2.15	10	0	0	0	0	8	8	2	0	26.8	-17.2
OBS - number of obs;	<u>2FR</u>	<u>RE8</u>	18	17	Platform '2AKI2'																
V_QC - nobs of passed QC; En% - rate of obs denied by QC; V_Mp - nobs of passed QC match- ups; Mean, SD, Max, Min - statistics calcul-	<u>2GN</u>	IG3	36	34																	
	<u>2G</u>)	<u>/L6</u>	17	17	Tra	Track map for the month SST anomaly for the month Performance in history															
	<u>2HC</u>	:H5	11	10		-30		c)		30		60	I		90		1	20		
ed over (In situ - Reference) SST. n situ: obs that passed iQuam QC	<u>2HD</u>	G2	34	32																	P .⊾
Ref: Reynolds or CMC	<u>2HD</u>	<u>G3</u>	2	2				j> −4			17									-	°¶≥
R,GL,TS,SG,RS,XP,PH,XQ - nobs	<u>2H</u>	- <u>Z6</u>	32	28	ZU								b.,					•••••	. A		
tected by each check	<u>2H</u>	- <u>Z7</u>	45	44	e e						·								/		8
AL - All checks combined. DR - Duplicate Removal	<u>2HH</u>	I <u>G5</u>	58	56					.) Line		<u>5</u>		
GL - Geo-Location TS - Travel-Speed (aka. Tracking)	<u>21C</u>	:H7	23	0	-			-								0.50		° é			
SG - SST-Gradient (aka. Spike) RS - Reference SST (aka.	<u>21C</u>	H8	19	5	-										0000 00				K III		<mark>a</mark>
background); 1-Reynolds, 2-CMC XP - Cross-Platform (aka. buddy).	<u>21C</u>	:H9	36	36	÷						-			- SED DE	S						
Performed on top of RS. 1-Reynolds, 2-CMC PH Porformance History (aka	21	CI2	40	40	Ę								00 ²⁰⁰ 000								
 PH - Performance History (aka. iQuam blacklist) XQ - External QC (from input data) 	21	CI3	55	46	1			AD 000	900 ge			-									6
	21	<u>CI4</u>	25	16	P P	····· اد			6	0 e 00000	CD C78							U			9
data)	21	CI5	45	43	Ş	10 :											••••••				· Ha
data) t,Lon - starting location of in-situ	21	010																			
		<u>CI6</u>	3	3			of Ship 30	o '2Ał	(12' 2	:017.03	30	2017.	03.28			90		iQua 120		17.03	

FTP Interface


Monitor Data About

Download from FTP	File Name	🗸 Update Time 🍦
	201703-STAR-L2i GHRSST-SST-iQuam-V2.00-v01.0-fv00.0.nc	2017-03-28 10:16
Data are in self-documented NetCDF4 format. Refer to attributes	201702-STAR-L2i GHRSST-SST-iQuam-V2.00-v01.0-fv01.0.nc	2017-03-01 10:30
for more information.	201701-STAR-L2i GHRSST-SST-iQuam-V2.00-v01.0-fv01.0.nc	2017-02-02 12:32
Suggested usage of quality_level:	201612-STAR-L2i GHRSST-SST-iQuam-V2.00-v01.0-fv01.0.nc	2017-01-06 15:25
 high-accuracy applications: quality_level == 5 	201611-STAR-L2i GHRSST-SST-iQuam-V2.00-v01.0-fv01.0.nc	2016-12-02 01:13
general applications: quality_level == 4	201610-STAR-L2i GHRSST-SST-iQuam-V2.00-v01.0-fv01.0.nc	2016-11-10 16:58
 advanced users: refer to definitions of iquam_flags and 	201609-STAR-L2i GHRSST-SST-iQuam-V2.00-v01.0-fv02.0.nc	2016-10-14 23:21
original_flags.	201608-STAR-L2i GHRSST-SST-iQuam-V2.00-v01.0-fv01.0.nc	2016-10-15 11:13
All statistics in iQuam page are for	201607-STAR-L2i GHRSST-SST-iQuam-V2.00-v01.0-fv02.0.nc	2016-10-15 23:33
"high accuracy" data only, i.e	201606-STAR-L2i GHRSST-SST-iQuam-V2.00-v01.0-fv03.0.nc	2016-10-16 11:32
(quality_level == 5).	201605-STAR-L2i GHRSST-SST-iQuam-V2.00-v01.0-fv02.0.nc	2016-10-16 23:40
Quality level and flags are only set or SST. Other measurements in	201604-STAR-L2i GHRSST-SST-iQuam-V2.00-v01.0-fv02.0.nc	2016-10-17 11:31
iQuam have not been QCed.	201603-STAR-L2i GHRSST-SST-iQuam-V2.00-v01.0-fv02.0.nc	2016-10-17 23:24
ata are organized in monthly files.	201602-STAR-L2i GHRSST-SST-iQuam-V2.00-v01.0-fv02.0.nc	2016-10-18 11:10
Latest file isrefreshed every 12hrs	201601-STAR-L2i GHRSST-SST-iQuam-V2.00-v01.0-fv01.0.nc	2016-02-03 17:29
	201512-STAR-L2i GHRSST-SST-iQuam-V2.00-v01.0-fv02.0.nc	2016-01-04 15:17
	201511-STAR-L2i GHRSST-SST-iQuam-V2.00-v01.0-fv01.0.nc	2015-12-01 14:09
	201510-STAR-L2i GHRSST-SST-iQuam-V2.00-v01.0-fv01.0.nc	2015-11-17 15:05
	201509-STAR-L2i GHRSST-SST-iQuam-V2.00-v01.0-fv01.0.nc	2015-11-16 20:22
	201508-STAR-L2i GHRSST-SST-iQuam-V2.00-v01.0-fv01.0.nc	2015-11-16 20:11
	201507-STAR-L2i GHRSST-SST-iQuam-V2.00-v01.0-fv01.0.nc	2015-11-16 20:03
	201506-STAR-L2i GHRSST-SST-iQuam-V2.00-v01.0-fv01.0.nc	2015-11-17 15:56
	201505-STAR-L2i GHRSST-SST-iQuam-V2.00-v01.0-fv01.0.nc	2015-11-17 16:33
	201504-STAR-L2i GHRSST-SST-iQuam-V2.00-v01.0-fv01.0.nc	2015-11-17 16:10
	201503-STAR-L2i GHRSST-SST-iQuam-V2.00-v01.0-fv01.0.nc	2015-11-17 16:35
	201502-STAR-L2i GHRSST-SST-iQuam-V2.00-v01.0-fv01.0.nc	2015-11-16 19:47

File format (opened in hdfview)

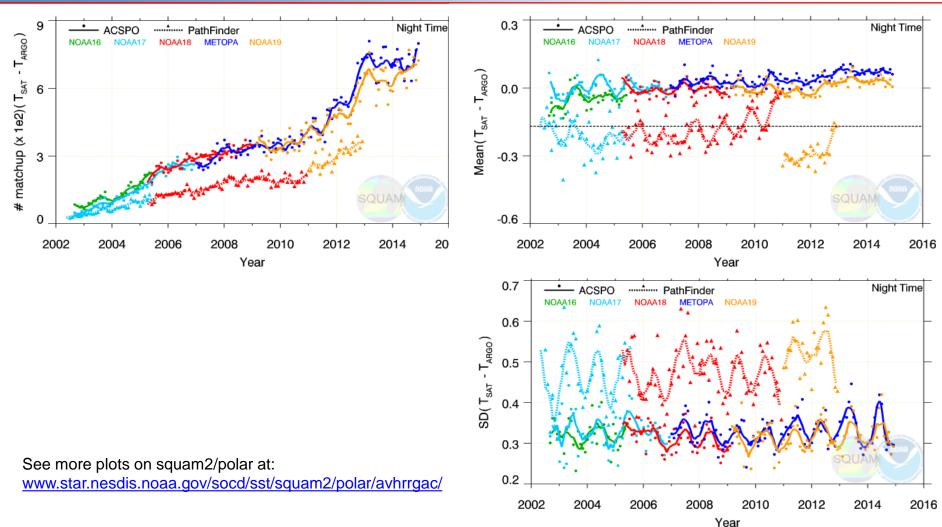


Help Page

<u>Monitor Data Abou</u>	<u>t</u>
System Overview FAQ & Contacts Version Update	 Journal Papers Xu, F. and A. Ignatov, 2014: <i>in situ</i> SST quality monitor (<i>i</i>Quam), JTECH. <u>link</u> Xu, F. and A. Ignatov, 2010: Evaluation of <i>in situ</i> SSTs for use in the calibration and validation of satellite retrievals, JGR. <u>link</u>
References	Conference Presentations
Links	 Ignatov, A., F. Xu, and X. Zhou, 2014: In situ SST Quality Monitor (iQuam), CLIMAR4 Workshop, Asheville, NC, June 2014. link
Acknowledgement	 Ignatov, A. and Xu, F., 2013: in situ SST quality monitor: from iQuam1 to iQuam2, 14th GHRSST meeting, Woods Hole, MA, July 2013. download
	 Xu, F. and A. Ignatov, 2010: Implementation and evaluation of quality control for <i>in situ</i> SST for use in satellite Cal/val, 2010 AGU Ocean Sciences Meeting, Portland, OR, Feb 2010. <u>download</u>

Val of AVHRR GAC RAN1 Against Drifters + Tropical Moorings

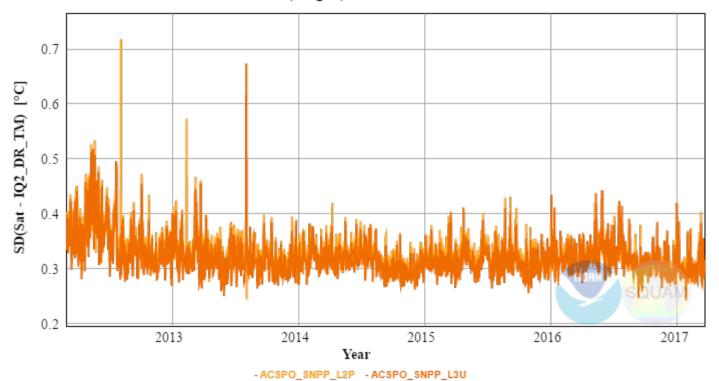
Fig. 1: Drifter and Tropical mooring matchup with Satellite SST, **sample number** (left), **mean bias** (right upper) and **standard deviation** (right lower)


NUA

NOAA iQuam v2

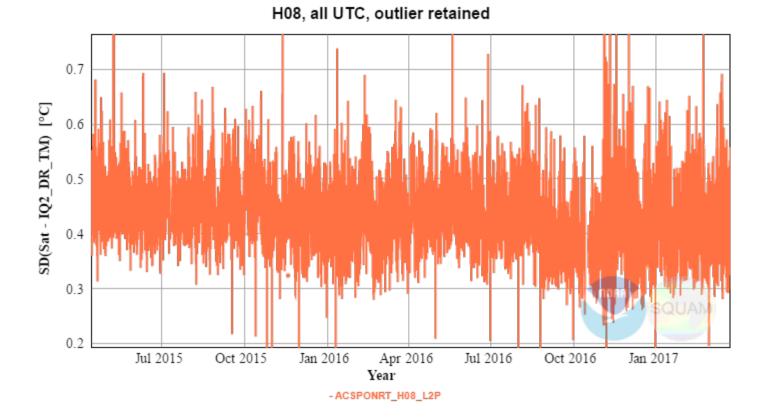
NORR CONTRACTOR

Val of AVHRR GAC RAN1 Against Argo Floats


Fig. 2: Argo floats matchup with Satellite SST, **sample number** (left), **mean bias** (right upper) and **standard deviation** (right lower)

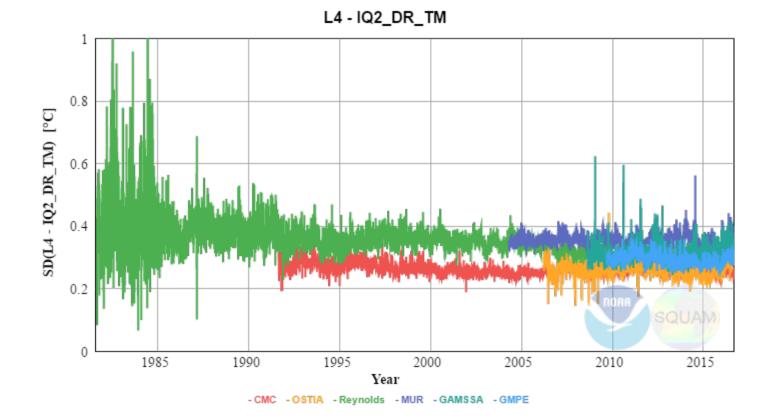
NOAA iQuam v2

Standard Deviation of VIIRS SST Against Drifters + Tropical Moorings

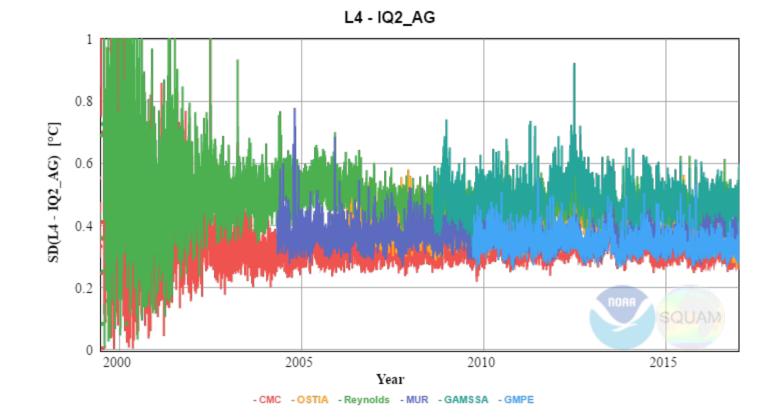


VIIRS, Night, outlier retained

See more plots on squam2/polar at: www.star.nesdis.noaa.gov/socd/sst/squam2/polar/viirs/



See more plots on squam2/geo at: www.star.nesdis.noaa.gov/socd/sst/squam2/geo/ahi_abi/



See more plots on squam2/analysis at: www.star.nesdis.noaa.gov/socd/sst/squam2/analysis/l4

See more plots on squam2/analysis at: www.star.nesdis.noaa.gov/socd/sst/squam2/analysis/l4

Summary of enhancements in iQuam2

- ✓ Longer time series cover full satellite era (Sep 1981 on)
- ✓ Improved QC
- ✓ Improved web interface
- ✓ Add more in situ data
- ✓ Change output data files to NetCDF4

Ongoing work

- 1. Collect users' feedback and implement iQuam2. Retire iQuam1
- 2. Archive w/GHRSST (PO.DAAC/NCEI). Document in literature
- 3. Transition to *i*Quam2 in all NOAA Cal/Val applications including SQUAM
- 4. Work towards *i*Quam3
 - a) Add more *in-situ* data types from SAMOS Ships, Ocean Profilers et al.
 - b) Test 3-way error analysis, to determine errors in individual *in situ* data and append sses
 - c) Include ship radiometers?

- This work is supported by JPSS, GOES-R, and NOAA (PSDI/NDE/ORS) Programs.
- We thank for help and advice
 - P. Dash, Y. Kihai, J. Sapper, X. Liang, B. Petrenko (NOAA/STAR),
 - S. Woodruff, E. Freeman, T. Boyer (NOAA/NCEI); S. Worley (NCAR),
 - > P. Le Borgne, A. Marsouin, S. Perre (Meteo France),
 - ➢ J.-F. Piolle, D. Poulter (IFREMER/Felyx),
 - ➢ H. Beggs (ABoM),
 - E. Fiedler, J. Roberts-Jones, J. Kennedy, N. Rayner (Met Office),
 - E. Kent (Southampton Oceanography Center),
 - ➢ K. Kilpatrick, E. Williams (U. Miami),
 - ➢ G. Corlett (U. Leicester),
 - ➢ M. Chin (JPL).

