2017 JPSS SST Progress Report

Sasha Ignatov

Yury Kihai, Boris Petrenko, Irina Gladkova, Yanni Ding, Xinjia Zhou, Kai He, Olafur Jonasson, Matthew Pennybacker, Maxim Kramar, Paul DiGiacomo, John Sapper

NOAA Center for Satellite Applications and Research (STAR)
1. **Users**
 - Continue supporting STAR (Coast Watch, Geo-Polar Blend, CRW), CMC, Met Office
 - Significant progress with NCEP (RTG/NCODA), Australian Bureau of Meteorology, Danish Met Institute
 - Working with NOS/WCOFS, NCEI, JMA

2. **ACSPO Data**
 - Real-time L2P (May’14-pr) and L3U (May’15-pr): podaac.jpl.nasa.gov and www.nodc.noaa.gov
 - Reprocessed (RAN1) L2P/L3U + rotated (2-week) buffer of real-time data: coastwatch.noaa.gov

3. **ACSPO Development**
 - v2.41 (Aug 2016; delivered): improved mask/SST, handling H8. Implementation delayed due to NDE freeze
 - v2.50 (Sep 2017; in testing): improved SST imagery/algorithms; processes GOES-R (G16); Redesigned L3U
 - v2.60 (in development): pattern recognition, ocean fronts, geo “collated” (Mar 2018; Will be used in RAN2)

4. **Web Monitoring Upgrades**
 - ACSPO Regional Monitor for SST (ARMS; www.star.nesdis.noaa.gov/sod/sst/arms/) → to v1.40
 - SST Quality Monitor (SQUAM; www.star.nesdis.noaa.gov/sod/sst/squam/) → to v2
 - *In situ* SST Quality Monitor ([iQuam;](http://www.star.nesdis.noaa.gov/sod/sst/iquam/) → to v2
 - Added new data & functionality. Improved data stability, web interface, and efficiency.

5. **J1 Readiness (Scheduled Launch: Oct 2017)**
 - ACSPO v2.50 will be ready to process J1 (code may require updates; LUTs will need to be updated)
 - SQUAM and ARMS: J1 control buttons created, ready to be populated
1. **Continue Supporting Existing Users**
 - STAR Coast Watch (Paul DiGiacomo, Veronica Lance)
 - STAR Geo-Polar Blended Team (Eileen Maturi, Andy Harris)
 - Coral Reef Watch Team (Mark Eakin)
 - CMC L4 (Dorina Surcel-Colan)
 - Met Office (Simon Good, Emma Fiedler, Chongyuan Mao)

2. ** Significant Progress with Several New Users’ Groups**
 - NCEP RTG Team (Bob Grumbine, Bert Katz)
 - Australian Bureau of Meteorology (Helen Beggs, Chris Griffin, Pallavi Govekar)
 - Danish Meteorological Institute (Jacob Høyer)

3. **Emerging Users**
 - NOS West Coast Ocean Forecast System (Alexander Kurapov)
 - NCEP NCODA Team (Ilia Rivin, Jim Cummings)
 - NCEI/STAR (Tom Smith, Viva Banzon)
 - JMA (Toshiyuki Sakurai)
Many ACSPO Users Assimilate L3U Product

- L3U (Uncollated) = gridded L2P (~2 orders smaller size)
- ACSPO L3Us were requested by Met Office, ABoM, and JMA
- Initially in ACSPO v2.40, BoM L3U was employed (thanks to Chris Griffin and Helen Beggs for sharing BoM L3U code)
- New bilateral algorithm (weights are functions of distance and SST deviation from a typical SST) was employed in v2.41
- ACSPO v2.50 will also produce L3U for AVHRR (operationally) and MODIS (experimentally)
- L3U compares well w/L2P (preserves spatial features) & in situ
- L3U is a first step towards L3C (“collated” – multiple overpasses of the same satellite are collated) and L3S (“super-collated” – all overpass from all platforms collated together)
L2P: Southern Great Barrier Reef, Australia
SNPP VIIRS 8 July 2017
Towards L3C/L3S Products:
Example over Gulf of California in Oct 2016

Night Overpasses (12 October 2016)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 4:00 | 4:50 | 5:40 | 5:45 | 8:20 | 8:30 | 10:00 | 10:00| 10:05|

Day Overpasses (12 October 2016)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 16:20 | 17:10 | 17:55 | 18:00 | 19:30 | 21:05 | 21:10 | 22:00 |

Night Overpasses (13 October 2016)

<table>
<thead>
<tr>
<th>MetOp-A</th>
<th>MetOp-B</th>
<th>Terra</th>
<th>MetOp-A</th>
<th>Terra</th>
<th>SNPP</th>
<th>Aqua</th>
<th>SNPP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 3:30 | 4:30 | 4:50 | 5:10 | 6:35 | 8:00 | 9:10 | 9:40 |

17 August 2017
Future ACSPO L3C/L3S Products

- L3C/L3S should resolve the diurnal cycle (not simply average different L3Us together)
- Individual L3Us should be de-biased and weighed in inverse proportion to their RMSEs
- Need to understand users’ needs & requirements, leverage BoM L3C/L3S experience
NDE/OSPO produce ACSPO L2P/L3U SST from VIIRS (SNPP; soon to be also J1), AVHRR GAC (N19, Metop-A/B) and FRAC (Metop-A/B) operationally.

Operational Products are distributed via OSPO “Product Distribution & Access” (PDA).

STAR processes MODIS-A and -T experimentally, and has generated GAC and SNPP VIIRS Reanalyses-1 (“RAN1”).

The plan is keep on Coast Watch (CW; coastwatch.noaa.gov) a rotated (~2-week) buffer of VIIRS/AVHRR and ABI/AHI operational, and MODIS experimental L3U products, and supplement them with science-quality L3U RANs. L2Ps will be only served by special request, due to data size.

The CW will work with NCEI to archive RAN products.

Things are in flux now, work underway to shape them up by Aug 2018.

Contact A. Ignatov with any questions.
ACSPO files are in GHRSSST Data Specification v2 (GDS2) NetCDF format

- Data organized into 10min (VIIRS, AVHRR FRAC), 1hr (AVHRR GAC), and 5min (MODIS) granules
- Daily data size: 27GB (VIIRS), 10GB (FRAC/MODIS), and 0.8GB (GAC)
- BTs in all SST bands, and “sub-skin” SST (derived by a regression algorithm) are reported in all ocean pixels (including cloud, ice, etc.) up to 10km inland
- Clear-sky mask & QLs provided in each pixel (we only recommend using QL=5)
- Single Sensor Error Statistics (SSES) Bias & SD are reported in each pixel. They were derived from match-ups with in situ data using Piece-Wise Regression (Petrenko et al, 2016) and represent expected SST errors wrt. in situ in each pixel
- Subtracting SSES bias from “regression sub-skin SST” reconciles it with in situ SSTs (minimizes regional biases, by minimizing residual cloud/aerosol, VZA/TPW dependent errors in regression algorithms, and diurnal effects)
- We recommend correcting for SSES biases in data assimilation/analysis applications, especially those aimed at “bulk” (foundation) SST
ACSPO files are in GHRSSST Data Specification v2 (GDS2) NetCDF format

Data organized as L2P: 10min (VIIRS, AVHRR FRAC), 1hr (AVHRR GAC), and 5min (MODIS) granules

Daily data size: 0.7GB (VIIRS, FRAC, MODIS, GAC)

“Sub-skin” SST are only reported in clear-sky pixels with QL=5

BTs are not reported

As in L2P, SSES bias and SD are reported in each pixel.

As in L2P, we recommend correcting for SSES biases in data assimilation/analysis applications especially aiming bulk/foundation L4s
Quarterly WUCD Events result in ~0.3K spikes in daytime SST.

Validation of VIIRS L2P SST Vs. Drifters + Trop. Moor.
GlobalBias (No SSES Bias Correction)

One-to-One Matchups (10km, 30min)

One-to-Many Matchups (10km, 30min)

RAN1 (v2.40) Real Time (v2.41)

Quarterly spikes are due to Warm-Up Cool-Down exercises – working with SDR to resolve.

Biases are more consistent during RAN1 (Mar’12 – Dec’15). In NRT, a warming trend is seen.

Working w/SDR to fix WUCD and set up infrastructure in STAR for RAN2 (in FY18)

Overall, product meets specs & users’ requirements – except the WUCD events.
Quarterly WUCD Events result in ~0.3K spikes in daytime SST

Overall, product meets specs & users’ requirements – except the WUCD events
Quarterly spikes are due to Warm-Up Cool-Down exercises – working with SDR to resolve
Biases are more consistent during RAN1 (Mar’12 – Dec’15). In NRT, a warming trend is seen
Working w/SDR to fix WUCD and set up infrastructure in STAR for RAN2 (in FY18)
Quarterly WUCD Events result in ~0.3K spikes in daytime SST

Each data point = 1 global daily statistic (~50-150 thousand match-ups)

Overall, product meets specs & users’ requirements – except the WUCD events
Quarterly spikes are due to Warm-Up Cool-Down exercises – working with SDR to resolve
Biases are more consistent during RAN1 (Mar’12 – Dec’15). In NRT, a warming trend is seen
Working w/SDR to fix WUCD and set up infrastructure in STAR for RAN2 (in FY18)
Validation of VIIRS L2P SST Vs. Drifters + Trop. Moor. Standard Deviation (No SSES Bias Correction)

- Current SDs ~0.30K (Night) and ~0.40K (Day). Both meet specs & users’ requirements
- SDs smaller @night (skin VIIRS SST is closer to buoy bulk SST) and larger during daytime
- ACSPO v2.41 appears less noisy, compared to previous version 2.40 used in RAN1
- Working to set up infrastructure in STAR for RAN2 (planned in FY18)

One-to-One Matchups (10km,30min)
One-to-Many Matchups (10km,30min)

RAN1 (v2.40)
Real Time (v2.41)

Specs: 0.6K

Day
Night

Each data point = 1 global daily statistic (~2,000 match-ups)

Each data point = 1 global daily statistic (~50-150 thousand match-ups)

www.star.nesdis.noaa.gov/sod/sst/squam/
Current SDs ~0.30K (Night) and ~0.40K (Day). Both meet specs & users’ requirements. SDs are smaller at night (skin VIIRS SST is closer to buoy bulk SST) and larger during daytime.

ACSPO v2.41 appears less noisy, compared to previous version 2.40 used in RAN1.

Working to set up infrastructure in STAR for RAN2 (planned in FY18).

Validation of VIIRS L2P SST Vs. Drifters + Trop. Moor. Standard Deviation (No SSES Bias Correction)

Each data point = 1 global daily statistic (~2,000 match-ups)

www.star.nesdis.noaa.gov/sod/sst/squam/
Validation of VIIRS L2P SST Vs. Drifters + Trop. Moor. Standard Deviation (After SSES Bias Correction)

- Current SDs ~0.30K (Night) and ~0.40K (Day). Both meet specs & users’ requirements
- SDs smaller @night (skin VIIRS SST is closer to buoy bulk SST) and larger during daytime
- ACSPO v2.41 appears less noisy, compared to previous version 2.40 used in RAN1
- Working to set up infrastructure in STAR for RAN2 (planned in FY18)

www.star.nesdis.noaa.gov/sod/sst/squam/
Current SDs ~0.30K (Night) and ~0.40K (Day). Both meet specs & users’ requirements.

SDs smaller @night (skin VIIRS SST is closer to buoy bulk SST) and larger during daytime.

ACSPO v2.41 appears less noisy, compared to previous version 2.40 used in RAN1.

Working to set up infrastructure in STAR for RAN2 (planned in FY18).

One-to-One Matchups (10km, 30min)

Validation of VIIRS L2P SST Vs. Drifters + Trop. Moor. Standard Deviation (No SSES Bias Correction)

Each data point = 1 global daily statistic (~2,000 match-ups)

Specs: 0.6K

www.star.nesdis.noaa.gov/sod/sst/squam/
Current SDs ~0.30K (Night) and ~0.40K (Day). Both meet specs & users’ requirements
- SDs smaller @night (skin VIIRS SST is closer to buoy bulk SST) and larger during daytime
- ACSPO v2.41 appears less noisy, compared to previous version 2.40 used in RAN1
- Working to set up infrastructure in STAR for RAN2 (planned in FY18)
1. ACSPO 2.50 (Sep 2017) will improve brightness temperature (BT) and SST imagery in the full VIIRS swath, using special resampling algorithms to (a) minimize geometrical distortions; and (b) fill in the bow-tie deleted pixels.

2. ACSPO 2.60 (Mar 2018) will (a) derive ocean fronts; and (b) improve clear sky identification in dynamic, coastal, and high-latitude areas of the ocean.

For SST Improvements in v2.50, see presentation by Petrenko et al (this breakout)
VIIRS SST Imagery in ACSPO v2.41
VIIRS SST Imagery in ACSPO v2.50 – on
All existing clear-sky masks are subject to 2 types of misclassifications: “false alarms” and “cloud leakages”

- False alarms often occur in dynamic areas (currents, eddies, upwellings), coastal zones, and sea-ice transitions
- Misclassifications are often persistent from one overpass to another
- Result in loss of data in interesting areas and day/night inconsistency
- Cloud leakages can lead to false front detection
- Traditional front detection algorithms assume availability of external clear-sky mask
All-Sky SST with Thermal Fronts Overlaid: Kuroshio Current 19 May 2016
Example of False Alarms:
Kuroshio Current 19 May 2016
SST with Corrected Clear-Sky Mask: Kuroshio Current 19 May 2016
• Challenging data volumes and demand for computing resources
 – New gen polar: VIIRS onboard SNPP and future J1 – J4; AVHRR FRAC onboard Metops; MODIS onboard Terra and Aqua
 – Reanalyses (RAN): AVHRR GAC and VIIRS, future FRAC, MODIS, etc.

• Need for new functionalities
 – SSES bias correction
 – Variable regression coefficients (for ACSPO RAN SSTs)
 – SQUAM processing improvements: time aggregation, match-up, etc

• Need for updating the web interface
 – Room for improvement with new web tech (graphic, interactivity, speed, etc.)

• Development of SQUAM2 started in 2016

He et al, SQUAM2 (this breakout)
As iQuam user community grows, it requested several enhancements

- Extend time series to full satellite era (Sep 1981 – on)
- Improve QC, by adding
 - the 2nd reference SST (CMC)
 - performance history check (iQuam check similar to the UKMO/CMS “black lists”)
 - CMS black list; and individual QFs from data producers (ICOADS, ARGO, IMOS)
- Improve web interface
 - Redesign web engine (from flash player to High Charts)
 - Add daily (hourly) statistics
 - Enhance graphics (interactive display, and print/save functions)
- Add new in situ data
 - ARGO Floats (in NRT and post-processing modes)
 - High-Resolution Drifters
 - IMOS Ships
 - Coral Reef Watch buoys
- Change output data files to NetCDF4. (Maximally reconcile with GHRSSST GDS2 satellite L2/L3 format).

Zhou et al, SQUAM2 (this breakout)
1. A part of the NOAA SST Monitoring system, focusing on challenging areas, most interesting to data users & producers
 • Coastal/Internal waters
 • Dynamic areas
 • High latitudes
 • Cloudy regions

2. Monitors regional performance of ACSPO SST & clear-sky mask

3. Checks for image quality & consistency

4. Compares polar vs. geo ACSPO SSTs
 • Himawari-8 AHI
 • GOES-16 ABI

5. Compares ACSPO L2/L3 SSTs with several hi-res L4 SSTs
 • 0.01° JPL MUR
 • 0.05° Met Office OSTIA
 • 0.05° NOAA Geo Polar Blended
 • 0.10° Canadian Met Centre CMC

Ding et al, SQUAM2 (this breakout)
Main Take-Home Messages

• Users are key NOAA priorities. We are committed to product services and improvements to meet users’ needs and expectations

• VIIRS L3U product finds a good traction with VIIRS SST users. We encourage whose users who still use L2P data, to consider L3U

• ACSPO L3U line of products is being extended to include other polar (AVHRR FRAC/GAC, MODIS) and geo (ABI/AHI) sensors

• This will provide a uniform line of high quality / small size ACSPO products to users, from all US polar sensors

• Also, it will set the stage for collated/super-collated ACSPO products

• NOAA Coast Watch will serve ACSPO RAN products, supplemented by rotated buffers of near-real time data (to complement NOAA PDA and JPL PO.DAAC), and transition to NCEI for archival

• NOAA Monitoring and Validation systems are being continuously upgraded to best serve needs of ACSPO users & producers
Future Work

• Support J1 launch
 – NOAA ACSPO system and Monitoring tools are ready

• Two coming ACSPO deliveries to operations
 – V2.50 (Sep 2017): Improved SST imagery & SST algorithms
 – V2.60 (Mar 2018): Improved cloud mask and thermal fronts

• Perform SNPP RAN2 (v2.60), archive w/Coast Watch (2018)

• Release new versions of monitoring systems and document (2018)
 – SQUAM v2
 – iQuam v2
 – ARMS v1.40

• Work with STAR/JPSS/GOES-R Management to define path to L3 collated (L3C) and super-collated (L3S) ACSPO products (TBD)
Thank You!
Current status and upcoming changes in ACSPO VIIRS SST

Boris Petrenko\(^{(1,2)}\), Alexander Ignatov\(^{(1)}\), Yury Kihai\(^{(1,2)}\), Xinjia Zhou\(^{(3)}\), Kai He\(^{(3)}\), Maxim Kramar\(^{(1,2)}\)

\(^{(1)}\) NOAA STAR, USA; \(^{(2)}\) GST, Inc., USA; \(^{(3)}\) CSU CIRA, Inc., USA
Current ACSPO 2.41 VIIRS SST products

<table>
<thead>
<tr>
<th>Product</th>
<th>Global Regression (GR) SST</th>
<th>Piecewise Regression (PWR) SST (aka De-biased SST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representation in ACSPO GDS2 file</td>
<td>“sea_surface_temperature”</td>
<td>“sea_surface_temperature” -”SSES_bias”</td>
</tr>
<tr>
<td>Algorithm</td>
<td>Two regression equations, (one for day and one for night)</td>
<td>Piecewise regression with multiple sets of coefficients for separate segments of the SST domain</td>
</tr>
<tr>
<td>Bands used</td>
<td>Night: M12 (3.7 μm), M15 (10.76 μm) and M16 (12.01 μm) Day: M15 and M16</td>
<td></td>
</tr>
<tr>
<td>Coefficients training</td>
<td>Least-squares method: best fit of in situ SST</td>
<td></td>
</tr>
<tr>
<td>Precision wrt in situ SST</td>
<td>Night: ~0.3 K Day: ~0.4 K</td>
<td>Night: ~0.25 K Day: ~0.3 K</td>
</tr>
<tr>
<td>Mean sensitivity to SSTskin</td>
<td>Night: ~0.97 Day: ~0.9</td>
<td>Not controlled</td>
</tr>
</tbody>
</table>

- GR SST is sensitive to “skin” SST – “subskin” SST
- PWR SST precisely fits in situ SST - proxy for “depth” SST
Changes in VIIRS SST algorithms in ACSPO v.2.50

<table>
<thead>
<tr>
<th>Change</th>
<th>Expected improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. VIIRS band M14 (8.55 μm) is involved in SST retrieval, along with bands M12, M15 and M16</td>
<td>✓ Improved precision with respect to in situ SST</td>
</tr>
</tbody>
</table>
| 2. The PWR SST equation accounts for GFS wind speed and Local Solar Time | ✓ Improved precision of PWR SST with respect to *in situ* SST
| | ✓ Improved reproduction of diurnal cycle in “depth” SST |
| 3. The definition of SSES SD changes from SD of GR SST-*in situ* SST to SD of PWR SST – *in situ* SST | ✓ Improved assimilation of PWR SST in L4 analyses (potentially) |
| 4. PWR “skin” SST is implemented for internal testing | ✓ Improved “skin” SST retrieval (compared with GR SST) |
VIIRS GR SST equations in ACSPO v.2.50

Night:
\[T_S = a_0 + a_1 T_{11} + a_2 (T_{11} - T_{3.7}) + a_3 (T_{11} - T_{8.6}) + a_4 (T_{11} - T_{12}) + \\
+ [a_5 + a_6 T_{11} + a_7 (T_{11} - T_{3.7}) + a_8 (T_{11} - T_{8.6}) + a_9 (T_{11} - T_{12})]S_\theta + \\
+ [a_{10} (T_{11} - T_{3.7}) + a_{11} (T_{11} - T_{8.6}) + a_{12} (T_{11} - T_{12})]T^0_S \]

Day:
\[T_S = a_0 + a_1 T_{11} + a_3 (T_{11} - T_{8.6}) + a_4 (T_{11} - T_{12}) + \\
+ [a_5 + a_6 T_{11} + a_8 (T_{11} - T_{8.6}) + a_9 (T_{11} - T_{12})]S_\theta + \\
+ [a_{11} (T_{11} - T_{8.6}) + a_{12} (T_{11} - T_{12})]T^0_S \]

- \(T_{3.7}, T_{8.6}, T_{11}, T_{12} \) observed BTs
- \(S_\theta = 1 / \cos(\theta) - 1 \) \(\theta \) is VZA
- \(T^0_S \) L4 SST in °C (currently by Canadian Meteorological Center – CMC)
- \(a \)'s regression coefficients, trained against drifters and mooring buoys

- New equations include regressors of the conventional types, which can be constructed from 3 or 4 radiometric bands
- The coefficients are stabilized by cutting off the least informative dimensions in the space of regressors instead of dropping some regressors \((Petrenko et al., SPIE, 2016)\)
- The SST noise is reduced by smoothing the differential regressors without the loss of sensitivity \((Petrenko et al., SPIE, 2015)\)
Expected improvement of SST precision because of using VIIRS band M14

<table>
<thead>
<tr>
<th>SST</th>
<th>SD wrt in situ SST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without M14</td>
</tr>
<tr>
<td>Day</td>
<td></td>
</tr>
<tr>
<td>Global Regression</td>
<td>0.41</td>
</tr>
<tr>
<td>Piecewise Regression</td>
<td>0.28</td>
</tr>
<tr>
<td>Night</td>
<td></td>
</tr>
<tr>
<td>Global Regression</td>
<td>0.34</td>
</tr>
<tr>
<td>Piecewise Regression</td>
<td>0.26</td>
</tr>
</tbody>
</table>

- Band M14 (8.55 μm) improves precision, especially for PWR SST
Modification of PWR SST equation

- The current ACSPO PWR SST fits *in situ* SST with SD≈0.25 K
- The further improvement of precision requires accounting for new sources of errors
- One of such error sources is the bias between *in situ* SST and “skin” SST.
- Two of the variables driving the skin/depth bias, available during the SST retrieval *wind speed* \(V \) and *Local Solar Time* (LST)

\[
T_S = a_0(LST) + a_1T_{11} + a_3(T_{11}-T_{8.6}) + a_4(T_{11}-T_{12}) +
\]
\[
+ [a_5+a_6T_{11} + a_8(T_{11}-T_{8.6})+a_9(T_{11}-T_{12})]S_0 +
\]
\[
+ [a_{11}(T_{11}-T_{8.6}) + a_{12}(T_{11}-T_{12})]T_S^0 + a_{13}V
\]

- LST is accounted for by correcting the offsets in the SST equations for every LST hour. During L2 processing, the offsets are interpolated to actual LST
- GFS Wind speed is added to the equation as an additional regressor
Expected improvement of daytime PWR SST precision wrt *in situ* SST due to accounting for V and LST

<table>
<thead>
<tr>
<th>Dataset of matchups</th>
<th>V and LST are not accounted for</th>
<th>V and LST are accounted for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training (January – December 2016)</td>
<td>0.25</td>
<td>0.24</td>
</tr>
<tr>
<td>Validation (January-June 2017)</td>
<td>0.26</td>
<td>0.25</td>
</tr>
</tbody>
</table>

- Accounting for wind speed and LST reduces daytime SD wrt *in situ* SST
Daytime PWR SST bias wrt CMC as function of wind speed and local time

- Accounting for V and LST in the PWR SST equations:
 - Improves the reproduction of dependencies of \textit{in situ} SST-CMC bias from V and LST
 - Shifts the maximum of the diurnal warming signal from $\sim 12:30$ to $\sim 14:30$, consistently with \textit{in situ} SST
The goals of the **Piecewise Regression “skin” SST (PWRskin SST)** are:

- To reduce regional SST biases (compared with the GR SST);
- To bring the sensitivity closer to 1 and to make it more uniform

The **PWR skin SST** uses the segmentation of the SST domain in the space of regressors, like it is done in the current PWR SST

PWRskin SST coefficients are trained under the constraint

“mean sensitivity = 1”
SD wrt in situ SST and sensitivity for GR SST and PWR skin SST

<table>
<thead>
<tr>
<th>SST</th>
<th>Day</th>
<th>Night</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SD wrt in situ SST</td>
<td>Sensitivity</td>
</tr>
<tr>
<td>GR SST</td>
<td>0.37</td>
<td>0.85±0.08</td>
</tr>
<tr>
<td>PWR skin</td>
<td>0.38</td>
<td>1.00±0.05</td>
</tr>
</tbody>
</table>

- PWRskin brings the mean sensitivity to 1 and reduces its variations
Daytime biases and SDs of SST - *in situ* SST and sensitivities as function of latitude

- GR SST produces large biases at high latitudes in the South
- PWRskin SST biases and SDs are maximum at low latitudes (expected)
- The biases and SDs for PWR are the smallest and the most uniform
- Sensitivity of GR SST is minimum at low latitudes, whereas the sensitivity of PWRskin SST is more uniform and closer to 1
Daytime maps of GR SST-CMC, PWR “skin” SST-CMC and GR SST-PWR “skin” SST (5 July 2017)

GR SST – CMC: Bias=0.46K, SD=0.50 K

PWRS SST – CMC: Bias=0.32K, SD=0.50 K

• PWRskin SST reduces warm biases in high latitudes

8/17/2017

ACSPO SST algorithms
Nighttime maps of GR SST-CMC, PWR “skin” SST-CMC and GR SST-PWR “skin” SST (5 July 2017)

GR SST – CMC: Bias=0.11K, SD=0.32 K

GR SST - PWRS SST

PWRs SST – CMC: Bias=0.06K, SD=0.33 K

At night, the PWRskin SST reduces warm biases in high latitudes in the South
PWR SST minus CMC (5 July 2017)

PWR SST – CMC, **DAY**: Bias=0.18K, SD=0.27 K

PWR SST – CMC, **NIGHT**: Bias=0.02K, SD=0.17 K

PWR SST is highly precise with respect to CMC
Sensitivities for GR SST and PWR skin SST

GR SST, DAY: mean=0.85, SD=0.08

PWR skin SST, DAY: mean=0.99, SD=0.05

GR SST, NIGHT: mean=0.91, SD=0.03

PWR SST, NIGHT: mean=0.99, SD=0.02

• Sensitivities for PWR skin SST are closer to 1 and more uniform
In ACSPO v. 2.50, SSES SD represents SD of PWR SST - in situ SST and may be used for optimal weighting of PWR SST with other products during L4 analyses.
Summary of improvements

• Using the VIIRS band M14 (8.55 µm) for SST, in addition to the previously used bands will improve the precision of ACSPO SST products wrt *in situ* SST

• The precision of the PWR SST will be further improved by accounting for GFS wind speed and local solar time in the regression equations

• The new experimental product, Piecewise Regression “skin” SST will be tested and is expected to become a better proxy for SSTskin than the current Global Regression SST

• SSES SD will represent SD of PWRdepth SST wrt *in situ* SST to facilitate the assimilation in L4 analyses.
THANK YOU
Use of ACSPO VIIRS L3U SST in the OSTIA system

The OSTIA team: Simon Good, Emma Fiedler, Chongyuan Mao, Rebecca Reid
August 17, 2017
Introduction

OSTIA is the Met Office Operational SST and Ice Analysis system

- L4 (global, gap-free analysis), produced daily at 1/20° grid resolution
- Foundation SST (uses all nighttime observations and daytime observations only when wind speed >6 m s⁻¹ to remove diurnal warming effects)
- Validates well against other analyses (compared to independent near-surface Argo observations)
- Available from http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=SST_GLO_SST_L4_NRT_OBSERVATIONS_010_001
SST data used in OSTIA

- ACSPO VIIRS
- AMSR2 (from Remote Sensing Systems)
- NOAA-18 and -19 AVHRR (from NAVO)
- MetOp AVHRR (from OSI SAF)
- SEVIRI (from OSI SAF)
- GOES-E (from OSI SAF)
- In situ (ships, drifters, moored buoys) (from GTS)
Change in the last year

OSTIA performs a bias-correction of satellite data to a reference dataset of all in situ data and high-quality satellite data

• Prior to November 9, 2016, the reference satellite data was a subset of MetOp-A AVHRR (nighttime, max satellite zenith angle 48 degrees, QL4+)
• From November 9, 2016 onwards the reference satellite data was ACSPO VIIRS nighttime data
Prior testing of the impact of the change

Before proceeding with the change, testing was carried out. Two runs were conducted for the period 09 Dec 2015 – 11 Jan 2016:

- Control: MetOp-A AVHRR (nighttime, max satellite zenith angle 48 degrees, Q4+) used as the reference dataset
- VIIRSG_ref: Nighttime VIIRS QL5 data used as the reference dataset

Validation used Argo observations (shallowest observations between 3-5 m depth have been shown to be representative of foundation temperature and they are not used in the analysis) from the Met Office Hadley Centre EN4 database (www.metoffice.gov.uk/hadobs)

<table>
<thead>
<tr>
<th>Region (CMEMS definitions)</th>
<th>Mean diff to Argo (K) control</th>
<th>Mean diff to Argo (K) VIIRSG_ref</th>
<th>RMS diff to Argo (K) control</th>
<th>RMS diff to Argo (K) VIIRSG_ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>0.12</td>
<td>0.06</td>
<td>0.45</td>
<td>0.40</td>
</tr>
<tr>
<td>North Atlantic</td>
<td>0.22</td>
<td>0.05</td>
<td>0.48</td>
<td>0.42</td>
</tr>
<tr>
<td>Tropical Atlantic</td>
<td>0.17</td>
<td>0.11</td>
<td>0.28</td>
<td>0.24</td>
</tr>
<tr>
<td>South Atlantic</td>
<td>0.08</td>
<td>0.08</td>
<td>0.46</td>
<td>0.44</td>
</tr>
<tr>
<td>North Pacific</td>
<td>0.20</td>
<td>0.09</td>
<td>0.51</td>
<td>0.45</td>
</tr>
<tr>
<td>Tropical Pacific</td>
<td>0.08</td>
<td>0.07</td>
<td>0.26</td>
<td>0.22</td>
</tr>
<tr>
<td>South Pacific</td>
<td>0.03</td>
<td>0.07</td>
<td>0.32</td>
<td>0.30</td>
</tr>
<tr>
<td>Indian Ocean</td>
<td>0.03</td>
<td>0.09</td>
<td>0.29</td>
<td>0.28</td>
</tr>
<tr>
<td>Southern Ocean</td>
<td>0.07</td>
<td>0.04</td>
<td>0.45</td>
<td>0.42</td>
</tr>
</tbody>
</table>
Results from prior testing

- Sizable improvement of 0.05 K global RMS difference to Argo using VIIRS as a reference and improvements in RMS consistent across all regions
- Similar results were seen for a second test period of 01 to 31 May 2016
- Improvements of mean difference to Argo in most ocean regions
 - Largest magnitude decrease of 0.16 K in North Atlantic
 - Smallest magnitude decrease of 0.01 K in Tropical Pacific
 - Detriments to mean difference seen in South Pacific (0.04 K) and Indian Ocean (0.06 K)
Animations of daily bias fields:

REMSS AMSR2 and NOAA -18 and -19 AVHRR minus the two reference datasets, control (MetOp-A AVHRR) and VIIRS

Observations have already been filtered to remove daytime measurements where wind speed < 6 m s⁻¹, and SSES biases have been removed
Results from prior testing

• The bias fields show the magnitude of the correction removed from the observations by the OSTIA system

• The run using VIIRS as a reference has eliminated the warm bias seen in the Arctic, so this “correction” is no longer being applied to the data

• The magnitude of the biases is generally smaller for the run using VIIRS as a reference, meaning the observations are in closer agreement with the reference data

• Note the unusual band of cold bias for combined NAVO AVHRR-18 and -19 along 30-40S compared to both reference datasets
Impact on the operational system - GMPE

- Near-surface temperature observations from Argo profiling floats are used to validate various global SST analyses and their daily ensemble median, known as the GMPE (GHRSST Multi-Product Ensemble) median product

- These statistics are updated on the first of the month for the previous-but-one month using Argo data from the Met Office Hadley Centre EN4 database

- Plots can be seen at http://ghrsst-pp.metoffice.com/pages/latest_analysis/sst_monitor/argo/

- GMPE data are available from http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=SST_GLO_SST_L4_NRT_OBSERVATIONS_010_005
Impact on the operational system - GMPE

There is a clear improvement in standard deviation of differences from the time of the upgrade.
Impact on the operational system - GMPE

However, global mean differences are variable and do not show a clear change.
Summary

- OSTIA is a near real time, operational SST analysis run daily at the Met Office.
- In November, the system was upgraded to use nighttime ACSPO VIIRS data as the reference used to correct for biases in other satellite data.
- Prior testing indicated that this change should improve mean and standard deviation of differences to reference Argo data.
- Monitoring since the upgrade has shown a clear improvement to standard deviation of differences; however this is not clear in mean differences.
- Thanks for making your excellent data available!
VIIRS in RTG SST HR

Robert Grumbine, Bert Katz
RTG Data Sources

• In Situ
 • Buoys, Ships, CMAN, (to come: ARGO, Walrus,)…

• Satellite
 • AVHRR — L1b — physical retrievals (NOAA-18, 19; Metop A, B)
 • GOES-13,15 — L3 — NESDIS composited retrievals
 • VIIRS — L2 (to come) — High resolution retrievals (~1 km)
 • AMSR2 — L2 (to come+1) — Microwave (large footprint, but see through clouds)
RTG Analysis Grids

• Being retired — half degree

• Operational — 1/12th degree, 5 arcmin, ~10 km
 • Future — N. America at 2.5 km?

• Masking via bounding curves to arbitrary target

• Daily average, buoy depth
 • Future — buoy depth and ?skin temperature
 • Future — resolve diurnal cycle (6 hrs or more frequent analysis)
VIIRS

L2 ACSP0 -- SST Retrievals
GHRSSST (CF 2.0) NetCDF
Rely on SSES
BUFR
NWS Operations
Challenges of volume + format
Verification

33 subdomains
5 repeated, independent, analyses with 20% of in situ withheld
Score against withheld data
Bernoulli trial assessment
Verification -- NH extratropical
N. Atlantic

NOAA/NWS/NCEP/EMC Marine Modeling and Analysis Branch
ENSHBLE VERIFICATION: VIIRSNOBIAS RTG_SST_HR—minus—buoy Statistics

VIIRSNOBIAS
RMSD 0.960464 (52)
Bias 0.0947857 (29)

OPRNL
RMSD 1.01063 (4)
Bias 0.0989821 (27)

Lat: 30N - 90N Lon: 95W - OE
NW Atlantic

NOAA/NWS/NCEP/EMC Marine Modeling and Analysis Branch

ENSEMBLE VERIFICATION: VIIRSNOBIAS RTG_SST_HR−minus−buoy Statistics

VIIRSNOBIAS
RMSD 1.23384 (50)
Bias 0.30425 (28)

OPRNL
RMSD 1.29527 (6)
Bias 0.292518 (28)

Lat: 30N − 45N Lon: 80W − 40W

02:12:04 THU AUG 17 2017
SH Extratropical
Conclusions

Clear winner
Implementation ~Fall 2017
Thank you
Use of ACSPO VIIRS L3U SST in the Australian Bureau of Meteorology

Helen Beggs, Pallavi Govekar, Chris Griffin, Pavel Sakov and Leon Majewski

Bureau of Meteorology, Melbourne, Australia

STAR JPSS 2017 Annual Science Team Meeting, College Park, MD, USA, 14th – 18th August 2017
Background

- BoM currently uses NAVOCEANO’s 9 km x 4 km global AVHRR SST data from NOAA-18/19 and METOP-A/B in operational SST analyses and ocean models.
- BoM produces GHRSSST L2P, L3U, L3C and L3S products from HRPT AVHRR SST data from NOAA satellites for IMOS Project and operational BoM systems.
- Need Suomi-NPP and JPSS VIIRS SSTs for above systems as a follow-on to NOAA-19 AVHRR SST.
- Unable to access VIIRS L2P SST via FTP in real-time due to high volumes so requested ACSPO produce lower resolution VIIRS L3U files.
- NOAA/STAR produces ACSPO VIIRS 0.02° L3U SST (0.2m) product with rectangular grid aligned with IMOS 0.02° L3U product.
- BoM currently testing these products for operational systems (IMOS L3U/L3C/L3S, SST analyses and ocean forecasts).
BoM and CSIRO have 1.1 km (at nadir) HRPT AVHRR data from NOAA-11 to NOAA-19 from reception stations in Australia and Antarctica back to mid-1980's.

For IMOS, BoM has produced GHR SST products (0.02° L3U, L3C, L3S) over two domains (Australia and Southern Ocean) from 1992 to present using the "stitched" HRPT AVHRR SST archive.

Can IMOS use ACSPO VIIRS SST data to continue the IMOS SST data set and improve spatial coverage?
NOAA/STAR produces "ACSPPO" VIIRS_NPP 0.02° single swath, composite "L3U" SST product (on IMOS grid)

In order to merge with IMOS AVHRR L3U SSTs, ACSPO VIIRS L3U files are modified such that the quality_level is redefined as the minimum of the original VIIRS_NPP ACSPO_v2.40 quality_level and quality level, qs, calculated using Sensor Specific Error Statistics (SSES), using sses_bias (μ_{sses}) and sses_standard_deviation (σ_{sses}) estimates, thus:

$$q_{sses} = \frac{1}{\sqrt{2}} \sqrt{\max \left(\left(\frac{\sigma_{sses}}{\sigma_0} \right)^2 + \left(\frac{\mu_{sses} - \mu_0}{\sigma_{sses}} \right)^2 - 1, 0 \right)}$$

$$qs = \left[5 \exp^{\eta q_{sses}} \right]$$

Different data sources can then be combined using qs, provided that η/σ_0 = constant
“Remapped Quality Level”
\[\min(\text{quality}_\text{level}, q_s) \]
Bureau compositing algorithms use `sses_bias`, `sses_standard_deviation` and degrees of freedom as parametric quality assessments, and `quality_level` as a non-parametric measure. Only highest non-parametric quality data are combined parametrically. Thus we need a good way to compare in absolute terms the quality of data streams from a non-parametric standpoint.

Remapping the quality level allows us to:

- track degradation in quality over each platform life
- combine "old" platforms with "new" platforms with appropriate quality assessment
- reflect the greater uncertainty of measurement and degraded quality as the uncertainty and deviation from in situ measurement increases
- provide supplier quality assessment based on other metrics

Why adjust the quality level in this way?
• We composited VIIRS_NPP L3U data to construct our new VIIRS L3C product

Sea surface temperatures with quality level 4 and 5
For L3C-1day night file from (a) NOAA-19 and (b) VIIRS_NPP for 22nd February 2016.
• We composited NOAA-15, NOAA-18, NOAA-19 and VIIRS_NPP data to construct our new "Multi-sensor" L3S product.

• Note that in this example Multi-sensor L3S has greater spatial coverage than VIIRS L3C alone, for remapped quality level ≥ 4.

Sea surface temperatures with quality level 4 and 5 For L3S-1day night file from (a) NOAA-18/19 and (b) Multi-sensors (NOAA-15/18/19 and VIIRS_NPP) for 22nd February 2016.
VIIRS L3C/L3S Validation

Compared QL ≥ 4 SST(0.2 m) from IMOS AVHRR and VIIRS L3C/L3S files with drifting and tropical moored buoy foundation SSTs for 1 Mar – 30 Jun 2017 over Australian domain (70°E – 190°E, 70°S – 20°N). Data collocated if within 6 hours and same 0.02° grid cell, and winds > 6 m/s (day), > 2 m/s (night).

<table>
<thead>
<tr>
<th>L3C/L3S Product</th>
<th>Day Matchups</th>
<th>Day Bias (K)</th>
<th>Day SD (K)</th>
<th>Night Matchups</th>
<th>Night Bias (K)</th>
<th>Night SD (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-15 L3C</td>
<td>107</td>
<td>-0.10</td>
<td>1.14</td>
<td>2298</td>
<td>-0.03</td>
<td>0.69</td>
</tr>
<tr>
<td>N-18 L3C</td>
<td>846</td>
<td>0.04</td>
<td>0.66</td>
<td>4769</td>
<td>-0.01</td>
<td>0.65</td>
</tr>
<tr>
<td>N-19 L3C</td>
<td>2741</td>
<td>0.06</td>
<td>0.65</td>
<td>3835</td>
<td>0.02</td>
<td>0.44</td>
</tr>
<tr>
<td>VIIRS L3C</td>
<td>15355</td>
<td>0.21</td>
<td>0.36</td>
<td>20092</td>
<td>0.04</td>
<td>0.35</td>
</tr>
<tr>
<td>N-18/19 L3S</td>
<td>3958</td>
<td>-0.01</td>
<td>0.69</td>
<td>7123</td>
<td>0.00</td>
<td>0.57</td>
</tr>
<tr>
<td>Multi L3S</td>
<td>20901</td>
<td>0.23</td>
<td>0.45</td>
<td>24447</td>
<td>0.03</td>
<td>0.44</td>
</tr>
</tbody>
</table>
Use of VIIRS SSTs - Level 3 SST

Due to enhanced spatial coverage and agreement with buoys, the IMOS multi-sensor L3S SST products are expected to provide better input for applications such as BoM's ReefTemp NextGen Coral Bleaching Nowcasting system and IMOS OceanCurrent.

L3S-1night quality>=4 for 22 Feb 2016

AVHRR

BoM ReefTemp NextGen map of the 2 km SST for 22 Feb 2016, generated using IMOS night-only 1-day L3S SSTs.

Multisensor

IMOS OceanCurrent map of the 2 km SST and surface ocean current vectors for 22 Feb 2016, generated using IMOS night-only 6-day L3S SSTs.

Use of VIIRS SSTs - Level 4 SST

• ACSPO VIIRS L3U SST data is being tested for ingestion into the Bureau’s operational daily SST analyses (1/12° RAMSSA and 1/4° GAMSSA)

• Pre-processing system converts ACSPO VIIRS L3U data to IMOS VIIRS L3U format (QL changed) then collates to daily 1/12° and 1/4° L3C SSTfnd data
 • Using only SSTs for daytime ACCESS-G NWP analysis winds ≥ 6 m/s, nighttime winds ≥ 2 m/s
 • Will be optimally interpolated along with HRPT AVHRR, GAC AVHRR, AMSR-2 and in situ SSTfnd data into SST analyses
By end of 2017 ACSPO VIIRS L3U SST data will be ingested into the Bureau’s operational 10 km global ocean model, OceanMAPS v3.2, and 4 km Great Barrier Reef ocean model, eReefs.

Pre-processing system collates VIIRS L3U data to 6-hourly 0.04° L3C data.

Collated obs: (quality level = 5) AND (nighttime OR winds ≥ 6 m/s)

Assimilating VIIRS L3C SST into eReefs resulted in marginal improvement in SST forecast error, with no major effect on other state variables.

Assimilating VIIRS significantly increased IR SST data coverage cf NAVO GAC AVHRR L2P.
Summary

• The high spatial resolution (0.75 km) of VIIRS SST data results in significant improvement in spatial coverage of IMOS multi-sensor L3S SST products and infrared SST inputs into ocean models and SST analyses at BoM

• Initial validation (March-June 2017) indicates that QL ≥ 4 multi-sensor L3S SSTs have significantly lower standard deviation than AVHRR-only L3S SSTs, when compared with buoy SSTs

• The improved L3S SST products are likely to provide better input for applications such as ReefTemp NextGen Coral Bleaching Nowcasting and IMOS OceanCurrent.

• Maps of pre-operational IMOS 1-day Multi-sensor L3S SST available in test ACSPO Regional Monitoring System (ARMS: https://www.star.nesdis.noaa.gov/sod/sst/arms_dev/arms_test2)
Future work

Over the coming 12 months, we aim to:

• Implement download of ACSPO VIIRS L3U files from operational NOAA FTP server rather than PO.DAAC

• More extensively validate VIIRS L3C/L3S files

• Provide operational, real-time IMOS fv01 VIIRS 2 km L3U, L3C and multi-sensor L3S files via the IMOS OPeNDAP server

• Reprocess IMOS fv02 AVHRR L3U/L3C/L3S and fv02 VIIRS L3C and multi-sensor L3S files for the period 1 Jan 2015 to 31 Dec 2016 using reprocessed ACSPO v2.4 VIIRS L3U files

• Test ingesting VIIRS L3C SSTfnd into RAMSSA/GAMSSA SST analyses

• Include ACSPO VIIRS L3U SST in operational general circulation ocean models – OceanMAPS v3.2 and eReefs
Thank You!

Contact: helen.beggs@bom.gov.au
Constructing IMOS VIIRS L3U product

- Only the ACSPO VIIRS L3U files that have data on IMOS grid are processed further.
- ACSPO VIIRS L3U files are modified by adding ancillary fields to match up with standard IMOS L3U files (e.g. sea ice, winds, dt_analysis).
- l2p_flags are redefined using modified ancillary fields.
- The variable 'or_number_of_pixels' in the NOAA's VIIRS_NPP ACSPO_v2.40 L3U file indicates the original number of pixels from the L2Ps contributing to the SST value. VIIRS spatial resolution is 742m while AVHRR spatial resolution is 1.1km, almost double.
- To ensure that the pixel density is consistent between VIIRS with AVHRR at NADIR, we divided 'or_number_of_pixels' in OSPO VIIRS L3U file by two to get 'sses_count' in our new VIIRS L3U file.
The satellites NOAA-15, NOAA-18, NOAA-19 and Suomi-NPP have different equatorial crossing times. Currently, the daytime equatorial crossing time for:

- NOAA-15 is ~18:00 LST (around sunset)
- NOAA-18 is ~19:00 LST (around sunset)
- NOAA-19 is ~15:00 LST (close to peak diurnal cycle)
- Suomi-NPP is ~13:30 LST (early afternoon)
Introduction

- Passive infra-red sensors on polar-orbiting satellites provide the highest resolution SST observations from space (~1 km) but cannot sense SST under cloud.

- Pre-2002 (MODIS) the only wide swath, 1 km resolution, satellite SSTs available were direct-broadcast AVHRR SST from NOAA polar-orbiters.

- BoM and CSIRO have 1.1 km (at nadir) "HRPT" AVHRR data from NOAA-11 to NOAA-19 from reception stations in Australia and Antarctica back to mid-1980's
OceanMAPS v3.1 SST Analyses and Forecasts

Lead: Gary Brassington; Contact: Xinmei Huang

Depth: Top cell depth 5 m so SST(2.5 m)

Resolution: Daily, 0.1º Global

Available: 9 Jun 2016 to real-time

Method: sequential, multi-variate, data assimilation based ensemble optimal interpolation
 - Multivariate assimilation includes - altimetry, sat-SST, in situ T/S and XBT's

SST inputs:
 - 9 km NAVOCEANO GAC AVHRR (NOAA-18/19, METOP-A/B) **L2P** SST1m
 - ~50 km JAXA AMSR-2 (GCOM-W) **L2P** SSTsubskin
 - Argo, XBT, CTD, mooring in situ SSTdepth (GTS, Coriolis, US-GODAE)

Uses: Defence, Search & Rescue, Oil Spills, shipping, etc
IMOS AVHRR-only 2 km L3U, L3C and L3S files are available by Thredds server from 1992 to present at http://rs-data1-mel.csiro.au/thredds/catalog/imos-srs/sst/ghrsst/catalog.html

The online operational validation of IMOS AVHRR L2P products is available at http://imos.org.au/sstdata_validation.html

The pre-operational real-time IMOS VIIRS L3U/L3C and multi-sensor L3S files from 1 March 2017 to present are available by request (contact: helen.beggs@bom.gov.au)
DMIs use of NPP-VIIRS SST data from ASCPO

Jacob L. Høyer
Danish Meteorological Institute
Denmark
Scope

- Talk will focus upon Level 4 SST products:
 - North Sea-Baltic Sea
 - Global
- And show the inclusion of the VIIRS_NPP product
DMI_OI for the North Sea and Baltic Sea

- Part of the Copernicus Marine Environmental Monitoring Service (CMEMS) OSI-TAC project
- Daily operational product
- Spatial resolution of 0.02 degrees
- Uses North Sea-Baltic Sea area
- Ingests NPP-VIIRS data in 0.02 degrees
- Used operationally in the DMI ocean and atmosphere models for the Danish Seas
- Available at:
 - CMEMS web site (marine.copernicus.eu/)
 - PoDAAC (podaac.jpl.nasa.gov/)
Global DMI_OI product

- Daily operational product
- Spatial resolution: 0.05 degrees lat and lon
- Part of the new GMPE product
- Included in Squam
- Used for DMIs Arctic Ocean and Atmosphere models.
- Available at:
 - PoDAAC (podaac.jpl.nasa.gov/)
Satellite data included in the DMI_OI

Level 2 and 3 operational SST products included in the DMI_OI
• From PODAAC:
 • VIIRS_NPP-OSPO-L3U-v2.4
 • AVHRR19_G-NAVO-L2P-v1.0
 • AVHRR19_L-NAVO-L2P-v1.0
• From OSI-SAF:
 • OSI-203 Operational AVHRR, NOAA/AVHRR L3
 • OSI-204-b Operational Metop-B/AVHRR L2P
 • OSI-206 Operational MSG/SEVIRI L3C
 • OSI-207 Operational GOES-E/IMAGER L3C
 • Sea Ice: OSI-401-b Operational DMSP/SSMIS L3
• From Jaxa:
 • Jaxa AMSR2 SST
L2 SST aggregation, number of data

- Temporal window of +/-24 hours from analysis
- VIIRS_NPP product with largest data amount

Number of OI grid points with data

![Graph showing number of OI grid points with data from February 2017 to September 2017 for different satellite products.](image-url)
Global statistics of aggregated L3 products against first guess field (previous day analysis)

Mean VIIRS_NPP difference with respect first guess field is small.
Std dev of anomalies wrt first guess

- Same as previous slide, but with stddev
- VIIRS_NPP among the products with low stddev and stable performance
Conclusion

• We are very happy with the timeliness and accuracy of the S-NPP VIIRS product
• Data coverage of Viirs data is very high
• Compared with first guess fields, the VIIRS_NPP show good accuracy and stable performance
• VIIRS-NPP product very important for the global performance of the level 4 DMI_OI
Thanks and keep up the good work!
NOAA’s Geo-Polar Blended SST Analysis

Andy Harris¹, Jonathan Mittaz¹,⁴, Gary Wick³, Eileen Maturi², John Sapper⁵, Mark Eakin²

¹NOAA-CICS, University of Maryland
²NOAA/NESDIS/STAR
³NOAA/OAR/ESRL
⁴University of Reading, UK
⁵NOAA/NESDIS/OSPO
Maximize strengths – minimize weaknesses

POES IR has **high spatial resolution**
GOES IR has **high temporal resolution**
Microwave has **all-weather capability**

Combine to obtain the optimal SST analysis

JPSS Annual Meeting, 14 – 18 August, 2017
Geo-SST dominates low to mid latitudes
Data Coverage – AMSR-2

- Valid SST data coverage from AMSR-2 for 2014-05-01
 - Improved coverage in both Tropics and High Latitudes
 - 3 days gives almost complete coverage away from land & ice
5-km Blended SST Analysis

- Produced daily from 24 hours of Polar- & Geo-SST
 - MetOp-B
 - GOES-E/W Imager
 - Meteosat-10 SEVIRI [Meteosat-8 over Indian Ocean]
 - Himawari-8 Imager
 - VIIRS
 - [AMSR-2]
 - Does not use buoy data

- Multi-scale OI
 - Mimics Kalman Filter (*Khellah et. al.*, 2005)

- 3 stationary priors
 - Short, intermediate and long correlation lengths
 - Mimic non-stationary prior while preserving rigor
 - Interpolation of resultant analyses based data density
 - Allows fine resolution where possible without introducing noise
AMSR-2 SSES Bias

- Lookup table based on incidence angle

With SSES Bias Adjustment
VIIRS data

- VIIRS incorporated into Geo-Polar Blended 5-km global SST analysis

Significant impact on accuracy *cf.* independent ARGO data

JPSS Annual Meeting, 14 – 18 August, 2017
VIIRS coverage

- Coverage is improved w.r.t. MetOp AVHRR
NOAA Coral Reef Watch Satellite Monitoring

NOAA Coral Reef Watch is pleased to announce the release of its new Daily 5-km Satellite Coral Bleaching Thermal Stress Monitoring Product Suite. The 5-km products are accessible directly below, in the left navigation bar, and throughout this website. Access to our heritage suite of operational 50-km satellite monitoring products will still be possible for the next several months. We encourage all of our users to look over the new 5-km products and provide feedback to us at coralreefwatch@noaa.gov.

Click on buttons below image to change parameter; click on image to navigate to parameter’s web page.

The NOAA Coral Reef Watch program's satellite data provide current reef environmental conditions to quickly identify areas at risk for coral bleaching, where corals lose the symbiotic algae that give them their distinctive colors. If a coral is severely bleached, disease and partial mortality become likely, and the entire colony may die.

Continuous monitoring of sea surface temperature at global scales provides researchers and stakeholders with tools to understand and better manage the complex interactions leading to coral bleaching. When bleaching conditions occur, these tools can be used to trigger bleaching response plans and support appropriate management decisions.

Announcements

October 8, 2015: NOAA announces third ever global coral bleaching event on record! Read the NOAA press release here.
Coral Reef Watch Products

“Coral Triangle”

Accumulated thermal stress is predictor of bleaching risk
“Coral Triangle”
CRW Products – 5-km detail

“Coral Triangle”

- New analysis enables much greater precision, e.g. small fringing reefs
- However, climatology is not derived from same dataset

JPSS Annual Meeting, 14 – 18 August, 2017
Primary concern: water temperature at coral depth

With thanks to Scott Heron
Including diurnal warming correction in SST analysis

Algorithm Flow Diagram

JPSS Annual Meeting, 14 – 18 August, 2017
Diurnal Warming Correction – Sample Model Profile of Warming with Depth

• Model simulates full vertical profile of warming
 — Enables estimation of warming at arbitrary depth
 — Model presently run to a depth of 50 m

• Time evolution of vertical temperature profile shown here for idealized forcing with a constant wind speed of 3 m/s and a peak insolation of 800 W/m²
Magnitude of warming

Example bias correction field VIIRS daytime

- Bias correction usually <2 K
- Model response damped by including gustiness parameterization
- Why might the observed diurnal excursion be damped?
Effect of diurnal adjustment on input data

- METOP adjustments are fairly modest
Effect of diurnal adjustment on input data

- VIIRS adjustments are more significant
Effect of diurnal adjustment on input data

- METOP monthly average for March 2016
Effect of diurnal adjustment on input data

- VIIRS monthly average for March 2016
Effect of diurnal adjustment on bias correction

- Unadjusted VIIRS (2016-03-21)
Effect of diurnal adjustment on bias correction

- Diurnally adjusted VIIRS (2016-03-21)
Effect of diurnal adjustment on bias correction

- Unadjusted monthly average VIIRS
Effect of diurnal adjustment on bias correction

- Diurnally adjusted monthly average VIIRS
Retrieval biases – aerosol?

- MODIS-A mean aerosol, Mar 2016
- Other atmospheric factors, e.g. water vapour loading
Effect of diurnal adjustment on bias correction

- Diurnally adjusted VIIRS + SSES Bias (2016-03-21)
Effect of diurnal adjustment on bias correction

- Diurnally adjusted VIIRS (2016-03-21)
Effect of diurnal adjustment on bias correction

- Diurnally adjusted monthly average VIIRS + SSES Bias
Effect of diurnal adjustment on bias correction

- Diurnally adjusted monthly average VIIRS
Improve Diurnal Adjustment

- Difficult to model the observed distribution of warming
 - Especially in tropics

- New parameterization + wind gustiness
 - Substantially improved distribution of modeled warming
Validation vs ARGO

- March 2016
- iQuam QC
- 3 – 7 m depth

Global: -0.28 ± 0.40 (0.37)
30+°N: -0.40 ± 0.46 (0.36)
<|30°|: -0.18 ± 0.36 (0.30)
30+°S: -0.40 ± 0.41 (0.37)

N.B. Virtually identical statistics to uncorrected analysis!
Locations of currently active ARGO floats
Effect of diurnal adjustment on input data

- VIIRS monthly average for March 2016
VIIRS data

- **N.B.** VIIRS now used as bias correction reference for OSTIA

Significant impact on accuracy *cf. independent* ARGO data
Summary

• **NOAA produces all the L2 data that go into the analysis**
 – Polar data – ACSPO regression SST
 – Geostationary – Bayesian cloud + MTLS Physical retrieval
 – *N.B.* Convergence on ACSPO means Himawari-8 is ACSPO
 – AMSR-2 SST is processed with NOAA GAASP algorithm
 ➢ Initial SSES scheme **based on incidence angle**

• **L4 SST analysis continues to be improved**
 – Bias correction against OSTIA
 ➢ OSTIA has improved *cf.* independent ARGO
 ➢ Therefore Geo-Polar Blended 5-km Analysis has also improved
 – Analysis bias correction scheme due for overhaul
 ➢ ACSPO VIIRS [+Sentinel-3 SLSTR]
Summary cont’d

• Diurnal correction with turbulence model & Stokes’ Drift
 – Beneficial for applications that depend on SST at depth (e.g. CRW)
 – Daytime SST retrieval may not see full scope of DW, especially in tropics
 – Gustiness parameter damps warming (too much?)
 ➢ Partly a work-around for above issue
 – New parameterization **substantially improves warming distributions**
 ➢ Should be incorporated in next update to model
 – Other regional algorithm biases
 ➢ **On balance, using SSES bias + diurnal adjustment is better**
Summary cont’d

• Reprocessing 2002 – 2016
 – Improved baseline for CRW
 ➢ ACSPO GAC AVHRR + Geo-SST (Physical+Bayesian) [N.B. no VIIRS]
 ➢ OSTIA RAN + OSTIA Operational

Reprocessed GOES-W
Summary cont’d

- Reprocess again using ACSPO nighttime 3-chan + SSES as reference?
Backup slides
MODIS: Addition of aerosol

• Put aerosol information in the CRTM
 – NGAC profiles, multiple species (dust, salt, sulfate, soot)
 – Improve match of RTM to observation
 – Does this improve retrieval?

• Put aerosol in the retrieval vector
 – Allow Total Column Aerosol to vary
 – $x = [\text{SST}, \text{WV}, \text{TCA}]^T$
 – Jacobian now includes $\partial T/\partial \text{TCA}$ for each channel
 – Does this improve retrieval?

• MTLS developed for 2-parameter retrieval
 – Try different regularization operator since problem is now more ill-conditioned: Truncated Total Least Squares (TTLS)

$|\Delta y| \leq 1: \lambda = (\sigma_{\text{end-1}})^2 \quad |\Delta y| > 1: \lambda = (\sigma_{\text{end-1}}/\log(|\Delta y|))^2$
Inclusion of aerosol

- Accuracy with TTLS & joint [SST, WV, TCA] ~0.2 K
- Algorithm sensitivity is also improved cf. MTLS
Using ACSPO VIIRS data in CMC SST analyses

Dorina Surcel Colan
National Prediction Development Division, Meteorological Service of Canada, Environment and Climate Change Canada, Canada

4th STAR JPSS Annual Meeting
14-18 August 2017, College Park, MD, USA
Introduction

• In 2016 CMC run 2 SST analyses using Suomi-NPP VIIRS retrievals:
 – 0.2° analysis assimilating 3 AVHRR, VIIRS and AMSR2 (v2)
 – 0.1° analysis assimilating 4 AVHRR, VIIRS and AMSR2 (v3)

• Both analyses assimilate in situ observations (ships, drifting buoys and moored buoys) and ice data

• SST analysis refers to a depth temperature (foundation SST) without diurnal variability

• CMC SST analyses were available on PO.DAAC
VIIRS SST Product

- VIIRS dataset used in SST products is produced by NOAA/NESDIS using Advanced Clear-Sky Processor for Oceans - ACSPO (Petrenko et al. 2014)
- ACSPO VIIRS retrievals: L2P format – 21G/day – until October 2016 and L3U data (~2.4 G/day) afterwards
- No SSES bias and standard deviation from ACSPO VIIRS are used, the analysis has his own satellite bias correction algorithm.
Evaluation of CMC SST for 2016

• All verifications are done against independent measures from Argo floats
• Observations are used only if they are between 3 m and 5 m and within four standard deviations of the climatology
The 0.1deg analysis performed better than 0.2 deg. analysis in 2016. GMPE product improved in April 2016 (VIIRS used in OSTIA?)
Performance of CMC SST

In 2016 GMPE product used 0.2deg CMC SST but not 0.1deg CMC SST
ACSPO VIIRS from PO.DAAC

- NOAA/NESDIS provided VIIRS 2.40 L2P and L3U format
- CMC SST analyses had used ACSPO VIIRS in L2P format since 2014.
- From 26 Sept. to 4 Oct. 2016 data feed for ACSPO VIIRS L2P from PO.DAAC had been interrupted
Without VIIRS data CMC SST has larger standard deviation compared to ARGO; VIIRS L3U have been used after Oct.4
Similar performance for 0.1 deg. CMC SST when VIIRS ACSPO in L3U format are used.
Changes in CMC SST in 2016

Smaller bias and standard deviation when using observational data with higher precision (two decimals instead of one decimal)
Using SSES only for ACSPO VIIRS L3U has very small impact in the analysis bias
Conclusions and future plans

• CMC SST analyses continue to perform well in 2016
• As 0.1 deg. CMC SST has better performance than 0.2 deg. CMC SST (v2) and is an operational product, 0.2 deg. analysis using VIIRS has been discontinued in March 2017
• At this moment no CMC SST is used in GMPE, 0.1 deg. analysis to be introduced soon
• Using VIIRS L3U data does not affect the quality of the analysis and the data are easier to handle (2.4G/day compare to 21G/day)
• A new version of 0.1 deg. CMC SST using higher precision for the observational data and an improved ice analysis will be implemented early in 2018
• This new version will be reprocessed for the last 5 years (at the beginning) and the data will be made available early in 2018.
From STAR’s Geo-Polar Blended SST to the 2014-17 Global Coral Bleaching Event and Beyond: A Coral Reef Watch Report

Jacqueline De La Cour
(Jacqueline.Shapo@noaa.gov)
with the Coral Reef Watch team and collaborators

https://coralreefwatch.noaa.gov
Third Global Coral Bleaching Event: 2014-17

NOAA

- Declared start of third-ever global bleaching event (**Oct 2015**)
- Announced likely ending of the event (**June 2017**)

Coral Reef Watch’s satellite monitoring and modeled outlooks led to first-ever, well-coordinated monitoring, research, and management of a global bleaching event.
• Longest global bleaching event ever (3-years)
• Most widespread global bleaching event ever
• Over $\frac{1}{2}$ exposed twice (Guam: 4 years in a row)
• ~100% coral reefs stressed worldwide; 64% of reefs with bleaching level heat stress

Third Global Coral Bleaching Event: 2014-17
Coral Reef Watch 5 km Satellite-Based Products

NOAA/STAR's Operational Geo-Polar Blended Night-Only SST Analysis

NOAA Coral Reef Watch Daily 5-km Geo-Polar Blended Night-Only Sea Surface Temperatures 3 Jun 2016

Polar: S-NPP (VIIRS), METOP-B
Geo: GOES-E, GOES-W, METEOSAT-10, HIMAWARI-8

https://coralreefwatch.noaa.gov
Advances in Coral Reef Watch’s 5 km Products

Development & implementation of a new climatology:

Development & implementation of Version 3 product suite:
- Significant improvement in accuracy (initial testing)
Heat Stress using Improved 5 km Climatology

Old
Using Pathfinder 4 km SST-based climatology

New
Using Reprocessed Blended SST and OSTIA SST-based climatology
Advances in Coral Reef Watch’s 5 km Products

Development & implementation of a new climatology:

Development & implementation of Version 3 product suite:
- Significant improvement in accuracy (initial testing)

Development: 1985-present dataset (“CoralTemp”)
- 1985-2002: OSTIA Reanalysis
- 2002-2016: STAR’s Reprocessed Blended SST
- 2017-present: STAR’s near-real-time operational Blended SST
50reefs.org

50 Reefs Launch Video

Bloomberg Philanthropies
THE PAUL G. ALLEN FAMILY FOUNDATION
THE TIFFANY & CO. FOUNDATION

CRW - Member of Scientific Steering Group
Future plans

STAR’s Reprocessed 5 km Blended SST:

- Delivered: 2002 Sept-2016
- In processing: 1994-2002 August

- **VIIRS SST**
 - Not available for current version
 - To be included in future version

Higher resolution satellite SST-based monitoring products

- High quality SST available (including VIIRS L2U, L2C)
- Experiments showed gaps in daily data = challenge
- Higher resolution (>2 km) Blended SST is desired

Delayed Science-Quality Geo-Polar Blended SST Analysis??

(CRW’s monitoring accumulates heat stress over three months)
Key Messages

Geo-Polar Blended data (incorporating VIIRS)
• Just in time for 2014-17 Global Coral Bleaching Event
• Higher-resolution, better global & regional products
• Excellent use by scientists and resource managers worldwide

New satellite data needs:
• High-resolution polar & geostationary data needed for blended SST and coral bleaching heat stress products
• JPSS provides needed sub-km SST with global coverage
• High quality reprocessing needed for climatology

@CoralReefWatch CoralReefWatch
coralreefwatch@noaa.gov
Thank you from the NOAA Coral Reef Watch Team!!

Mark Eakin
Jacquie De La Cour (GST)
Gang Liu (GST)
Erick Geiger (GST)

Ben Marsh (GST & ReefSense)
Kyle Tirak (GST)
Andrea Gomez (CCNY & NOAA-CREST)
William Hernandez Lopez (CCNY & NOAA-CREST)

William Skirving (GST & ReefSense)
Scott Heron (GST & ReefSense)
Rob Warner (NOAA/NOS)
Al Strong (GST & SR)
CHASING CORAL
AN EXPOSURE LABS PRODUCTION

The ocean is critical to all life on earth, but unfortunately, coral reefs around the globe are vanishing at an unprecedented rate. In search of answers, a special team of divers, photographers, and marine scientists set out on an adventure and reveal a beautiful underwater mystery to the world.

• Over 1000 media stories (print, online, radio, TV)
• **Chasing Coral** – feature length documentary
 • Premiered at Sundance Film Film Festival, January 2017
 • Won Audience Award for Best US Documentary
Use of ACSPO VIIRS L3U SST in MGDSST (delayed analysis)

Japan Meteorological Agency
Toshiyuki SAKURAI*, Yukio KURIHARA, Akiko SHOJI, Hiromu KOBAYASHI, Ayako TAKEUCHI(Office of Marine Prediction)

*e-mail: tsakurai@met.kishou.go.jp
Introduction

• **MGDSST (Merged satellite and in-situ data Global Daily Sea Surface Temperature)**
 - Global, 0.25 x 0.25 grid resolution, daily GPV
 - Biases of satellites’ data are corrected using in situ SSTs
 - Scale decomposed space-time optimal interpolation

Prompt analysis: conducted within JMA’s NWP System

 Input: AVHRR (NOAA-18, 19, MetOp-A) [GAC and LAC around Japan], AMSR2, WindSat, In-situ

Delayed analysis: conducted five-months later in principle

 Input: AVHRR (NOAA-18, 19, MetOp-A) [GAC], AMSR2, In-situ

Reanalysis: reprocessed for 1982-2006 with Pathfinder SST v5.0/5.1 and other data

We conducted an impact test for delayed analysis.
ACSPSO VIIRS L3U SST

- JMA has routinely acquired ACSPSO VIIRS L3U SST (ver.2.40) from NOAA Server.
- The coverage of VIIRS SSTs are superior to that of AVHRR.

Daytime and nighttime data are combined on a 0.25 ° grid.
Method of impact test

• Impact of assimilation of VIIRS SSTs for the delayed-mode MGDSST analysis was tested against a control run (i.e. routine analysis) for the period from 02 Feb. 2016 to 30 Jun. 2016.

• The configuration of test run was the same as the control, except that VIIRS SSTs are used in place of NOAA18/AVHRR data. The SSES bias was removed from the VIIRS L3U SSTs.

• The observational error of VIIRS SSTs in optimal interpolation was set equal to 0.57 times of that of NOAA18/AVHRR SSTs by calculating the ratio of the both RMSEs against buoy SSTs.
Method of validation

• Validation was conducted against (1) in-situ observation and (2) daily VIIRS SSTs.

(1) Comparison against In-situ observation
 Moored/drifting buoy and Argo data were used. Those were not independent to analysis because they were also used for bias correction of satellites’ data.

(2) Comparison against daily VIIRS SSTs
 To confirm VIIRS SST were ingested into analysis, we also compare with daily VIIRS SSTs.

• Both data were daily-averaged and converted into 0.25 deg. X 0.25 deg. grids for comparison.
Results (1): Validation by in-situ data

- RMSE for Test run is improved by 0.016 K in global region.
- Improvement of RMSE is relatively large in the southern mid- and high- latitude.
- Bias for Test run is generally comparable with that of Control.

<table>
<thead>
<tr>
<th>Area</th>
<th>BIAS (K)</th>
<th>RSME(K)</th>
<th>Number of Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Test</td>
<td>Control</td>
</tr>
<tr>
<td>Global</td>
<td>0.021</td>
<td>0.020</td>
<td>0.409</td>
</tr>
<tr>
<td>60N-90N</td>
<td>0.001</td>
<td>0.008</td>
<td>0.364</td>
</tr>
<tr>
<td>30N-60N</td>
<td>0.035</td>
<td>0.034</td>
<td>0.575</td>
</tr>
<tr>
<td>30S-30N</td>
<td>0.020</td>
<td>0.021</td>
<td>0.271</td>
</tr>
<tr>
<td>60S-30S</td>
<td>0.013</td>
<td>0.009</td>
<td>0.450</td>
</tr>
<tr>
<td>90S-60S</td>
<td>-0.002</td>
<td>-0.020</td>
<td>0.254</td>
</tr>
</tbody>
</table>
RMSE map against In-situ data

RMSE for Test (+ VIIRS) 【K】

RMSE for Control 【K】

[Above figures] RMSE for 10x10 degree grids

RMSE difference between Control and Test

[Left figure]
Warm color indicates RMSE(Test) is smaller than RMSE(Control).

- RMSE for Test is generally improved in almost all areas.
- Improvement is relatively large in the mid- and high-latitude.
Bias map against In-situ data

Bias for Test (+ VIIRS) 【K】

Bias for Control 【K】

[Above figures] Bias for 10x10 degree grids

Difference in absolute value of bias (abs (bias)) between Control and Test

[Left figure]
Warm color indicates abs (bias) (Test) is smaller than abs (bias) (Control).

- Both Test and Control have a positive bias in almost all areas.
- Abs (bias) for Test is comparable with that of Control.
Results (2) : Validation by daily VIIRS SSTs
RMSD map against daily VIIRS SSTs

RMSD for Test (+ VIIRS) 【K】

RMSD for Control 【K】

RMSD difference between Control and Test

[SST diff. rmsd(in)−rmsd(exp) 2017/02/10−06/30]

Warm color indicates RMSD (Test) is smaller than RMSD (Control).

- RMSD for Test is smaller in the mid- and high-latitude and around sea ice area.
- RMSD for Test is degraded along west coast of the North America, in seas off Alaska and the Red sea.

=> It might be caused by some unknown issues with our analysis system.
Bias map against daily VIIRS SSTs

Bias for Test (+ VIIRS) 【K】

Bias for Control 【K】

Difference in absolute value of bias (abs(bias)) between Control and Test

[Left figure]
Warm color indicates abs(bias) (Test) is smaller than abs(bias) (Control).

Abs(bias) is generally improved, however, not so large except around the Antarctic.
Summary & Future Work

- Impact of assimilation of VIIRS SSTs for the delayed-mode MGDSST analysis was tested.
- From the validation results against in-situ data, RMSE for Test run was improved by 0.016 K in global region.
- The improvement is relatively large in the southern mid- and high- latitude. This might be caused by better coverage of VIIRS SSTs in these areas, and by better accuracy of VIIRS SSTs.
- We will make an impact test for prompt analysis of MGDSST and HIMSST in current year.
NOAA CoastWatch/OceanWatch
Sea Surface Temperature Data Dissemination

Veronica P. Lance* and
Paul M. DiGiacomo
and the NOAA CoastWatch/OceanWatch Team

*Global Science & Technology, Inc.

2017 STAR/JPSS Annual Science Meeting
College Park, MD, 14-18 August 2017
NOAA CoastWatch/OceanWatch Team

Paul DiGiacomo – Program Manager

<table>
<thead>
<tr>
<th>Full Time “CW Central” Technical Team</th>
<th>With Support From</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heng Gu</td>
<td>Veronica Lance</td>
</tr>
<tr>
<td>Phil Keegstra</td>
<td>Emily Smail</td>
</tr>
<tr>
<td>Sathya Ramachandran</td>
<td>Sheekela Baker-Yeboah</td>
</tr>
<tr>
<td>Michael Soracco</td>
<td>Ryan Wattam</td>
</tr>
</tbody>
</table>

And PolarWatch and 5 Regional Nodes
Role of NOAA CoastWatch/OceanWatch

NOAA CoastWatch/OceanWatch

- Cross-NOAA program and data framework
- Interface between development, users of all levels and applications
- Measurement (vice) mission-based approach to multi-sensor satellite data
- Processing and customization of pre-and/or post-operational products; “value-added” for CoastWatch users
- NRT & science quality time-series data service
- Global and user regions of interest
- Quality monitoring
- Multiple pathways to data discovery
- Intermediate repository
- Help desk, project assistance, public outreach
- Best effort, 8/5 support

NESDIS/STAR (Oceans/SOCD)

- Science research
- Algorithm/product development
- Cal/Val
- Quality assessment and monitoring
- Reanalysis, reprocessing
- Satellite application development & support

NESDIS/OSPO

- Routine, robust, operational production and distribution, especially to NOAA users
- Dedicated support (8x5 or 24x7 depending upon specific product)

NESDIS/NCEI

- Data stewardship
- Determine archive-worthiness; identify storage requirements
- Ensure robust metadata
- Data archive; long term storage
- Discovery of and access to archived data
- Support for users

Users

2017 STAR/JPSS Annual Science Meeting,
College Park, MD, 14-18 August 2017
Typical Product Lifecycle

- Experimental
- Pre-operational/Developmental
- Operational

Reanalysis

Data Access by USERS

Archive worthy
Current SST at NOAA CoastWatch/OceanWatch

<table>
<thead>
<tr>
<th>Processing</th>
<th>Program</th>
<th>Latency</th>
<th>Temporal Availability</th>
<th>Spatial Coverage</th>
<th>Spatial Resolution</th>
<th>Data format(s)</th>
<th>Direct Source to CWOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctera*</td>
<td>AVHRR</td>
<td>NRT</td>
<td>Daily, rolling 2 weeks</td>
<td>CW heritage regions</td>
<td></td>
<td>HDF, GeoTIFF</td>
<td>OSPO</td>
</tr>
<tr>
<td>ACSPO</td>
<td>VIIRS</td>
<td>NRT</td>
<td>Daily, rolling 2 weeks</td>
<td>CW heritage regions</td>
<td>Nominal 750 m</td>
<td>HDF, GeoTIFF</td>
<td>OSPO</td>
</tr>
<tr>
<td>GOES-SST*</td>
<td>Geo-Stationary</td>
<td>NRT</td>
<td>4x per day</td>
<td>Geo Basins</td>
<td>6 km</td>
<td>HDF, GeoTIFF</td>
<td>OSPO</td>
</tr>
<tr>
<td>Blended</td>
<td>Geo-Polar Blended</td>
<td>NRT</td>
<td>Daily</td>
<td>Global</td>
<td>5 km</td>
<td>HDF, GeoTIFF</td>
<td>OSPO</td>
</tr>
<tr>
<td>ACSPO</td>
<td>VIIRS RAN-1 L2P, L3U</td>
<td>Delayed Mode</td>
<td>2002 to 2015**</td>
<td>Global</td>
<td>4 km GAC</td>
<td>NetCDF</td>
<td>STAR/SST team</td>
</tr>
<tr>
<td>ACSPO</td>
<td>AVHRR RAN-1, L2P</td>
<td>Delayed Mode</td>
<td>2002 to 2015**</td>
<td>Global</td>
<td>4 km GAC</td>
<td>NetCDF</td>
<td>STAR/SST team</td>
</tr>
</tbody>
</table>

*transitional to ACSPO

**will be backfilling from 2015 through to present
SST at NOAA CoastWatch/OceanWatch

<table>
<thead>
<tr>
<th>Processing</th>
<th>Program</th>
<th>Latency</th>
<th>Links to Browse Images</th>
<th>Links to Data</th>
</tr>
</thead>
</table>
Website Revamp v.1.2 in Progress

Satellite data products for understanding and managing our oceans and coasts
SST Product Pages

NOAA CoastWatch • OceanWatch
Sea Surface Temperature ACSPO VIIRS RAN1 Level 2P, 3U

<table>
<thead>
<tr>
<th>Description</th>
<th>Information</th>
<th>Data Access</th>
<th>Documentation</th>
<th>Data Citation</th>
</tr>
</thead>
</table>

L2P data are available through the following servers

<table>
<thead>
<tr>
<th>Service</th>
<th>Resource Locator</th>
</tr>
</thead>
<tbody>
<tr>
<td>THREDDS</td>
<td>https://www.star.nesdis.noaa.gov/thredds/catalog/swathSNPPVIIRSSCIENCEL2PW00/catalog.html</td>
</tr>
</tbody>
</table>

L3U data are available through the following servers

<table>
<thead>
<tr>
<th>Service</th>
<th>Resource Locator</th>
</tr>
</thead>
<tbody>
<tr>
<td>THREDDS</td>
<td>https://www.star.nesdis.noaa.gov/thredds/catalog/swathSNPPVIIRSSCIENCEL3UWW00/catalog.html</td>
</tr>
</tbody>
</table>

[Please acknowledge "NOAA CoastWatch/OceanWatch" when you use data from our site and cite the particular dataset DOI as appropriate.]
The Near Real Time Search tool gives the user the ability of selecting OceanWatch data products based on products associated with that region, the individual sensor used to obtain this data, and the time period obtained either by category or by selecting criteria in the Search Criteria panel on the left.

https://coastwatch.noaa.gov/cw_html/NearRealTimeSearch.html

2017 STAR/JPSS Annual Science Meeting,
College Park, MD, 14-18 August 2017
L2 Granule Selector

https://coastwatch.noaa.gov/cwn/cw_granule_selector.html
L2 Spatial Search Tool

NOAA CoastWatch • OceanWatch
Level-2 VIIRS Ocean Color Science Quality

https://coastwatch.noaa.gov/cw_html/cw_polygon_search.html#searchbox
Example of VIIRS Data Cart

Science Quality RAN

Near real-time

For batch download

Data Cart

<table>
<thead>
<tr>
<th>Item</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VRS/CW.B2016216.181536.nc</td>
</tr>
<tr>
<td>2</td>
<td>V2016204184040_NPP_SCINIR_L2.nc</td>
</tr>
</tbody>
</table>

Clear Cart *Removes all items
Data Stewardship and Long-Term Archive by NCEI

- NOAA CoastWatch/OceanWatch is prepared to deliver ACSPO VIIRS RAN1 GAC data for data stewardship and long-term archiving by NCEI (GHRSSST; Tier 1, 2).
- Arrangements between STAR (via CoastWatch) and NCEI are back in progress after some delays.
Sentinel-3A

- A Cooperative Arrangement between the United States and the European Commission and technical arrangements between NOAA and EUMETSAT (and NOAA and ESA for S1 and S2) are all complete.
- EUMETSAT NRT data transfer via terrestrial multicast to NOAA/STAR is now routine. S3 marine data (OLCI, SLSTR and SRAL). CoastWatch is routinely serving OLCI L1b and L2. SLSTR and SRAL will be coming online.
- NOAA CoastWatch/OceanWatch is the primary US data distributor of S3 marine data
- S3 data complement VIIRS SNPP:
 - 300m spatial resolution (vs. 750m)
 - Morning orbit (vs. afternoon)
NOAA’s Optimum Interpolation SST and Updates Needed

Thomas Smith¹, Viva Banzon², Sasha Ignatov³, and Huai-Min Zhang²

¹. NOAA/NESDIS/STAR & CICS-MD, ². NOAA/NESDIS/NCEI, ³. NOAA/NESDIS/STAR

The contents of this presentation are solely the opinions of the authors and do not constitute a statement of policy, decision, or position on behalf of NOAA or the U.S. Government
Outline

• OISST: stable analysis, widely used for multi-decade study and monitoring

• Updates needed:
 – VIIRS data need to be incorporated, requiring testing
 – Processing updates needed

• Without attention the analysis could become less reliable
The OI 0.25° Daily Analysis

- Example mean and anomaly for 1 day, using Navy AVHRR data
- Bias adjustments for cloud & aerosol contamination
- Large to mid scale features resolved and error estimates available
- Long record (since late 1981)
- Widely used for long-term monitoring and study
Satellite SSTs and Testing Needed

• SSTs estimated from radiation
 – Atmospheric corrections for clouds and aerosols
 – Compared to older algorithms, ACSPO SSTs have greater sampling: need to evaluate changes from using ACSPO SSTs
 – First: compare ACSPO AVHRR-based analysis to current AVHRR-based analysis
 – Next: compare ACSPO AVHRR-based OISST to ACSPO VIIRS-based OISST
ACSPO Data Improvements

• Current status:
 – AVHRR Navy SST used after 2005
 – AVHRR Pathfinder SST used for historical period (1981-2005)

• New ACSPO operational AVHRR-based SST
 – More advanced algorithm, better coverage, less resolution loss
 – Becoming easier to use for operations

• ACSPO VIIRS data
 – continues infrared time series after AVHRR era ends
 – need to be tested for 0.25° long-period analysis and for a higher-resolution analysis
In Situ Data

- One day: 1 Jan 2012
- Ship & Buoy combined sampling typical for the year
 - Mostly used for correcting satellite biases
 - Not enough sampling for high-resolution analysis
- Here averaged to 1° grid to more clearly show sampling
NAVY AVHRR Daily

- One day: 1 Jan 2012
- Day & Night show satellite passes
- Combined sampling for daily analysis
ACSPO AVHRR Daily Data

- Same day: more sampling

- Expanded data reduces sampling errors

- Data errors need more evaluation
Sampling Comparisons

- ACSPO sampling about 3 times NAVY sampling of 0.25° grid squares

<table>
<thead>
<tr>
<th>Averages</th>
<th>ASCPO</th>
<th>NAVY</th>
<th>In Situ</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSAT</td>
<td>33.5</td>
<td>8.9</td>
<td>0.7</td>
</tr>
<tr>
<td>NSAT</td>
<td>32.6</td>
<td>11.6</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Arctic Problem: 1 Buoys

Buoys can get trapped in melt pond or on top of ice: careful QC needed

- Ice-mass balance buoy (front): SLP, SAT, SST, ice T, snow depth, ice thickness
- Balls (background) SVP-B common drifters
- Arctic buoys began after 2010, QC delayed so not used in current OISST
- Could use iQuam (STAR) criteria for screening

Plot of single buoy over time (lat=84.4, lon=-21.2) shows acceptable values in blue, questionable in gray

From https://www.star.nesdis.noaa.gov/sod/sst/iquam/v2/index.html

Picture courtesy of Ignatius Rigor, U. Washington, and US Interagency Arctic Buoy Program and International Arctic Buoy Program
Arctic Problem: 2 Salinity Variations

- OISST assumes constant ocean freeze temperature - 1.8°C (S about 33)
- Actual freeze temperature changes due to salinity
- OI smoothing spreads errors in the sparse-data Arctic

<table>
<thead>
<tr>
<th>S</th>
<th>T_f (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>-1.08</td>
</tr>
<tr>
<td>25</td>
<td>-1.36</td>
</tr>
<tr>
<td>30</td>
<td>-1.64</td>
</tr>
<tr>
<td>35</td>
<td>-1.92</td>
</tr>
</tbody>
</table>

Summer (Jul.-Sep.) salinity [PSS] at the surface (one-degree grid)
Arctic Problem: 3 Analysis

Too much smoothing & extrapolation to the pole in Arctic, spreading sparse warmer temperatures

Analysis with Smoothing – IceSST (upper)

Analysis without smoothing difference (lower)

More testing and validation needed
Improved Analysis Statistics

Weekly 1° OI Average Scales
Zonal 859 km
Meridional 608 km
Noise/Signal Variance 0.77-2.13

Daily 0.25° OI Average Scales
Zonal 151 km
Meridional 155 km
Noise/Signal Variance 0.25

ACSPO Daily 0.25° Preliminary Estimates
Zonal 270 km
Meridional 240 km
Noise/Signal Variance 0.15-0.29
Resolution Improvements

• VIIRS Available for about 6 years, allows better resolution

• ACSPO SSTs also available for AVHRR from 2002

• Higher spatial resolution possible for the VIIRS period
 – Separate HR analysis to continue into future
 – Longer record 0.25° analysis still needed

• Due to greater sampling from ACSPO processing, may be possible to use it to estimate daily cycle for longer record
Summary

• Long-record OISST is needed: AVHRR era is ending

• Analysis needs updating for continued high-quality operations

• New data needs testing: ACSPO AVHRR, ACSPO VIIRS, updates of Pathfinder and ICOADS

• New higher-resolution analyses are possible for a shorter period

• Without additional resources testing and updates are likely to be delayed
JPSS SST assimilation in the
US West Coast Ocean Forecast System (WCOFS)

Alexander Kurapov
College of Earth, Ocean, and Atmospheric Sciences,
Oregon State University /
Visiting Scientist at NOAA (NOS, NESDIS)

In collaboration with NOAA partners: E. Bayler (JCSDA), E. Myers (NOS/CSDL), A. Ignatov (NESDIS/STAR), L. Miller, E. Leuliette (NESDIS/STAR)

Academic partners: A. Moore (UCSC), J. Wilkin (Rutgers U.), S. Erofeeva (Oregon State U.)
WCOFS domain & dynamics (3D & nonlinear):

- North Pacific Current enters the domain between 45-50N (off OR-WA) and splits into the southward flowing California Current System and northward flowing Alaskan Stream

- Shelf (CA-OR-WA): seasonal wind-driven upwelling and downwelling

- Coastal currents instabilities and separation into the adjacent interior ocean

- Coastally trapped waves propagating from south to north

- River influences
Goal: 3-7 day forecasts of oceanic conditions (coastal sea level, currents, oceanic fronts, etc.), constrained by data assimilation (DA)

Data assimilation: Optimally combine a 3D ocean dynamical model and available observations from different platforms

=> Improved initial conditions for the forecasts
Motivation for operational prediction (shelf currents, coastal sea level, SST, fronts):

- national security,
- navigation,
- search and rescue,
- environmental hazard response (oil spills, marine debris, etc.),
- fisheries,
- coastal weather prediction,
- beach erosion,
- recreation,
- new business opportunities,
- public health,
- education,
- local community involvement,
- new technology development, etc.

WCOFS:

Model dynamics are based on the Regional Ocean Modeling System (ROMS): 3D, fully nonlinear, primitive equations, hydrostatic & Boussinesq approximations, vertical turbulence parameterization scheme

Horizontal resolution: 2-km
Vertical resolution: 40 terrain-following layers

Forcing:
- Surface winds and heat flux (12-km NOAA NAM)
- @open boundary: global model (HYCOM/RTOFS) + tides (Oregon State Tidal Inverse Soft.)
- River inputs: Columbia R., Fraser R., small rivers in Puget Sound

(Assimilation: at 4 km horizontal resolution, interpolate correction to the 2-km grid for forecasts)
WCOFS development, focus areas:

1. **Skill assessments for the hindcast solution (2009-2014), improvements in the model formulation:**

2. **Real-time WCOFS without assimilation (w/ Jiangtao Xu, CO-OPS)**

3. **Data assimilation, hindcast experiments (feasibility, forecast metrics, cost-benefit analyses)**
Jets and eddies are observable:

- Satellite SST
- Satellite altimetry
- Land-based HF radar surface currents

+ glider T & S vertical sections, Argo T & S profiles
HF radar surface currents (can be used for assimilation or forecast verification)

(we have tried assimilation of hourly data maps, 6-km resolution)
WCOFS4 DA Test, 3-day assimilation window

Observations:
- SST: JPSS VIIRS L3U (Ignatov et al., NOAA/NESDIS/STAR)
- SSH: Alongtrack altimetry, (1Hz/6 km alongtrack resolution, Jason, Cryosat, etc.)

Assimilation methodology, 4DVAR:

Cost function = \[|| \text{model deviation from prior} ||^2 + || \text{model – obs} ||^2 \rightarrow \text{min} \]

(a) Over a given time interval (here, 3 days: June 1-3) use available observations and **the adjoint model** to correct initial conditions for the analysis (here, at the beginning of June 1)

(b) The analysis provides improved initial conditions for new forecast (6/4-7)
SST: All obs in the 3-day interval

Data fit, SST (model-observation difference, degrees C)

Before DA (rmse=1.19) After DA (rmse = 0.55°C)

DA: Cooling at the surface. Correction of the SST front locations
Data fit, SSH (non-tidal, model-observation difference, m)

No DA (rmse=6.60 cm) DA (rmse = 3.92 cm) Alongtrack SSH (m): OBS, no DA, DA

(All the tracks in the 3-day exp.: color shows model-obs difference)

DA: improved representation of the slope of the ocean surface => surface eddies and jets
DA IMPACT: SST
cooling the surface (compensate to weaker than observed upwelling)

(SST, 6/3/2014 00UTC:
no DA DA difference: DA – no DA, degr C
Fishermen have been using SST forecasts to guide their operations... the SST front is where tuna are likely

In the figure: model without assimilation will suggest a 2 hour trip to the front, while the actual front is much farther, a 4 hour trip (at traveling at a speed of 7.5 knots)

Note: the offshore front location changes appreciably over 2-3 days. 3-day forecasts will be valuable.

Strongest currents are along the front (up to 2 knots): use to optimize routes
DA Impact, “oil slick” dispersion in Santa Barbara Channel

Background color: SST (shown on Jun 3, 2016)

A patch is released on the surface and its contour is tracked using model (uv) for 2 days (6/2-3)

WHITE: beginning (4-km radius disk), GRAY: 48 hours later

For comparison, HF radar surface currents (daily ave): more consistent with the DA pattern
DA Impact, “oil slick” dispersion in Santa Barbara Channel

Background color: SSH (shown on Jun 3, 2016)

A patch is released on the surface and its contour is tracked using model (uv) for 2 days (6/2-3)
WHITE: beginning (4-km radius disk), GRAY: 48 hours later

For comparison, HF radar surface currents (daily ave): more consistent with the DA pattern
SUMMARY:

JPSS L3U SST will be assimilated into the WCOFS using 4DVAR, providing

- Improved 3-day forecasts of SST and other oceanic variables
- Synthesis of SST with other observational data
- Gap-free maps of SST (dynamically based time and space interpolation of the SST data)

Initial assimilation tests using JPSS L3U SST show impact on the front location and surface material transports, relevant for navigation, fisheries, and environmental hazard response

Users & uses of WCOFS forecasts:
- Search & rescue
- Environmental hazard response (e.g., NOAA ORR)
- Fisheries (industry, management)
- Onshore pathogens transport
- Navigation
Plans to assimilate VIIRS SST in JPL
Multi-scale Ultra-high Resolution (MUR) L4 analysis

Mike Chin, JPL
“MUR” Gridded SST Analysis

- Multi-scale Ultra-high Resolution (MUR) SST analysis uses a 1-km grid.
- MODIS is the source of high-resolution SST retrievals; no VIIRS ingested at present.
- VIIRS is the best option for independent data to validate the spatial patterns at fine scales.
- MUR plans to ingest VIIRS in the future.
We welcome availability of multiple products which allow us to qualify the VIIRS features before comparing to MUR.

The three existing VIIRS L2P products (ACSPO, NAVO, NASA-OBPG) are different in quality pixel flagging as well as subtle differences in the SST values/features.

Spatial registration of the pixels would pose some challenges in comparing VIIRS against MUR, or MODIS which are ingested by MUR, due to the differences in the sampling patterns and relatively fast (sub-daily) evolution of the small features that we are interested in.

Registration issue also exists for comparison between Himawari-8 and MUR since H8 contains data voids (cloud) and MUR does not match high frequency sampling of geostationary satellites.

Work is underway to develop space-time registration techniques for both VIIRS and Himawari8 for validation of the MUR product.
Validation of 1~5-km scale SST features and plans for new data sets to be ingested in MUR

• Comparison at that scale is very difficult because differences in larger-scale features could "mask" the small features of interest.

• The closer agreement between OSPO VIIRS and MUR (RMS difference of ~0.3C globally) gives us hope that we can somehow isolate the fine scale features from these two for comparison.

• The next version of MUR will ingest RAN1 AVHRR SST data from NOAA-17 to replace older version of Pathfinder AVHRR SST used by the current MUR. The L2 data (RAN1) are preferred since they preserve the geolocations (lat, lon) without truncation, which often takes place during gridding of L3 data like Pathfinder.

• The next version of MUR will finally ingest VIIRS data. The NASA (OBPG) product receives priority; two other products are still invaluable for pre-ingestion quality control (as stated above). Due to the availability of multiple products, the situation is different from the MODIS products which were difficult to evaluate through comparison.

• Again, from user's perspective, having multiple products is positive.
ARMS: Advanced Clear-Sky Processor for Ocean (ACSPO) Regional Monitor for SST
www.star.nesdis.noaa.gov/sod/sst/arms/

Yanni Ding¹,², Alexander Ignatov¹, Michael Grossberg³, Irina Gladkova¹,³, Calvin Chu³

¹STAR, NOAA Center for Weather and Climate Prediction (NCWCP), USA
²CIRA, Colorado State University (CSU), USA
³City College of New York, USA
Global Monitoring and Validation of satellite & blended SST products has been established in NOAA SQUAM in 2009.

However, satisfactory global performance does not guarantee uniform & accurate regional performance.

Complementing global analyses with more regional focus was recommended by the Joint Polar Satellite System (JPSS) Program Office.

In 2016, ACSPO Regional Monitor for SST (ARMS) was launched www.star.nesdis.noaa.gov/sod/sst/arms/
What is ARMS?

1. A part of the NOAA SST Monitoring system, focusing on challenging areas, most interesting to data users & producers
 - Coastal/Internal waters
 - Dynamic areas
 - High-latitudes
 - Cloudy regions

2. Monitors regional performance of ACSPO SST & clear-sky mask

3. Checks for image quality, accuracy & consistency

4. Compares polar vs. geo ACSPO SSTs
 - Himawari-8 AHI
 - GOES-16 ABI

5. Compares ACSPO L2/L3 SSTs with several hi-res L4 SSTs
 - 0.01° JPL MUR
 - 0.05° Met Office OSTIA
 - 0.05° NOAA Geo Polar Blended
 - 0.09° RAMSSA
 - 0.10° Canadian Met Centre CMC
Regions in ARMS
Regions in ARMS

- Currently, ARMS includes 20 special regions (can be changed/expanded based on users needs)
Multiple Overpasses
Multiple Overpasses

✓ Polar satellite may overfly the same region twice per day/night (or more, in high latitudes)

ACSPO Regional Monitor for SST v1.30

Chesapeake Bay
- Clear Sky
- All Sky
- SST
- SST-CMC L4
- L2P
- L3U
- S-NPP
- J-1
- AQUA
- TERRA
- METOP-A
- METOP-B
- NOAA-18
- NOAA-19
- GAC
- FRAC
- SSES bias correction
- Cmp to
 0.01° MUR
- 2017
- 03
- 24
- Night
- Day
- Day-Night transition

Data courtesy of NOAA/NESSIS/STAR
Satellite: NPP
Sensor: VIIRS-L2P
Date: 2017/03/24 1D 888
Time: 05:46:00 UTC
05:46:00 - 05:50
Scans Time:
- NIGHT
- Projection type: WAPED
- Map projection: 1 km/pixel
- MERCATOR
- Latitude bounds: -35 N - 41 N
- Longitude bounds: 78 W - 72 W
Multiple Overpasses

Display different overpasses; aggregating different overpasses → L3C products
Clear-sky and All-sky SSTs/ΔSSTs
ARMS Interface: Clear-sky and All-sky SSTs/ΔSSTs

- Monitoring: Clear-sky and All-sky SSTs and ΔSSTs = SST - Ref. SST (CMC L4)

ACSM False Alarms
ARMS Interface: Clear-sky and All-sky SSTs/ΔSSTs

- All-sky SST helps to identify over-screening of clouds

ACSPO Regional Monitor for SST v1.30

Data courtesy of NOAA/NESDIS/STAR

Satellite: NPP
Sensor: VIIRS-L2P
Data: 2017/10/24 JD 303
Time: 07:00 UTC
Level 2: 00:00 - 00:50
Scale: 10
Projection: WGS84
Map projection: LAMBERT
Latitude bounds: 25° N - 41° N
Longitude bounds: 76° W - 72° W

ACSM False Alarms
ARMS Interface: Clear-sky and All-sky SSTs/ΔSSTs

- All-sky SST helps to identify over-screening of clouds

ACSPO Regional Monitor for SST v1.30

Chesapeake Bay

- Clear Sky
- All Sky
- SST
- SST-CMC L4
- L2P
- LSU
- S-NPP
- AQUA
- METOP-A
- METOP-B
- NOAA-18
- NOAA-19
- GAC
- FRAC
- SSES bias correction

Cmp to: 0.01° MUR

- Night
- Day
- Day-Night transition

Data courtesy of NOAA/NESS/STAR

Satellite: NPP
Sensor: V01
Time: 2017/03/24 06:00
Scene time:
NIGHT
Projection type: WGS84
Map projection:
1 km/pixel

ACSM False Alarms

8/17/2017
Data Levels
For visualization in ARMS, L2P is remapped to equal-grid (resolution is region specific; always 512×512)
ARMS Interface: L3U (un-collated)

L3U is also remapped to a projection/resolution consistent with re-projected L2P
Platform / Sensor Selection
ARMS Interface: Product Selection

- Monitoring: VIIRS onboard NPP, MODIS onboard Aqua/Terra, AVHRR onboard Metop-A/B, NOAA-18/19

ACSPO Regional Monitor for SST v1.30
ARMS Interface: Product Selection

- Similar pass-time for NPP & Aqua; slightly different data coverage/cloud mask
ACSPPO Regional Monitor for SST v1.30

Chesapeake Bay

- Clear Sky
- SST
- L2P
- S-NPP
- AQUA
- METOP-A
- NOAA-18
- All Sky
- SST-CMC L4
- L3U
- J-1
- TERRA
- METOP-B
- NOAA-19

Data courtesy of NOAA/NESSIS/STAR

Satellite: TERRA
Sensor: MODIS-L2P
Date: 2017/08/24 13:38:33 UTC
00:10:00 - 05:00
Scene time: NIGHT
Projection type: MERCATOR
Map projection: 1 km / pixel
Longitude bounds: 35 N -> 61 N
Latitude bounds: 76 W -> 72 W
ARMS Interface: Product Selection

- FRAC Metop-A has warmer temperature compared to MODIS Aqua and FRAC Metop-A

ACSPO Regional Monitor for SST v1.30

- S-NPP
- AQUA
- METOP-A
- NOAA-18
- Clear Sky
- All Sky
- SST
- SST-CMC L4
- L2P
- L3U
- Night
- Day
- Day-Night transition

Data courtesy of NOAA/NESS/STAR

- Satellite: METOPA
- Sensor: AQUA/MODIS-L2P
- Date: 2017/03/24 14:33 UTC
- Time: 03:00:00 UTC
- Scan Time: NIGHT
- Projection: WAPRED
- Map projection: 1 km/pixel
- Projection: MERCATOR
- Latitude bounds: 75 N -> 81 N
- Longitude bounds: 76 W -> 72 W

8/17/2017
ARMS Interface: Product Selection

✓ Multiple overpasses of different platforms → L3S (super-collated) product

ACSPO Regional Monitor for SST v1.30

Data courtesy of NOAA/NESSIS/STAR

Satellite: METOP-B
Sensor: AVHRR-L2P
Date: 2017/03/24 13:38 UTC
Time: 03:06:00 - 03:50:00
Scans time: NIGHT
Projection type: WRF-EPS
Map projection: Lambert conformal
Latitude bounds: 25 N to 61 N
Longitude bounds: 76 W to 72 W

8/17/2017
Comparison to L4 SSTs
ARMS Interface: Comparison to L4 SSTs

✓ Including four L4 SSTs: 0.01° MUR, 0.05° OSTIA, 0.05° Geo_Polar_Blended, 0.09° RAMSSA, 0.10° CMC

ACSPO Regional Monitor for SST v1.30

Data courtesy of NOAA/NESDIS/STAR

Satellite: MODIS
Sensor: MUR-L2P
Date: 2017-08-17 03:24
Scene Time: 02:24:00 UTC
02:24:00 - 02:54:00
Scene Time: NIGHT
Projection Type: MERCATOR
Map projection: 1 km/px
Latitude bounds: 85° N to 41° N
Longitude bounds: 76° W to 72° W
ARMS Interface: Comparison to L4 SSTs

- 0.01° MUR shows more details where VIIRS_NPP data are available

ACSPO Regional Monitor for SST v1.30

Daily mean L4
ACSP SPO Regional Monitor for SST v1.30

Daily mean L4

Data courtesy of:
NOAA
Comparison to L4 & Geo SSTs

- 0.05° Geo_Polar_Blended reserves more details than OSTIA

ACSPO Regional Monitor for SST v1.30

Daily mean L4
ARMS Interface: Comparison to L4 SSTs

ACSPO Regional Monitor for SST v1.30

- Chesapeake Bay
 - Clear Sky
 - SST
 - L2P
 - S-NPP
 - AQUA
 - METOP-A
 - NOAA-18
 - GAC
- SSES bias correction
- Cmp to 0.10° CMC
- 2017
- Night
- Day-Night transition

Daily mean L4
Comparison to Geo SSTs
ARMS Interface: Comparison to Geo SSTs

- Including geostationary SSTs: AHI onboard Himawari-8, ABI onboard GOES-16 (internal view only)
- AHI is available for three regions: Kuroshio Current, Korean Strait, and South China Sea

ACSPO Regional Monitor for SST v1.30

Data courtesy of NOAA NESDIS/STAR
- Satellite: NPP
- Sensor: VIIRS-L2P
- Time: 2017-12-02 11:20:31 UTC
- WGS84: D 079
- Projection type: MAPPED
- Map projection: 2.54 km/pixel
- MERIDIAN
- Latitude bounds: 33 N - 45 N
- Longitude bounds: 140 E - 155 E

8/17/2017
ARMS Interface: Comparison to Geo SSTs

ACSPO Regional Monitor for SST v1.30

Closest in time geo
Date Selection
Starting date: July 18th 2015

ARMS Interface: Date Selection

ACSPO Regional Monitor for SST v1.30

Gulf of California
- Clear Sky
- SST
- L2P
- S-NPP
- AQUA
- METOP-A
- NOAA-18
- GAC
- FRAC

SSES bias correction
- Cmp to 0.01° MUR

Night
Day
Day-Night transition

Data courtesy of NOAA/NESSI/STAR
Satellite:
- NPP
- JASON-1
- NOAA-18

Date:
- 2017/03/28 JD 987

Starting:
20:40:01 UTC
Ending:
20:50:01 UTC
Projection type: WRF/CO
Map projection:
- 3.5° lat/lon
- MERCATOR

Latin bound:
16 N -> 24 N
Longitude bounds:
120 W -> 100 W

Mesina Cloudy Land Sea Ice
Starting date: July 18th 2015

ACSPo Regional Monitor for SST v1.30

Gulf of California
- Clear Sky
- SST
- L2P
- S-NPP
- AQUA
- METOP-A
- NOAA-18
- GAC
- SSES bias correction
- Cmp to
 - 0.01° MUR
 - 2017
 - 03
 - 29

Night
- Day
- Day-Night transition

hdf
Starting date: July 18th 2015

ARMS Interface: Date Selection

ACSPOR Regional Monitor for SST v1.30

Gulf of California
- Clear Sky
- SST
- L2P
- S-NPP
- AQUA
- METOP-A
- NOAA-18
- GAC
- SSES bias correction

Cmp to 0.01° MUR
- 2017
- 03
- 30

Night
Day
Day-Night transition

Data courtesy of NOAA/NESDIS/STAR

Satellite:
NPP
GOES-12P
Date:
2017/08/30 19:28
Starting:
20:00:02 UTC
Ending:
20:10:01 UTC
Projection Type:
WARTED
Map projection:
3.51 MGR-
LON

Longitude bounds:
18 N -> 24 N
Latitude bounds:
120 W -> 115 W

Legend:
Mesina
Cloudy
Land
Sea Ice
Day/Night Data
ARMS Interface: Day/Night Data

✓ Scene time options: nighttime, daytime, region crossing the day-night transition zone (high-lats)
ARMS Interface: Day/Night Data

✓ Scene time options: nighttime, daytime, region crossing the day-night transition zone (high-lats)
ARMS Interface: Day/Night Data

- Scene time options: nighttime, daytime, region crossing the day-night transition zone (high-lats)

ACSPO Regional Monitor for SST v1.30

- Greenland-Norwegian Seas
 - Clear Sky
 - SST
 - L2P
 - S-NPP
 - AQUA
 - METOP-A
 - NOAA-18
 - SAC
 - SSES bias correction
 - Cmp to: 0.01° MUR, 2017
 - Night, Day, Day-Night transition

Data courtesy of: NOAA/NEODIS/STAR

Satellite: NPP
Sensor: VIIRS-L2P
Date: 2017/03/22 21:01
Time: 04:20:01 UTC
04:20:01 60000
Scen Time: DAY/NIGHT
Projection: HEMISPHERIC
Map projection: 7.5 km/px
Polar STEREO GRAPHIC
Latitudes bounds: 60 N -> 85 N
Longitudes bounds: 42 W -> 20 E
Examples of Using ARMS for ACSPO Diagnostics

- Validate Clear-Sky Domain
- Validate Clear-Sky Mask and SST for day/night consistency
- Check the sea-ice mask in ACSPO (currently taken from CMC)

Identify areas of improvement
ACSPO Clear-Sky Mask Overly Conservative
In Coastal / Dynamic areas

Coastal Zone
Dynamic
Cloud
The cold regions (coastal and dynamic areas) may be identified as “cloud” by the ACSM.
Current ACSPO ice mask Comes from 0.1º CMC L4
May not be fully accurate and sufficiently hi-res

Stay still, does not move like clouds

Ice

"Cloud"
Current ACSPO ice mask Comes from 0.1º CMC L4
May not be fully accurate and sufficiently hi-res

Sea ice and cold water may be identified as “cloud” by the ACSM
Example #3: Discontinuity problem in day/night transition zone

SST algorithm is different in daytime and nighttime, which causes discontinuity
Example #3: Discontinuity problem in day/night transition zone

Use of gross filter **RGCT** instead of ratio filter **RRCT** causes cloud mask discontinuity
Example #3: Discontinuity problem in day/night transition zone

SST algorithm is different in daytime and nighttime, which causes discontinuity.
Example #3: Discontinuity problem in day/night transition zone

The use of gross filter RGCT instead of ratio filter RRCT may cause cloud mask discontinuity
Conclusion

Potential improvements of ACSPO using ARMS

- The current “in-pixel” ACSPO Clear-Sky Mask may be overly conservative in coastal, dynamic, and hi-lat areas – work on pattern recognition improvements is underway (Irina’s talk)
- The current ice mask used in ACSPO comes from 0.1º CMC L4 and has room for improvement – have not looked into that yet
- Discontinuity in both SST and mask seen in day/night “twilight” zone in earlier versions of ACSPO – improved in recent ACSPO
- ARMS is a first step towards data fusion
 - Data of different overpasses from the same platform can be “collated” to generate an L3C
 - Data from multiple platforms can be “super-collated” to generate an L3S

Potential improvements in ARMS

- SSES effectively reduce global consistency of satellite SST with in situ SST. We plan to add SSES “on-off” button in ARMS, to see its effect on local imagery
- Improve web speed efficiency
- Listen to users what else might be needed
SST Quality Monitor Version 2
(SQUAM2)

Kai He1,2, Xinjia Zhou1,3, Sasha Ignatov1, Maxim Kramar1,2, Pransanjit Dash4

1. NOAA STAR; 2. GST, Inc.; 3. CIRA CSU; 4. EUMETSAT
SQUAM Background

- Development started in 2007 at NOAA. V1.0 released in 2009
- Today, SQUAM is a GHRSSST resource for near real-time monitoring and validation of major global SST products produced by SST community
- Plots: Maps, histograms, time series, dependencies, Hovmöller diagrams
- Data monitored: community L2, L3, and L4 SSTs
- Web interface & interactive plotting
Methodology

- SQUAM analyzes bias of product SST w.r.t. reference SST
 \[\Delta T = T_{\text{product}} - T_{\text{ref}} \]

- Customarily, *in situ* SSTs are the natural choice of \(T_{\text{ref}} \) for SST validation. However, the global distribution is sparse and non-uniform in both space and time.

- SQUAM supplements *in situ* validation with analyses against global L4 SSTs as reference
 - Higher coverage
 - Quality more uniform in space and time than *in situ* due to QC and bias adjustment in L4 production
 - Multiple L4 references, allowing sensitivity assessment to \(T_{\text{ref}} \) field

- The underlying assumption is that global distribution of \(\Delta T \) is close to Gaussian
 - May be contaminated by outliers caused by sensor malfunction, suboptimal algorithm, cloud leakage, etc.
 - Statistical metrics of Gaussian can be used to monitor stability of SSTs and quality control them
Methodology

- ΔT should be small, centered at zero, and have a near-Gaussian distribution
- Left tail may be indicative of residual cloud and/or aerosol contamination
Methodology

• Maps & Histograms vs. L4 provide a global “snapshot” for daily diagnostics
Methodology

- Maps & Histograms vs. L4 provide a global “snapshot” for daily diagnostics
- Time series of statistics of ΔT are generated to monitor stability and cross-platform consistency
Methodology

- Maps & Histograms vs. L4 provide a global “snapshot” for daily diagnostics
- Time series of statistics of ΔT are generated to monitor stability and cross-platform consistency
- Dependencies & Hovmöller plots help to identify and understand outliers & instabilities

Latitude dependence

Mean - Latitude
Motivation for Redesign

- Challenging data volumes and demand of computing resources
 - New gen polar: VIIRS onboard SNPP and future J1 – J4; AVHRR FRAC onboard Metops; MODIS onboard Terra and Aqua
 - Reanalyses (RAN): AVHRR GAC and VIIRS, future FRAC, MODIS, etc.

- Need for adding new functionalities
 - SSES bias correction
 - Variable regression coefficients (for ACSPO RAN SSTs)
 - SQUAM processing improvements: time aggregation, match-up, etc.

- Need for updating the 8-year-old web interface
 - Room for improvement with new web tech (graphic, interactivity, speed, etc.)

Facing the need for reorganization and redesign

- Development of SQUAM2 started in 2016
SQUAM 2: A Snapshot

www.star.nesdis.noaa.gov/sod/sst/squam2/ (Current URL)
SQUAM 2: Organization

<table>
<thead>
<tr>
<th></th>
<th>Polar L2/L3</th>
<th>Geo L2/L3</th>
<th>Analysis L4</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Resolution</td>
<td>S-NPP VIIRS
ACSPO L2P
ACSPO L3U
AVHRR FRAC
ACSPO L2P
OSISAF L2P</td>
<td>Himawari-8 AHI
ACSPO L2P
GOES-16 ABI
ACSPO L2P</td>
<td>MUR (JPL)</td>
</tr>
<tr>
<td>Low Resolution</td>
<td>AVHRR GAC
ACSPO</td>
<td></td>
<td>CMC (Environment Canada)
OSTIA (Met Office)
GMPE (Met Office)
Reynolds (NOAA)
GAMSSA (Bureau)</td>
</tr>
</tbody>
</table>
SQUAM 2 Polar

- **VIIRS**, AVHRR FRAC, AVHRR GAC
- Reference SST:
 - L4: CMC, OSTIA, Reynolds
 - *In situ* (iQuam v2): drifters + tropical moorings, ARGO floats
- ACSPO L2P & L3U
 - Currently a mix of RAN and NRT data (seamless records)
 - RAN: 01 Mar 2012 -- 05 Dec 2015
 - NRT: 06 Dec 2015 – present
- Day & Night
- **SSES bias correction**
- Outlier removal (currently defined as >±4RSD)
- Time aggregation: day, month, year, full mission (future)
- Maps & histograms
 - View SST (in addition to ΔT)
- Time series
 - Stats include: NOBS, clear ratio, min/max, mean/median, sd/rsd, skew/kurt, low/high outlier ratio
- Dependencies plots & Hovmöller diagrams
 - Sat view angle, solar zen angle, lat/lon, SST, SST- air temperature, wind speed, total precipitable water, glint angle, scattering angle
SQUAM 2 Polar

Example: SSES bias

- Using maps & histograms to show SSES bias correction on aerosol effect ([link](#))
 - VIIRS L2P, ACSP – CMC L4
 - Jul 2016, monthly aggregated, nighttime

- Cold bias in typical areas affected by aerosols
 - Tropical eastern Atlantic, Indian ocean, north-west Pacific

BEFORE applying SSES bias correction

S-NPP VIIRS, 2016-06, Bias=0.07K SD=0.37K
SQUAM 2 Polar
Example: SSES bias

- Using maps & histograms to show SSES bias correction on aerosol effect (link)
 - VIIRS L2P, ACSPo – CMC L4
 - Jul 2016, monthly aggregated, nighttime
- Cold bias in typical areas affected by aerosols
 - Tropical eastern Atlantic, Indian ocean, north-west Pacific

AFTER applying SSES bias correction
S-NPP VIIRS, 2016-06, Bias=0.05K SD=0.30K
SQUAM 2 Polar
Example: SSES bias

- Using dependency plots and Hovmöller diagrams to show how SSES mitigates biases related to dependence variables (link)
 - VIIRS, ACSPO – CMC L4
 - Dependence variable: satellite view angle

BEFORE applying SSES bias correction

Dependency – 2017-01, monthly, night
Hovmoller – SNPP L2P, daily, night

- SNPP L2p – SNPP L3U

17 August 2017
SST Quality Monitor V2
SQUAM 2 Polar
Example: SSES bias

• Using dependency plots and Hovmöller diagrams to show how SSES mitigates biases related to dependence variables (link)
 – VIIRS, ACSPO – CMC L4
 – Dependence variable: satellite view angle

AFTER applying SSES bias correction

Dependency – 2017-01, monthly, night

Hovmoller – SNPP L2P, daily, night

– SNPP L2p – SNPP L3U
• VIIRS, AVHRR FRAC, AVHRR GAC
• ACSPO RAN
• PM & AM families (seamless records for each; two platforms at a time)

<table>
<thead>
<tr>
<th>Platform</th>
<th>Time Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOAA-16</td>
<td>30 Aug 2002 – 06 Jun 2005</td>
</tr>
<tr>
<td>NOAA-18</td>
<td>07 Jun 2005 – 21 Feb 2009</td>
</tr>
<tr>
<td>NOAA-19</td>
<td>22 Feb 2009 – present</td>
</tr>
<tr>
<td>Metop-A</td>
<td>23 Nov 2006 -- present</td>
</tr>
</tbody>
</table>

- Variable regression coefficients
 - Ex: time series of mean bias against *in situ*.
- Time series of double difference
 - Daytime – nighttime, satellite – AM ref satellite, satellite – PM ref satellite
SQUAM 2 Polar

Example: variable coefficients

- AVHRR GAC SSTs are unstable due to brightness temperature (BT) artifacts, which are caused by suboptimal calibration, drifting orbits, etc.
- Without a “stable version” of BT, variable regression coefficients are employed in ACSPO RAN
- Variable regression coefficients are dynamically derived using a 90-day moving window
- Fixed coefficients vs. variable coefficients in GAC RAN time series (link)
 - Validated against drifters + tropical moorings
 - Mean, day time
- Greatly suppress the variations, especially in NOAA16 & NOAA17
Hamawari-8 AHI, GOES-16 ABI (upcoming)

Reference SST:
- L4: CMC, OSTIA
- In situ (iQuam v2): drifters + tropical moorings, ARGO floats

ACSPO L2P
- 14 Apr 2015 – present

SSES bias correction, outlier removal, time aggregation

Hour & local solar time, and composite
- Hour: specify hour of day (HOD) in both UTC and local solar time (LST)
- Composite: daytime/nighttime, button to compare to VIIRS

Maps & Histograms
- Satellite view (default) and equiangular projection

Time series
- View all hours or by individual hour (in both UTC and LST)

Dependencies & Hovmöller
- Local hour dependency
SQUAM 2: Geo

Hourly analysis

• Hourly analysis in SQUAM Geo
 – H08 AHI temporal frequency: every 10 min (GOES-16 ABI: 5 or 15min)
 – SQUAM picks 1st full disk image in a 1-hour interval
 – Compatible with time aggregation (month, etc.)

• UTC based (default)
 – For monitoring sensor performance

• Local solar time based
 – For scientific analysis, since physics are based on local time, such as diurnal cycle effect.
 – LST results are computed by splitting full disk images based on LST hour and regrouping.

• Interactive control
 – Hour slider
 – Navigation bar
 – Toggle between “looping” and “rolling”
 • Pressed (looping): constrained to 24 hrs UTC/LST
 • Unpressed (rolling): allow crossing onto the adjacent day/month
SQUAM 2: Geo
Example: diurnal cycles

- In SQUAM time series [(link)]
 - Mean bias, H08 against CMC
 - Local solar time
 - 01 Feb – 07 Feb, 2017

- Also in SQUAM dependency plots with time aggregation [(link)]
 - Dependence variable: local time
 - Feb 2017, monthly aggr.

- min ~ 0.1K @03:00 LST, max ~ 0.6K @14:00 LST
SQUAM 2: Analysis (L4)

- L4 SSTs: CMC, OSTIA, GMPE, Reynolds, GAMSSA, MUR
- *in situ* reference in addition to L4: drifters + tropical moorings, ARGO floats
- Interactive controls
 - L4 box & Ref box
 - Not simply interchangeable: L4 SST is mapped to the grids of the Ref SST
 - Swap if selecting identical ones, or clicking “swap” button
- Time aggregation
- Maps & histograms
 - Ice and/or land mask in “view SST” mode
- Time series
- Dependencies & Hovmöller
 - Dependence variables: latitude, SST
Example: OSTIA

- OSTIA had made two changes in 2016 ([link](#))
 - Mar 2016, SD(OSTIA – GMPE) decreased from ~0.3K to ~0.23K (OSTIA started to assimilate ACSPO VIIRS SST)
 - Nov 2016, SD dropped from ~0.27K to ~0.20K (OSTIA started using ACSPO VIIRS as reference)
 - OSTIA SD is now comparable with CMC, which has been assimilating ACSPO VIIRS SST since May 2014

- GAMSSSA SD remained pretty much at the same level as the “pre-ACSPO” OSTIA

- This case study gives an idea of potential room for improvement in GAMSSSA
The results of “L4 – GMPE” and “L4 – in situ” are not fully consistent. This is because in situ data have been assimilated in all L4 analyses (except GMPE), more aggressively in some L4s than in the others. CMC (and more recently, OSTIA too) are on the lower envelope of points against both GMPE and in situ, suggesting overall better performance.

![Graphs showing data comparison for L4 processes against GMPE and in situ data.](image-url)
SQUAM 2

Web functionality

- **Web-based features**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permalink</td>
<td>URL stores all tab and button selections, easy for bookmarking and sharing</td>
</tr>
<tr>
<td>Session caching</td>
<td>Polar, Geo, and Analysis memorize their tab & button selections independently</td>
</tr>
<tr>
<td>Interactive plots</td>
<td>Available in time series and dependencies, powered by DYGraph JS library. Both image and data are export-able.</td>
</tr>
</tbody>
</table>

- **interactive plot cheat sheets**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoom in</td>
<td>Hold your click and drag</td>
</tr>
<tr>
<td>Reset zoom</td>
<td>Double click or check “Axis range: preset”</td>
</tr>
<tr>
<td>Pan</td>
<td>Hold Shift key and drag</td>
</tr>
<tr>
<td>Show values</td>
<td>Hover on the data point</td>
</tr>
<tr>
<td>Smooth</td>
<td>Enter n in the left corner box for n-point mean filtering</td>
</tr>
<tr>
<td>Toggle dataset visibility</td>
<td>Check/un-check “Display toggles” boxes</td>
</tr>
<tr>
<td>Download</td>
<td>Press button for data download or image export</td>
</tr>
</tbody>
</table>
SQUAM 2

Summary

• SQUAM has been upgraded and redesigned to
 – Meet challenging demands of data volume and computing resource due to new platforms and products
 – Stay more centric to NOAA ACSPO products
 – Support new techniques (SSES, variable coefficients, etc)
 – Improve processing algorithms and efficiency
 – Enhance web interface and functionality

• We are committed to support SQUAM2 for our community users and partners. Ongoing development and improvements are based on user needs and feedback
 – Opinions on the current contents, functionality, features?
 – Suggestions of wanted features? Feedback is appreciated & improvements will be made

• We plan to release SQUAM2 in place of heritage SQUAM by the GHRSSST Meeting in June 2017
Thank you!
NOAA in situ SST Quality Monitor Version 2 (iQuam2)

Current url: www.star.nesdis.noaa.gov/sod/sst/iquam/v2

Xinjia Zhou¹,², Alexander Ignatov¹, Feng Xu¹,³,⁴, Kai He¹,³

¹NOAA STAR; ²CSU CIRA; ³GST Inc.; ⁴Fudan University, China
NOAA is responsible for a wide range of polar and geostationary satellite SST products (including swath – L2, gridded – L3) and blended/analysis L4 SSTs.

High-quality, unified *in situ* standard is needed for consistent Cal/Val

- Covers full satellite era 1981 – pr
- Includes all available normal-quality and high-quality *in situ* SSTs suitable for satellite Cal/Val (drifters, moorings, ARGO floats, ships)
- Uniformly processes all *in situ* data using state-of-the-art QC, consistent with wider oceanographic, meteorological, and climate communities such as Met Office, NOAA NCEP, ICOADS. Preserve all heritage QFs for user’s option.
- Provides data in community consensus, user friendly format, via web interface with minimal latency, to support NRT Cal/Val applications
- Reprocesses data periodically, to support long-term satellite consistent/climate data records (CDRs)
• In 2008, conducted inventory of available *in situ* SSTs for the use in Cal/Val
 – ICOADS r2.40 (Sep 1981 – Jul 2007; not available in NRT; suboptimal QC for satellite Cal/Val)
 – FNMOC (Sep 1998 – pr; available in NRT; suboptimal QC for satellite Cal/Val)
 – NCEP GTS (Jan 1991 – pr; available in NRT; no QC)

• In 2009, launched *in situ* SST Quality Monitor version 1 (*iQuam1*)
 www.star.nesdis.noaa.gov/sod/sst/iquam/ (google “iquam”)
 – Uses NCEP GTS data as feed (1991-pr)
 – Included drifters, tropical and coastal moorings, ships
 – State of the art UK MO Bayesian QC

Today, *iQuam* has become a GHRSSST community resource which is widely used nationally and internationally, to support Cal/Val and data assimilation for various blended and satellite SST products.
iQuam users (we are aware of)

- NOAA STAR/OSPO – JPSS, GOES-R, Himawari, AVHRR (SQUAM, USA)
- JPL MUR (US) – M. Chin
- U. Miami MODIS, VIIRS Teams (US) – K. Kilpatrick, L. Williams
- Felyx (France/UK) – J.-F. Piolle
- CMS (France) – A. Marsouin
- JAXA (Japan) – Y. Kurihara, M. Kachi
- Ocean University (China) – L. Guan
- CMA (China) – S. Wang
- SOA (China) – Q. Tu
- NOAA geo-polar blended team (USA) – P. Koner, J. Mittaz, A. Harris, E. Maturi
- NOAA NCEI/Silver Spring (USA) – K. Saha
- NOAA NCEI/Asheville (USA) – V. Banzon
- EUMETSAT (Germany) – P. Dash, A. O’Carroll
- NASA GMAO (USA) – Ricardo Todling, Santha Akella, Guillaume Vernieres
- ABoM (Australia) – Irina Sakova, Helen Beggs

...
As iQuam user community grows, it requested several enhancements

- Extend time series to full satellite era (Sep 1981 – on)
- Improve QC, by adding
 - the 2nd reference SST (CMC)
 - performance history check (iQuam check similar to the UKMO/CMS “black lists”)
 - CMS black list; and individual QFs from data producers (ICOADS, ARGO, IMOS)
- Improve web interface
 - Redesign web engine (from flash player to High Charts)
 - Add daily (hourly) statistics
 - Enhance graphics (interactive display, and print/save functions)
- Add new in situ data
 - ARGO Floats (in NRT and post-processing modes)
 - High-Resolution Drifters
 - IMOS Ships
 - Coral Reef Watch buoys
- Change output data files to NetCDF4. (Maximally reconcile with GHRSSST GDS2 satellite L2/L3 format).
The iQuam is a web-based near-real time system. It performs 4 major functions:

- Ingests various *in situ* SSTs
- Performs a uniform Quality Control (QC)
- Monitors QCed *in situ* SSTs online
- Serves reformatted *in situ* SST data with quality flags appended

Functionality and Data Flow

![Diagram of iQuam's function and data flow]

- NCEP GTS
- FNMOC
- ICOADS
- ARGO
- HR-Drifter
- IMOS
- CRW

Reference SST and land/sea mask for QC (every 12hr)

Reference SST for monitoring purpose (every 12hr)

QC

FTP server

Web Interface

Monitor
Quality Control in iQuam

<table>
<thead>
<tr>
<th>Category</th>
<th>Check</th>
<th>Type of error handled</th>
<th>Physical basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preprocessing</td>
<td>Duplicate Removal</td>
<td>Duplicates arise from multiple transmission or data set merging</td>
<td>Identical space/time/ID</td>
</tr>
<tr>
<td>Plausibility</td>
<td>Geo-location checks</td>
<td>Unreasonable Geolocation</td>
<td>Range of single fields & Relationships among them</td>
</tr>
<tr>
<td>Internal consistency</td>
<td>Tracking</td>
<td>Points falling out of track</td>
<td>Travel speed exceeds limit</td>
</tr>
<tr>
<td></td>
<td>Spike check</td>
<td>Discontinuities in SST time series along track</td>
<td>SST gradient exceeds limit</td>
</tr>
<tr>
<td>External consistency</td>
<td>Reference Check</td>
<td>Measurements deviating far away from reference</td>
<td>Bayesian approach (Ref. SST: daily OI SST v2 and CMC 0.2)</td>
</tr>
<tr>
<td>Mutual consistency</td>
<td>Cross-platform Check</td>
<td>Mutual verification with nearby measurements (“buddies check”)</td>
<td>Bayesian approach based on space/time correlation of SST field</td>
</tr>
<tr>
<td>Performance consistency</td>
<td>Performance history check</td>
<td>Bad performance of single platform ID</td>
<td>Outlier rate exceeds limit (50%) in single platform</td>
</tr>
<tr>
<td>Heritage quality flags</td>
<td>All the heritage QFs are preserved in iQuam2 output files, including ICOADS, ARGO Floats, HR-Drifters, IMOS Ship and CMS blacklist.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality level

iQuam2 quality level definition:

```plaintext
string quality_level:flag_meanings = "invalid not_used not_used low_quality acceptable_quality best_quality";
string quality_level:flag_values = "0b, 1b, 2b, 3b, 4b, 5b";
```

quality_level = 5 :
- ✓ Geo-location check pass
- ✓ Duplicate check pass
- ✓ Platform ID check pass
- ✓ Tracking check pass
- ✓ Spike check pass
- ✓ Performance history check pass
- ✓ Reference check probability < 0.5
- ✓ Cross-platform check probability < 0.1

quality_level = 4 :
- ✓ Geo-location check pass
- ✓ Duplicate check pass
- ✓ Platform ID check pass
- ✓ Tracking check pass
- ✓ Spike check pass
- ✓ Performance history check pass
- ✓ Cross-platform check probability < 0.5

Or

- ✓ Geo-location check pass
- ✓ Duplicate check pass
- - Platform ID check fail
- - Tracking check fail
- ✓ Spike check pass
- ✓ Performance history check pass
- ✓ Reference check probability < 0.5
- ✓ Cross-platform check probability < 0.1

quality_level = 3 :
- ✓ Fails to meet the criteria of ql = 5 or ql = 4

quality_level = 0 :
- ✓ Both references are unavailable
% of Data by Quality Levels
Example for Feb 2017

<table>
<thead>
<tr>
<th></th>
<th>Total Num</th>
<th>% of QL = 5</th>
<th>% of QL = 4</th>
<th>% of QL = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argo floats</td>
<td>12,469</td>
<td>92.8</td>
<td>2.1</td>
<td>5.1</td>
</tr>
<tr>
<td>Drifters</td>
<td>607,840</td>
<td>91.6</td>
<td>2.4</td>
<td>6.0</td>
</tr>
<tr>
<td>HR-Drifters</td>
<td>156,951</td>
<td>74.7</td>
<td>1.8</td>
<td>23.5</td>
</tr>
<tr>
<td>Tropical Moorings</td>
<td>25,942</td>
<td>95.7</td>
<td>2.1</td>
<td>2.2</td>
</tr>
<tr>
<td>Coastal Moorings</td>
<td>235,223</td>
<td>79.3</td>
<td>2.7</td>
<td>18.0</td>
</tr>
<tr>
<td>CRW Moorings</td>
<td>15,340</td>
<td>95.1</td>
<td>2.0</td>
<td>2.9</td>
</tr>
<tr>
<td>Ships</td>
<td>80,745</td>
<td>66.9</td>
<td>4.3</td>
<td>28.8</td>
</tr>
<tr>
<td>IMOS Ships</td>
<td>63,849</td>
<td>65.8</td>
<td>0.6</td>
<td>33.6</td>
</tr>
</tbody>
</table>

Based on our observation, QL = 0 is not exist
Drifters QC
iQuam vs. ICOADS

Data passing both QCs show a Gaussian distribution with Bias~0.02K and SD~0.29K

“iQuam leakages” (data pass iQuam QC but fail IC) are close to Gaussian shape but with degraded statistics. Suggests that this portion of data is noisier but still normal.

“IC leakages” (data pass IC QC but fail iQuam QC) significantly deviate from normal distribution with SD exceeding 1K.
ARGO floats QC
iQuam vs. Heritage

Jan 2006 – Dec 2006

Data passing both QCs show a Gaussian distribution with Bias~0.02K and SD~0.32K

“iQuam leakages” (data pass iQuam QC but fail AG) are comparable with IQ x AG. This suggests that these data are normal but with little bit higher noise.

“AG leakages” (data pass AG QC but fail iQuam QC) deviate from normal distribution and SD over 1.4K.
HR-Drifter QC
iQuam vs. Heritage

Jan 2012 – Mar 2015

IQ ‘leakage’ has comparable stats with IQxHR, suggesting that HR QC is overly conservative.

HR(na) stats are slightly degraded, likely due to regional biases.

HR ‘leakages’ (data pass HR QC but fail iQuam) are significantly degraded.

Data passing both QCs show a narrow Gaussian distribution with Bias~0.08K and SD~0.28K.
Data passing both QCs show a Gaussian distribution with Bias~0.08K and SD~0.42K

"iQuam leakages" (data pass iQuam QC but fail IM12) are comparable with IQ x IM12. This suggests that the IM12 QC is overly conservative. It removes 7.6% of data.

"IM12 leakages" (data pass IM12 QC but fail iQuam QC) are significantly degraded. This suggests that iQuam QC is instrumental, for ~2.6% of data.
Stats for “iQuam leakages” (data pass iQuam QC but fail IMZ) are degraded. Suggests that IMZ QC contain valid and independent info that iQuam2 doesn’t have. (~2% of the data)

“IMZ leakages” (data pass IMZ QC but fail iQuam QC) are significantly degraded. Suggests that iQuam QC is instrumental to improve the quality of IMOS data (~6% of the data)
1. Using iQuam QL=5 is recommended. This is what we monitor in the iQuam web page and use for NOAA Cal/Val.

2. All heritage QFs are also reported in iQuam. Our “confusion matrix” analyses suggest that they do not add much to the iQuam QFs. (The only heritage QF which was found unique, the IMOS IMZ, is included in the iQuam2 QL=5).

3. All individual iQuam QFs are also reported in data files. Advanced users are welcome to build their own QLs.
Monitor Interface (1)

www.star.nesdis.noaa.gov/sod/sst/iquam/v2
Monitor Interface (2)

QC Statistics - NOBS

<table>
<thead>
<tr>
<th>Platform</th>
<th>N_ID</th>
<th>N_Obs</th>
<th>N_QC</th>
<th>AL</th>
<th>DR</th>
<th>GL</th>
<th>TS</th>
<th>SG</th>
<th>RS</th>
<th>XP</th>
<th>PH</th>
<th>XQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argo</td>
<td>3,771</td>
<td>9,495</td>
<td>8,914</td>
<td>581</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>392</td>
<td>373</td>
<td>0</td>
</tr>
<tr>
<td>Drifter</td>
<td>1,578</td>
<td>802,147</td>
<td>555,279</td>
<td>46,868</td>
<td>1,377</td>
<td>8,817</td>
<td>119</td>
<td>767</td>
<td>32,155</td>
<td>32,155</td>
<td>3,813</td>
<td>0</td>
</tr>
<tr>
<td>HR-Drifter</td>
<td>266</td>
<td>125,642</td>
<td>96,410</td>
<td>29,232</td>
<td>0</td>
<td>18,649</td>
<td>41</td>
<td>87</td>
<td>9,934</td>
<td>9,934</td>
<td>221</td>
<td>96,410</td>
</tr>
<tr>
<td>T-Mooring</td>
<td>62</td>
<td>23,132</td>
<td>22,016</td>
<td>1,116</td>
<td>89</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>602</td>
<td>853</td>
<td>167</td>
<td>0</td>
</tr>
<tr>
<td>C-Mooring</td>
<td>204</td>
<td>216,060</td>
<td>201,111</td>
<td>14,829</td>
<td>0</td>
<td>1</td>
<td>7,123</td>
<td>321</td>
<td>7,101</td>
<td>7,056</td>
<td>328</td>
<td>0</td>
</tr>
<tr>
<td>Ship</td>
<td>1,659</td>
<td>101,912</td>
<td>80,212</td>
<td>21,700</td>
<td>23</td>
<td>352</td>
<td>359</td>
<td>332</td>
<td>18,637</td>
<td>19,951</td>
<td>1,764</td>
<td>0</td>
</tr>
<tr>
<td>IMOS</td>
<td>4</td>
<td>40,868</td>
<td>40,038</td>
<td>350</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>63</td>
<td>78</td>
<td>0</td>
<td>271</td>
</tr>
</tbody>
</table>

In situ - Ref SST Statistics

<table>
<thead>
<tr>
<th>Platform</th>
<th>N_Mtchp</th>
<th>MEAN</th>
<th>MED</th>
<th>SD</th>
<th>RSD</th>
<th>MIN</th>
<th>MAX</th>
<th>SKEW</th>
<th>KURT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argo</td>
<td>8,914</td>
<td>0.04</td>
<td>0.04</td>
<td>0.33</td>
<td>0.24</td>
<td>-6.77</td>
<td>2.79</td>
<td>-1.16</td>
<td>25.42</td>
</tr>
<tr>
<td>Drifter</td>
<td>543,534</td>
<td>0.03</td>
<td>0.04</td>
<td>0.33</td>
<td>0.21</td>
<td>-5.22</td>
<td>3.89</td>
<td>-2.27</td>
<td>23.31</td>
</tr>
<tr>
<td>HR-Drifter</td>
<td>96,410</td>
<td>0.04</td>
<td>0.04</td>
<td>0.26</td>
<td>0.18</td>
<td>-3.87</td>
<td>3.80</td>
<td>-0.66</td>
<td>14.28</td>
</tr>
<tr>
<td>T-Mooring</td>
<td>21,566</td>
<td>0.05</td>
<td>0.04</td>
<td>0.22</td>
<td>0.18</td>
<td>-1.35</td>
<td>1.71</td>
<td>0.39</td>
<td>3.02</td>
</tr>
<tr>
<td>C-Mooring</td>
<td>196,685</td>
<td>0.06</td>
<td>0.06</td>
<td>0.24</td>
<td>0.18</td>
<td>-3.27</td>
<td>2.72</td>
<td>-0.11</td>
<td>7.03</td>
</tr>
<tr>
<td>Ship</td>
<td>79,187</td>
<td>0.21</td>
<td>0.17</td>
<td>0.85</td>
<td>0.87</td>
<td>-4.78</td>
<td>6.20</td>
<td>0.07</td>
<td>1.25</td>
</tr>
<tr>
<td>IMOS</td>
<td>40,838</td>
<td>0.10</td>
<td>0.10</td>
<td>0.29</td>
<td>0.21</td>
<td>-2.70</td>
<td>1.54</td>
<td>-0.43</td>
<td>2.85</td>
</tr>
</tbody>
</table>

Histograms (Normalized at NOBS)

- **Platform**: Argo, Drifter, HR-Drifter, T-Mooring, C-Mooring, Ship, IMOS
- **Frequency %**: 0 to 30
- **SST Anomaly (K)**: -3 to 3

For more information, see [About](#)
Monitor Interface (4)

Table

<table>
<thead>
<tr>
<th>ID</th>
<th>NOBS</th>
<th>N_QC</th>
<th>Err%</th>
<th>N_Mp</th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>AL</th>
<th>DR</th>
<th>GL</th>
<th>TS</th>
<th>SG</th>
<th>RS</th>
<th>XP</th>
<th>PH</th>
<th>XQ</th>
<th>Lat</th>
<th>Lon</th>
</tr>
</thead>
<tbody>
<tr>
<td>2AJU5</td>
<td>7</td>
<td>4</td>
<td>42.9</td>
<td>4</td>
<td>-0.20</td>
<td>0.63</td>
<td>-0.69</td>
<td>0.73</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>-18.6</td>
<td>153.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2AKJ2</td>
<td>120</td>
<td>117</td>
<td>2.5</td>
<td>115</td>
<td>0.59</td>
<td>0.61</td>
<td>-2.14</td>
<td>1.76</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>-12.9</td>
<td>-22.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2AKJ3</td>
<td>17</td>
<td>17</td>
<td>0.0</td>
<td>15</td>
<td>0.50</td>
<td>0.31</td>
<td>-0.17</td>
<td>0.81</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4.4</td>
<td>80.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2AKJ4</td>
<td>6</td>
<td>6</td>
<td>0.0</td>
<td>6</td>
<td>0.67</td>
<td>0.43</td>
<td>0.35</td>
<td>1.46</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3.2</td>
<td>122.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2ARJ4</td>
<td>13</td>
<td>13</td>
<td>0.0</td>
<td>13</td>
<td>0.38</td>
<td>0.46</td>
<td>-0.10</td>
<td>1.13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>57.1</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2BDK5</td>
<td>7</td>
<td>7</td>
<td>35.7</td>
<td>1</td>
<td>1.58</td>
<td>1.68</td>
<td>1.58</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>52.9</td>
<td>-166.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2BUH7</td>
<td>2</td>
<td>2</td>
<td>0.0</td>
<td>2</td>
<td>-0.0</td>
<td>0.01</td>
<td>0.01</td>
<td>-1.12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50.8</td>
<td>-133.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2CMB2</td>
<td>64</td>
<td>68</td>
<td>19.1</td>
<td>51</td>
<td>0.60</td>
<td>0.60</td>
<td>-2.10</td>
<td>1.51</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>13</td>
<td>13</td>
<td>0</td>
<td>29.1</td>
<td>-93.7</td>
<td></td>
</tr>
<tr>
<td>2DQ2</td>
<td>6</td>
<td>4</td>
<td>33.3</td>
<td>4</td>
<td>-0.04</td>
<td>0.08</td>
<td>-0.59</td>
<td>0.92</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>49.2</td>
<td>178.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2FGZ5</td>
<td>56</td>
<td>46</td>
<td>17.9</td>
<td>45</td>
<td>0.41</td>
<td>0.66</td>
<td>-1.05</td>
<td>1.95</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>26.8</td>
<td>-17.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- NOBS: Number of obs;
- N_QC: Number of passed QC;
- Err%: Rate of obs denied by QC;
- N_Mp: Number of passed QC matchups;
- Mean, SD, Max, Min: Statistics calculated over (in situ - Reference) SST.
- Ref SST Used in QC: [Reyn], [CMA], [Both]
- Ref SST Used in Monitoring: [Reyn], [CMA]

Tips:
- Click column header to sort.
- Click ID to show individual ID monitor window.

Track Map

[Map of track and SST anomaly for the month]
FTP Interface

Data are in self-documented NetCDF format. Refer to attributes for more information.

Suggested usage of quality_level:
- high-accuracy applications: `quality_level = 5`
- general applications: `quality_level = 4`
- advanced users: refer to definitions of `iQuam_flags` and `original_flags`.

All statistics in `iQuam` page are for "high accuracy" data only, i.e. `quality_level = 5`.

Quality level and flags are only set for SST. Other measurements in `iQuam` have not been QCed.

Data are organized in monthly files. Latest file is refreshed every 12hrs with a 2hr latency.

<table>
<thead>
<tr>
<th>File Name</th>
<th>Update Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>201703-STaR-Li2_i GHRSS-T-St-iQuam-V2.00-v01.0-fv00.0.nc</td>
<td>2017-03-28 10:16</td>
</tr>
<tr>
<td>201702-STaR-Li2_i GHRSS-T-St-iQuam-V2.00-v01.0-fv01.0.nc</td>
<td>2017-03-01 10:30</td>
</tr>
<tr>
<td>201701-STaR-Li2_i GHRSS-T-St-iQuam-V2.00-v01.0-fv01.0.nc</td>
<td>2017-02-02 12:32</td>
</tr>
<tr>
<td>201612-STaR-Li2_i GHRSS-T-St-iQuam-V2.00-v01.0-fv01.0.nc</td>
<td>2017-01-06 15:25</td>
</tr>
<tr>
<td>201611-STaR-Li2_i GHRSS-T-St-iQuam-V2.00-v01.0-fv01.0.nc</td>
<td>2016-12-02 01:13</td>
</tr>
<tr>
<td>201610-STaR-Li2_i GHRSS-T-St-iQuam-V2.00-v01.0-fv01.0.nc</td>
<td>2016-11-10 16:58</td>
</tr>
<tr>
<td>201609-STaR-Li2_i GHRSS-T-St-iQuam-V2.00-v01.0-fv02.0.nc</td>
<td>2016-10-14 23:21</td>
</tr>
<tr>
<td>201608-STaR-Li2_i GHRSS-T-St-iQuam-V2.00-v01.0-fv02.0.nc</td>
<td>2016-10-15 11:13</td>
</tr>
<tr>
<td>201607-STaR-Li2_i GHRSS-T-St-iQuam-V2.00-v01.0-fv02.0.nc</td>
<td>2016-10-15 23:33</td>
</tr>
<tr>
<td>201606-STaR-Li2_i GHRSS-T-St-iQuam-V2.00-v01.0-fv03.0.nc</td>
<td>2016-10-16 11:32</td>
</tr>
<tr>
<td>201605-STaR-Li2_i GHRSS-T-St-iQuam-V2.00-v01.0-fv02.0.nc</td>
<td>2016-10-16 23:40</td>
</tr>
<tr>
<td>201604-STaR-Li2_i GHRSS-T-St-iQuam-V2.00-v01.0-fv02.0.nc</td>
<td>2016-10-17 11:31</td>
</tr>
<tr>
<td>201603-STaR-Li2_i GHRSS-T-St-iQuam-V2.00-v01.0-fv02.0.nc</td>
<td>2016-10-17 23:24</td>
</tr>
<tr>
<td>201602-STaR-Li2_i GHRSS-T-St-iQuam-V2.00-v01.0-fv02.0.nc</td>
<td>2016-10-18 11:10</td>
</tr>
<tr>
<td>201601-STaR-Li2_i GHRSS-T-St-iQuam-V2.00-v01.0-fv01.0.nc</td>
<td>2016-02-03 17:29</td>
</tr>
<tr>
<td>201512-STaR-Li2_i GHRSS-T-St-iQuam-V2.00-v01.0-fv01.0.nc</td>
<td>2016-01-04 15:17</td>
</tr>
<tr>
<td>201511-STaR-Li2_i GHRSS-T-St-iQuam-V2.00-v01.0-fv01.0.nc</td>
<td>2015-12-01 14:09</td>
</tr>
<tr>
<td>201510-STaR-Li2_i GHRSS-T-St-iQuam-V2.00-v01.0-fv01.0.nc</td>
<td>2015-11-17 16:05</td>
</tr>
<tr>
<td>201509-STaR-Li2_i GHRSS-T-St-iQuam-V2.00-v01.0-fv01.0.nc</td>
<td>2015-11-16 20:22</td>
</tr>
<tr>
<td>201508-STaR-Li2_i GHRSS-T-St-iQuam-V2.00-v01.0-fv01.0.nc</td>
<td>2015-11-16 20:11</td>
</tr>
<tr>
<td>201507-STaR-Li2_i GHRSS-T-St-iQuam-V2.00-v01.0-fv01.0.nc</td>
<td>2015-11-16 20:03</td>
</tr>
<tr>
<td>201506-STaR-Li2_i GHRSS-T-St-iQuam-V2.00-v01.0-fv01.0.nc</td>
<td>2015-11-17 15:56</td>
</tr>
<tr>
<td>201505-STaR-Li2_i GHRSS-T-St-iQuam-V2.00-v01.0-fv01.0.nc</td>
<td>2015-11-17 16:33</td>
</tr>
<tr>
<td>201504-STaR-Li2_i GHRSS-T-St-iQuam-V2.00-v01.0-fv01.0.nc</td>
<td>2015-11-17 16:10</td>
</tr>
<tr>
<td>201503-STaR-Li2_i GHRSS-T-St-iQuam-V2.00-v01.0-fv01.0.nc</td>
<td>2015-11-17 10:35</td>
</tr>
<tr>
<td>201502-STaR-Li2_i GHRSS-T-St-iQuam-V2.00-v01.0-fv01.0.nc</td>
<td>2015-11-16 19:47</td>
</tr>
</tbody>
</table>
File format (opened in hdfview)

Use: `valid_id = where(quality_level == 5)` to choose sst pixels that passed iQuam2 QC
Journal Papers

- Xu, F. and A. Ignatov, 2014: in situ SST quality monitor (iQuam), JTECH. link

Conference Presentations

- Ignatov, A., F. Xu, and X. Zhou, 2014: In situ SST Quality Monitor (iQuam), CLIMAR4 Workshop, Asheville, NC, June 2014. link
- Ignatov, A. and Xu, F., 2013: in situ SST quality monitor: from iQuam1 to iQuam2, 14th GHRSSST meeting, Woods Hole, MA, July 2013. download
Fig. 1: Drifter and Tropical mooring matchup with Satellite SST, sample number (left), mean bias (right upper) and standard deviation (right lower)

Val of AVHRR GAC RAN1 Against Argo Floats

Fig. 2: Argo floats matchup with Satellite SST, sample number (left), mean bias (right upper) and standard deviation (right lower)

See more plots on squam2/polar at: www.star.nesdis.noaa.gov/socd/sst/squam2/polar/avhrrgac/
Standard Deviation of VIIRS SST Against Drifters + Tropical Moorings

See more plots on squam2/polar at: www.star.nesdis.noaa.gov/socd/sst/squam2/polar/viirs/
Comparison with GEO

See more plots on squam2/geo at: www.star.nesdis.noaa.gov/socd/sst/squam2/geo/ahi_abi/
See more plots on squam2/analysis at: www.star.nesdis.noaa.gov/socd/sst/squam2/analysis/l4
See more plots on squam2/analysis at: www.star.nesdis.noaa.gov/socd/sst/squam2/analysis/l4
Conclusion and Future Work

Summary of enhancements in iQuam2
- Longer time series cover full satellite era (Sep 1981 – on)
- Improved QC
- Improved web interface
- Add more in situ data
- Change output data files to NetCDF4

Ongoing work
1. Collect users’ feedback and implement iQuam2. Retire iQuam1
2. Archive w/GHRSST (PO.DAAC/NCEI). Document in literature
3. Transition to iQuam2 in all NOAA Cal/Val applications including SQUAM
4. Work towards iQuam3
 a) Add more in-situ data types from SAMOS Ships, Ocean Profilers et al.
 b) Test 3-way error analysis, to determine errors in individual in situ data and append sses
 c) Include ship radiometers?
This work is supported by JPSS, GOES-R, and NOAA (PSDI/NDE/ORS) Programs.

We thank for help and advice

- P. Dash, Y. Kihai, J. Sapper, X. Liang, B. Petrenko (NOAA/STAR),
- S. Woodruff, E. Freeman, T. Boyer (NOAA/NCEI); S. Worley (NCAR),
- P. Le Borgne, A. Marsouin, S. Perre (Meteo France),
- J.-F. Piolle, D. Poulter (IFREMER/Felyx),
- H. Beggs (ABoM),
- E. Fiedler, J. Roberts-Jones, J. Kennedy, N. Rayner (Met Office),
- E. Kent (Southampton Oceanography Center),
- K. Kilpatrick, E. Williams (U. Miami),
- G. Corlett (U. Leicester),
- M. Chin (JPL).
Thank you!
Questions? Comments?