FORWARD MODEL IMPROVEMENTS: PRESENT AND FUTURE

L. Larrabee Strow, Sergio deSouza-Machado, Steven Buczkowski JPSS STM – August 14, 2017

Joint Center for Earth Systems Technology and UMBC Department of Physics

Outline

- CrIS FSR forward model
- CrIS minor gas trend retrievals
- Single footprint retrievals

FSR Forward Model

Summary of FSR SARTA

- CrIS high-resolution ILS
- HITRAN 2012 (vs 2008 in original CrIS RTA)
- LBLRTM Line Mixing for CO2 and CH4, H2O continuum
- UMBC line-by-line for water
- Code Change: improved reflected thermal for high secant angles
- Tested on 750+ profiles (from ECMWF selected subset), regressed on 49 profiles
- Error covariance estimates available from 750+ profile testing

kCARTA (LBL) partially trained on LBLRTM allows us to compute 25,000 plus monochromatic test profiles!

Parameterization Errors

Some increase in Mean/Std errors with SAF. Can diagonose with so many test cases.

Bias/Std versus ECMWF: 3 days ocean clear

Wavenumber (cm -1)

Secant Angle Dependence

- Fit for slope of each channel versus secant of viewing angle
- Used 10 angles from nadir to max scan angle
- Errors are about ±0.1K except less near 700-720 cm⁻¹

RTA (SARTA) Parameterization Error Correlations

Raw: No Noise

- 705 global profiles
- Computed correlations for LBL (kCARTA) minus fast RTA (SARTA)
- Same kCARTA used to create SARTA parameterizations

Water region errors (no shown) highly correlated.

Future Improvements?

- Testing neural-net (2-3 layer, feed-forward) for parameterization of absorption coefficients
- Done for each optran layer, but hoping can use one net for all layers
- Using SAF 705*7 profile set, can expand to 25,000 profiles
- Really helps finding problem profiles, regression set is pretty good!

Neural net error for 1691.25 cm⁻¹ channel versus total column water

CrIS Minor Gas Trends

OE Minor Gas Retrievals from BT Trends: CO₂

MLO: 2.49 ppm/year (last 5 years) CriS Tropics: 2.56 ppm/year (last 5 years) Difference = 0.0035K/year in possible drift!

OE Minor Gas Retrievals from BT Trends: CH₄:

SST vs ERA (ghrsst): 0.0035K/year in BT units CH₄ vs MLO: ~0.01K/year (MLO: 8.6 ppb/year, CrIS: 8.1 ppb/year)

CrIS All-Sky Trends

Latitude variability high: $\pm 0.2\text{-}0.3\text{K/year}$ BUT within 2σ estimated uncertainties.

This is a short time period. 14-year AIRS trend is ${\sim}0.015K \pm 0.01K.$

Single Footprint Retrievals with SARTA

Scattering SARTA

- Designed to mimic what *can be retrieved*.
- Very simple scattering, 2X slower than clear SARTA
- Two scattering layers, some mix of ice cloud, water cloud, aerosol (dust, volcanic ash)
- Two major liens vs PCRTM tests with ECMWF (Xu Liu)
 - 2 layers, no statistical cloud overlap computations
 - Less accurate scattering, likely only an issue with solar in SW

Single Footprint Retrievals

- Cloud initialization by using NWP model (ERA) clouds (find close-by grid point similar to observations)
- Could be initialized with climatology
- Fixed cloud heights, fit for cloud amount and particle size
- Tested first with smooth a-priroi climatology
- Then, move to ERA a-apriori
- Mostly used for trend retrievals. Hope to use for radiosonde intercomparisons
- Lots of testing, mostly analyzing special cases.

OE framework very good at accuracy estimates, let's you naturally Q/A cloud problems (thick clouds)

ECMWF 91 to SARTA 2 layer cloud conversion

Comparison to PCRTM (with Statistical Cloud Overlap)

Global Simulation from ERA

Retrieval Sample: RH for Atmospheric River

Cirrus Cloud Optical Depth Comparisons with AIRS

Cloud Top Height Comparisons with MODIS

