

Recent Improvement of NUCAPS CH₄ from CrIS FSR Data

Xiaozhen (Shawn) Xiong^{1,2}, Lihang Zhou² Antonia Gambacorta^{1,3}, Nick Nalli^{1,4}, Changyi Tan^{1,4} Flavio Iturbide-Sanchez^{1,4}, Kexing Zhang^{1,4}

¹CICS-MD ²NOAA/NESDIS/STAR ³ STC Inc ⁴ IMSG

4th NOAA JPSS Meeting, College Park, MD, 2017

1

Outline

Recent Improvements in CH₄ Retrievals from CrIS FSR Data

- Sensitivity (mid-upper troposphere) and Requirement of CH₄ products (based on total amount) --- need a good
 CH₄ firstguess in the lower troposphere;
- Optimization: First guess, Channel Selection, and tuning;
- > Quality control (CH_4QC) to be added soon;

Validation: Comparison of CrIS CH₄ profiles with model, AIRS and TCCON data;

- Examples:
 - Monitoring the leakage of CH₄ from California Aliso Canyon Oil Field and Gas Storage Facility;
 - Monitoring the CO plume from 2016 Fort McMurray wildfire; Monitoring the CO plume from Indonesia Fires (9/20-11/8, 2015);
- Summary and Future works

Requirements of Trace Gases Products from CrIS

Ozone Total Column Ozone (DU)	EDR Attribute	СО	CO ₂	CH ₄
	Vertical Coverage	Total Column	Total Column	Total Column
2005.09.29	Horizontal Resolution	100 km	100 km	100 km
Methane	Mapping Uncertainty, 3 sigma	25 km	25 km	25 km
CH4, ppbv 1687 1723 1760 1797 1833	Measurement Range	0 – 200 ppbv	300 – 500 ppmv	1100 – 2250 ppbv
	Measurement Precision	15%	0.5% (2 ppmv)	1% (~20 ppbv)
	Measurement Accuracy	±5%	±1% (4 ppmv)	±4% (~80 ppbv)
3	Refresh	24 h	24 h	24 h
-				

Note

Sensitivity of CrIS to CH₄

•Major sensitivities are in the mid-upper troposphere – not near the surface where the variation is impacted by emissions;

•Sensitivities in the polar are lower than tropics and mid-latitude

CH₄ Total Amount Error

assuming 5% error of CH4 profile in lower troposphere (below 800 hPa)

Assuming 5% error of CH4 profile in lower troposphere(below 800 hPa), the error in total amount is about 1.2%.

- to meet the requirement of total amount in 1%(accuracy) is hard;
- It requires a very good a priori

CH₄ First-guess Update

--- Old fg is the one used in AIRS-V7 and NOAA IASI system

Continued Optimization: Channel Selection (1)

Current one – delivered in July

Updated one – to be delivered in Oct/Nov

Continued Optimization(2): Re-tuning to CH₄ bands

- \succ CH₄ is very sensitive to upstream temperature and water vapor products;
- Cloud-clearing is a good thing to the yield of retrievals but could be poisonous to trace gases products;

- 1) Using SARTA to simulate the global radiance with inputs
 - T,Q profiles from NUCAPS retrievals;
 - CH_4 , N_2O and CO_2 from model simulations;
- 2) read CCR and applied QC (MW+IR) = 0;
- 3) Computed the difference of $[R_{simu} R_{CCR}]_{;}$
- Modified the tuning file in CH₄ bands ONLY (from 1200-1360 cm⁻¹) → no impact to T & q products;

One day data (45°S-45°N) on 2/17/2015 is used;

Comparison of CH₄ from AIRS, IASI and CrIS (20160508, @515hPa) – NO QC to CrIS CH₄ products

O ATMOS

IASI-A

1950.0

1750.0 1783.3 1816.7 1850.0 1883.3 1916.7 1950.0

Examples of Quality Control (CH₄QC)

- For two granules
- Left panels: red lines are from current version and black lines are from updated retrievals;
- Right panels: Profiles from new version and after using CH₄QC

1800.0

1825.0

1850.0

Example of CH₄ map with the CH₄QC

1875.0

1900.0

1925.0

1

With CH₄QC

CH4 515.720 20151023

1800.0	1825.0	1850.0	1875.0	1900.0	1925.0	1950.0

Yields after using CH₄QC

	Descending	Yield (%)	Percentage relative to NO CH ₄ QC (%)
50.8% -	QC=0	37.4	45.0
	QC=1	13.4	16.0
	QC=2	49.2	

	Ascending	Yield (%)	Percentage relative to NO CH ₄ QC (%)
54.7% -	QC=0	43.6	52.0
	QC=1	11.1	13.2
	QC=2	45.2	

Some Results

Validation: comparison with model, AIRS and TCCON data;

Examples:

> Monitoring the leakage of CH_4 from California Aliso

Canyon Oil Field and Gas Storage Facility;

- Monitoring the CO plume from 2016 **Fort McMurray wildfire**;
- ➢ Monitoring the CO plume from Indonesia Fires (9/20-11/8, 2015);

Comparison with model CH₄ – improvement is obvious but accuracy is large than 1%

NOAA

Comparison of CrIS and AIRS CH₄

Comparison of CrIS xCO/xCO₂/xCH₄ with TCCON Measurements

MENT

Data of 10 days is used;

This is a simple comparison by averaging TCCON data within 1 hours of satellite overpass and satellite data within 200 km over the ground site;

Better agreement can be achieved if using of averaging kernels

Example : Largest leakage in U.S. history Aliso Canyon Gas Leakage (10/23/2015- 2/18/2016)

Surface Measurements

Can CrIS Capture the Leakage of CH₄?

ND ATMOSA

Can CrIS Capture the Leakage of CH₄ – cont'd ?

CH4 515.720 20151022

CH4 515.720 20151023

			ppb			
1750.0	1783.3	1816.7	1850.0	1883.3	1916.7	1950.0

CH4 515.720 20151024

CH4 515.720 20151023

ppb						
1800.0	1825.0	1850.0	1875.0	1900.0	1925.0	1950.0

Huff and Kondragunta, EOS, V98, 6, 2017

Example of CO: 2016 Fort McMurray Wildfire

MODIS/Aqua captured smoke from the Ft. McMurray wildfire and other Canadian wildfires billowing across the Atlantic Ocean.

CO 515.720 20160508 am

Wildfire Smoke map, 4:30 p.m. May 8, 2016, from Weatherunderground,

Example of CO (2): Fires in Indonesia (9/20-11/8,2015)

Ð

Brownish-gray smoke obscured the island of Borneo from MODIS in October 19, 2015. Image from <u>NASA</u> Earth Observatory.

Summary

- The major sensitivity of CrIS is in the mid-upper troposphere but it is very small in the lower troposphere, so CrIS cannot capture the surface emission.
 5% error of the firstguess in the lower troposphere will lead to 1.2% error in the total amount making it hard to meet the requirement in 1% accuracy.
- 2. Cloud-clearing is a great part from NUCAPS but we have to be very careful to set QC for all trace gases;
- 3. Recent improvements (firstguess, channel selection, tuning and CH_4QC) are promising, but more works need to be done, particularly we need more profile validation using aircraft measurements.
- 4. The examples show some promising results to use CrIS to observe the CO plume from wildfires, and the possibility to capture the CH_4 leakage from Aliso Canyon Oil Field and Gas Storage Facility in California.

Future Works

Trace gases maturity review will be made in Nov/Dec., and this is the deadline for us to finalize the update to trace gases algorithms; Another delivery will be delivered by that time frame;

In addition to the operational system, I will use an offline system with more update to trace gases retrievals to reprocess SNPP CrIS FSR data since Dec.4, 2014 to present. Any update with new sciences can be considered, and these work will help our future update to NUCAPS operational system.

Increase of spectral resolution by 4X in SLW greatly benefits CO retrieval; Not used for CO2 (so far) Increase of spectral resolution by 2X in MLW benefits CH4 retrieval;

CrIS (old) vs AIRS CH₄

Soumi National Polar-orbit partnership (S-NPP) Joint Polar Satellite System (JPSS)

CrIS started to operate in the full spectral resolution (FSR) mode since Dec.4, 2014, with spectral resolution of 0.625 cm⁻¹ for all three bands, thus has 2211 channels as compared to 1305 channels in normal mode;