

Daniel Tong, <u>Youhua Tang</u>, Barry Baker, Li Pan, and Pius Lee NOAA Air Resources Laboratory

Jianping Huang and Jeff McQueen NOAA NWS/NCEP/EMC

Kai Yang
Dept. of Atmospheric and Oceanic Science,
University of Maryland, College Park

Kilauea Volcano over the Hawaii Island

(Source: Hawaiian Volcano Observatory: http://hvo.wr.usgs.gov)

Methodology for Modeling Volcanic Emissions

- SO₂ measurement Correlation Spectrometer (COSPEC);
- Simple plume rise:
 Distributed from ground to 100 m above;

Plume Rise of Volcanic Emissions

Make it simple since we know so little about it...

- Multiple and moving emitting points;
- Emitting point below surface;
- Dynamic magma movement;
- ❖ Difficult to implement plume rise algorithms, such as Briggs (1972).

Kilauea SO₂ Emissions

(Source: Hawaiian Volcano Observatory: http://hvo.wr.usgs.gov)

Model Configurations

- Volcano SO2 emissions:
 - Summit Emissions: 650 800 tons/day;
 - East Rift Zone: ~400 tons/day;
- Model (National Air Quality Forecast Capability (NAQFC))
 - CMAQ 5.0.2 CB05-AQ-AERO6 gas, aqueous and aerosol chemistry
- NAQFC's Hawaii Domain
 - 80 x 52 grid cells (All islands and surrounding water)
- Horizontal resolution: 12x12 km²
- Vertical level: 35 layers
- Meteorological inputs
 - NAM(NMM-B) 12 km
- Lateral boundary conditions
 - GEOS-Chem precursors with Hilo monthly mean ozonesonde

OMPS SO₂ Total Column (DU)

Model SO₂ Total Column (DU)

OMPS SO₂ Total Column (DU)

Model SO₂ Total Column (DU)

OMPS SO₂ Total Column (DU)

Model SO₂ Total Column (DU)

Effects on Air Quality

Summary

- ❖ With the proper volcano SO₂ emission, we have capability to predict the Hawaii SO₂ plume, which is comparable to the surface measurements.
- **❖** OMPS SO₂ retrievals are comparable to the model results. After suitable Cal/Val, it can be used to verify/assimilate Hawaii volcano SO₂ concentration or emission.
- There are still uncertainties in the volcano emissions, such as plume heat fluxes etc, which can be adjusted with the proper satellite retrieval, such as FRP.

Future Works

- 1. Apply the similar OMPS SO₂ product to verify/assimilate the power-plant SO₂ emissions, which is the major SO₂ source over CONUS.
- 2. As SO₂ is the precursor of sulfate, we should be able see PM2.5 and AOT enhancement in the downstream areas, which can be verified with the VIIRS AOT product.