

DEVELOPMENT OF MULTI-SENSOR JPSS SO₂ PRODUCTS FOR VOLCANIC CLOUD MONITORING

Michael J. Pavolonis NOAA/NESDIS/STAR

Motivation

not depicted)

VOLcanic Cloud Analysis Toolkit (VOLCAT)

4). Volcanic Cloud Characterization

2017 JPSS Annual Meeting

5). Dispersion Forecasting

Example NRT Volcanic Ash Alerts from VOLCAT

Volcanic Cloud Alert Report

Date:	2017-08-15	
Time:	18:30:00	
Production Date and Time:	2017-08-15 20:18:05 UTC	
Primary Instrument:	NPP VIIRS	
More details V		

False Color Imagery (12–11µm, 11–8.5µm, 11µm) SNPP VIIRS (08/15/2017 – 18:30:00 UTC) SNPP VIIRS (08/15/2017 –

False Color Image (12-11, 11-8.5, 11) [zoomed-in]

Possible Volcanic Ash Cloud

Basic Information Volcanic Region(s) South America **Country/Countries** Ecuador Volcanic Subregion(s) Ecuador VAAC Region(s) of Nearby Volcanoes Washington **Identification Method** Plume Mean Object Date/Time 2017-08-15 18:34:06UTC Radiative Center (Lat, Lon): -2.010°, -78.340° Sangay (0.00 km) Licto (39.30 km) Nearby Volcanoes (meeting alert criteria): Tungurahua (60.90 km) Chimborazo (80.10 km) Quilotoa (142.80 km) Maximum Height [AMSL] 7.20 km; 23622 ft 90th Percentile Height [AMSL] 6.60 km ; 21654 ft Mean Tropopause Height [AMSL] 16.50 km ; 54134 ft Show More View all event imagery »

Sangay (not detected with ABI)

A). False Color Imagery (12–11μm, 11–8.5μm, 11μm) Terra MODIS (02/20/2001 – 08:45 UTC)

Weak Ash Signature

Strong Ash Signature

Weak Ash Signature

Pavolonis et al. (2015a); Pavolonis et al. (2015b)

Spatial Analysis: Cloud Objects Volcanic clouds, spectral metrics are used to

estimate ash probability

D IR Window Imagery and Ash Probability Terra MODIS (02/20/2001 – 08:45 UTC)

180 200 220 240 260 280 300 320 0.001 0.1 1 10 20 40 60 80 1 11 μm BT [K] Ash/Dust Probability [%]

2017 JPSS Annual Meeting

JPSS – Infrared Capabilities

BTD SO₂ = BT(1407.50 cm⁻¹) – BT(1371.25 cm⁻¹)

2017 JPSS Annual Meeting

VIIRS SO₂ Probability: Naïve Bayesian Classifier

A priori **Probability:** CrIS SO₂ BTD mapped to VIIRS swath and smoothed

Class Conditional Probabilities: Multivariate predictors trained using manual analysis of many volcanic events

The VIIRS predictors capture the influence of SO₂ absorption on 8.5 μ m and the lack there of at 11 and 12 μ m.

False Color Imagery (12–11µm, 11–8.5µm, 11µm) NPP VIIRS (09/03/2014 – 13:48:00 UTC)

Weak SO,

Signature

VIIRS SO₂ objects that contain spectrally robust VIIRS and/or CrIS SO₂ spectral signatures are selected

(09/03/2014 - 13:48:00 UTC)

VIIRS contributions are minimal in the northern parts of the SO₂ cloud

Strong SO

Signature

<figure><figure><page-footer>

IR Window Imagery and SO₂ Probability

Bogoslof (Alaska)

For well dispersed SO₂, OMPS and CrIS will have the greatest influence on results, but displaying SO₂ information on VIIRS images stills add value for users.

False Color Imagery (12–11μm, 11–8.5μm, 11μm) SNPP VIIRS (07/21/2017 – 08:36:00 UTC)

Iztaccihu

Popocatepeti

Jocohillan

Chichinautzin

Low level SO₂ plume

Malinche, La

Annotation Key (annotation colors are not related to colors in underlying image) Ash/Dust Cloud Volcanic Cb Thermal Anomaly

False Color Imagery (12–11μm, 11–3.9μm, 11μm) SNPP VIIRS (07/21/2017 – 08:36:00 UTC)

Pana

Iztaccinuat

Popocatepeti

Chichinautzin

Jocolitlan

Toluca, Nevado de

Feature is not present in imagery that does not include SO₂ absorption channels

Malinche, La

Annotation Key (annotation colors are not related to colors in underlying image) Ash/Dust Cloud Volcanic Cb Thermal Anoma

Spatial – Geometric Properties

Most everyday volcanic ash emissions have a weak multi-spectral signature. They are identifiable in imagery due to the combination of spectral signature and plume like shape.

Automated Volcanic Cloud Time Series

Collaboration

Matt Pritchard (Cornell) - PI Mike Poland (USGS) - PI **Ben Andrews (Smithsonian)** Juliet Briggs (U. Bristol) Simon Carn (Mich. Tech) Julie Griswold (USGS) **Brenda Jones (USGS)** Sue Louglin (British Geological Survey) Taryn Lopez (UAF) Paul Lindgren (JPL) Franz Meyer (UAF) Mike Pavolonis (NOAA) Ivan Petiteville (ESA) **Kevin Reath (Cornell) Dave Schneider (USGS)** Greg Vaughan (USGS) **Christell Wauthier (Penn St.) Rick Wessels (USGS)** Rob Wright (U. Hawaii)

USGS Powell Center

Ongoing Work

So Far: Primary focus on accurately quantifying the horizontal bounds of volcanic SO₂ clouds Continuing Work: Incorporation of OMPS, merged SO₂ loading estimates, merged SO₂ alerts and time series (including GOES-R) User interactions: Close relationship with NOAA VAAC's, USGS, and many international partners

Other Collaborations: NOAA ARL (HYSPLIT) group

References

Pavolonis, M. J., W. F. Feltz, A. K. Heidinger, and G. M. Gallina, 2006: A daytime complement to the reverse absorption technique for improved automated detection of volcanic ash. J.Atmos.Ocean.Technol., **23**, 1422-1444.

Pavolonis, M. J., 2010: Advances in Extracting Cloud Composition Information from Spaceborne Infrared Radiances-A Robust Alternative to Brightness Temperatures. Part I: Theory. Journal of Applied Meteorology and Climatology, **49**, 1992-2012, doi:10.1175/2010JAMC2433.1 ER.

Pavolonis, M., A. Heidinger, and J. Sieglaff, 2013: Automated retrievals of volcanic ash and dust cloud properties from upwelling infrared measurements, J. Geophysical Research, **118(3)**, 1436-1458.

Pavolonis, M., J. Sieglaff, and J. Cintineo (2015a), Spectrally Enhanced Cloud Objects (SECO): A Generalized Framework for Automated Detection of Volcanic Ash and Dust Clouds using Passive Satellite Measurements, Part I: Multispectral Analysis, Journal Geophysical Research, **120**, 7813-7841.

Pavolonis, M., J. Sieglaff, and J. Cintineo (2015b) Spectrally Enhanced Cloud Objects (SECO): A Generalized Framework for Automated Detection of Volcanic Ash and Dust Clouds using Passive Satellite Measurements, Part II: Cloud Object Analysis and Global Application, Journal Geophysical Research, **120**, 7842-7870.