BLENDED VIIRS+MICROWAVE ICE CONCENTRATION

Yinghui Liu1, Jeff Key2, and Richard Dworak1

1Cooperative Institute for Meteorological Satellite Studies
2NOAA/NESDIS Madison, WI
Motivation: all-sky high resolution

AMSR-2 ice concentration 06-24-2015

Passive microwave ice concentration:
Con: low spatial resolution
Pro: all-weather

S-NPP VIIRS ice concentration 06-24-2015

Passive infrared/visible ice concentration:
Con: clear-sky only
Pro: high spatial resolution
Algorithm Overview: approach

The Best Linear Unbiased Estimator (BLUE) is then applied to derive the final ice concentration under clear sky conditions:

\[
ICE_CONC = \left(\frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2} \right) \times (ICE_CONC_1 - D_1) + \left(\frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} \right) \times (ICE_CONC_2 - D_2)
\]

where \(ICE_CONC\), \(ICE_CONC_1\), and \(ICE_CONC_2\), are optimized ice concentration, and ice concentrations from the two products; \(D_1\) and \(D_2\) are measurement accuracy; \(\sigma_1\) and \(\sigma_2\) are the measurement precision.
Algorithm Overview: parameters

Comparison of VIIRS and Landsat ice concentrations for different concentration ranges/bins. Also shown are the differences overall (upper left) and the bias and root-mean-square (RMS) difference as a function of VIIRS ice concentration (bottom row).

Same comparisons are made for AMSR2 ice concentration.
Algorithm Overview: case study

Blended sea ice concentration from Microwave and infrared/visible

Passive microwave ice concentration:
- Con: low spatial resolution
- Pro: all-weather

Passive infrared/visible ice concentration:
- Con: clear-sky only
- Pro: high spatial resolution

Blended sea ice concentration at 1 km resolution on June 24, 2015 using AMSR-2 and the Suomi NPP VIIRS ice concentration products

Blended ice concentration: high spatial resolution under all-weather conditions
Performance

On May 11, 2017 over Baffin Bay VIIRS, AMSR2 and Blended SIC on top. Landsat-8 OLI/TIRS and SAR Sentinel-1B imagery on bottom.
On May 27, 2017 near Alaskan Beaufort Sea Coast VIIRS, AMSR2 and Blended SIC on top. Landsat-8 OLI/TIRS and SAR Sentinel-1A imagery on bottom.
Current Status

- Blended ice concentration is being generated daily for National Ice Center
- Data is in GeoTIFF format, over both Arctic and Antarctic

Daily Ice concentration composite from VIIRS (left); and AMSR2 (right) over the Arctic on March 5th 2017.
Current Status

- Blended ice concentration is being generated daily for National Ice Center
- Data is in GeoTIFF format, over both Arctic and Antarctic

Blended Daily Ice concentration (IC) over the Arctic on March 5th 2017.
User Interaction

- Blended ice concentration is currently archived for National Ice Center for evaluation
Summary and Path Forward

• Blended ice concentration from VIIRS and passive microwave provides high spatial resolution ice concentration under all-weather conditions;

• This product can benefit operational applications, and long-term scientific studies;

• Further improvement and evaluation is needed with new ice concentration products from sensors with very high spatial resolution, e.g. SAR.

Acknowledgement:
Mark Buehner, Alex Komarov, and Alain Caya (ECCC)
Sean Helfrich (STAR)
BLENDED

AMSR2+VIIRS

SEA ICE MOTION

Aaron Letterly, CIMSS, University of Wisconsin-Madison
letterly@wisc.edu

Collaborators: Jeff Key, Yinghui Liu
Algorithm Overview

• Automated sea ice motion uses a pair of satellite images to determine the displacement of ice features under clear sky conditions.

• The algorithm outputs motion as a velocity in the u- or v-direction. Velocity is based on the number of grid cells “travelled” between the image pair.

• Grid cell size is based on the spatial resolution of the imagery

• Blended sea ice motion combines information from multiple sensors at different resolutions
Algorithm: Blending AMSR2+ VIIRS

- Objective: Combine the all-weather capabilities of AMSR2 89GHz channel with the precision of VIIRS M-bands

- Difficulties: Spatial resolution of AMSR2 ~9x more coarse (6.25km) than VIIRS (0.75km)

- Solution: Regrid both images to a shared resolution (~1km) so that motion output can be combined
Algorithm: Blending AMSR2+VIIRS

- Input from both sensors is regrid from swaths onto a polar stereographic grid
- MODIS Swath to Grid Transfer (MS2GT) does the hard work
- Once the inputs are at the same resolution, ice motion is calculated, then combined
- Simple combination technique (arithmetic mean)
Algorithm: Blending AMSR2+ VIIRS

Once both grids have been remapped to a common grid, features and motion can be compared and combined.

Adding in a third input (SAR) could provide more information, greater challenges.
Performance: Blending AMSR2+ VIIRS

Motion from all-weather AMSR2 output (left) and high-resolution VIIRS M15 output (right)
Performance: Blending AMSR2+ VIIRS

Blended product provides high spatial resolution under all-weather conditions, spatially coherent vectors
Summary and Path Forward

• Blended ice motion from VIIRS and AMSR2 provides high spatial resolution ice motion under all-weather conditions

• Demonstrate capabilities of multi-channel VIIRS ice motion (Day-Night Band) and include data from SAR (at 250m resolution!)

• Product benefits operational applications, and more sensor input can provide a more consistent record of ice motion

• Procedure for combining vectors is too simplistic. Known error and sensitivity of ice motion from each sensor input should computed and considered for future applications