Blending Approaches for SMOPS

Presented by Xiwu Zhan (STAR) & Limin Zhao (OSPO)
Jicheng Liu, Jifu Yin, Li Fang, Mitch Schull (UMD-CICS)
Date: 2018/08/28
SMOPS Project Team

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Major Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xiwu Zhan</td>
<td>NESDIS-STAR</td>
<td>Government Development Lead</td>
</tr>
<tr>
<td>Limin Zhao</td>
<td>NESDIS-OSPO</td>
<td>Government Operation Lead</td>
</tr>
<tr>
<td>Jicheng Liu</td>
<td>UMD-CICS</td>
<td>Algorithm and Software Lead</td>
</tr>
<tr>
<td>Jifu Yin</td>
<td>UMD-CICS</td>
<td>Cal/Val and Application</td>
</tr>
<tr>
<td>Li Fang</td>
<td>UMD-CICS</td>
<td>Cal/Val and Application</td>
</tr>
<tr>
<td>Stephen Quinn</td>
<td>NESDIS-OSPO</td>
<td>SMOPS Operational Implementation</td>
</tr>
<tr>
<td>Nicholas ESposito</td>
<td>NESDIS-OSPO</td>
<td>SMOPS Operational Implementation</td>
</tr>
<tr>
<td>Tom Schott</td>
<td>NESDIS-OSGS</td>
<td>PSDI Program Manager (retired)</td>
</tr>
<tr>
<td>Ralph Ferraro</td>
<td>NESDIS-STAR</td>
<td>JPSS/GCOM Project Deputy Manager</td>
</tr>
<tr>
<td>Paul Chang</td>
<td>NESDIS-STAR</td>
<td>JPSS/GCOM Project Manager</td>
</tr>
<tr>
<td>Lihang Zhou</td>
<td>NESDIS-STAR</td>
<td>STAR-JPSS Program Manager</td>
</tr>
</tbody>
</table>
Outline

• Why SMOPS & Why Blending
• SMOPS Architecture and Blending Algorithms
 – CDF Matching to count satellite retrieval differences
 – Simple averaging for blending
 – TCEM-based weighting for blending
• Evaluation of the different blending method
• Summary and Path Forward
Why SMOPS & Blending

Evolution of Soil Moisture Mapping Sensors

1970s
- Limited global mapping (150 km)

1980s
- Ground and aircraft development and verification of theory (1 m)
- Exploration of spatial and temporal concepts (100 m)

1990s
- Limited global mapping, demonstrate feasibility (50 km)
- Large scale mapping and integrated hydrologic research (1 km)

2000
- Improved global mapping (50 km)

2010
- Limited global mapping, operational capability (50 km)
- Improved global mapping (10 km)
- Broad science, high spatial resolution, higher sensitivity (10 km)

Field Experiments

SMOS/Aquarius

AMSR/WindSat

ESTAR

PBMR

SMMR/SSM/I

SMAP

AMS2
Why SMOPS & Blending

NOAA SMOPS WindSat Soil Moisture: daily - 20120501

NOAA SMOPS SMOS Soil Moisture: daily - 20120501

NOAA SMOPS ASCAT Soil Moisture: daily - 20120501

NOAA SMOPS Blended Soil Moisture: daily - 20120501

Blended
CDF Matching

![CDF Matching graph](image-url)
Simple Average Blending

- Increased spatial coverage
- Multi retrieval variance could be used as error estimate
Weighted Average Blending

Triple Collocation Error Model (TCEM)

Individual SM:

\[\psi_A = \Pi + \mu \]
\[\psi_P = \Pi + \omega \]
\[\psi_G = \Pi + \rho \]

Assuming their error are not correlated:

\[\mu \rho = 0, \mu \omega = 0, \omega \rho = 0 \]

Then we get their relative RMSE as:

\[\xi_A = (\psi_A - \psi_P)(\psi_A - \psi_G) = \mu^2 \]
\[\xi_P = (\psi_P - \psi_A)(\psi_P - \psi_G) = \omega^2 \]
\[\xi_G = (\psi_G - \psi_A)(\psi_G - \psi_P) = \rho^2 \]
Weighted Average Blending

Triple Collocation Error Model for Blending

Flow chart describing the TCEM weights-based SMOPS blended SM product.
Blending Method Comparison

GLDAS precip-based (left) and MODIS EVI-based (right) correlations over 1 April 2015-30 June 2018 period. EVI data lags SM data by 8 days.
Blending Method Comparison

Site (35.060°N, -86.590°E) ST: Cropland/Natural Vegetation Mosaics
Blending Method Comparison

Site (34.250°N, -92.030°E) ST: Mixed Forests

r=0.702 RMSE=0.087 m³/m³ ubRMSE=0.081 m³/m³

r=0.411 RMSE=0.089 m³/m³ ubRMSE=0.088 m³/m³
Blending Method Comparison

Site (33.090°N, -90.510°E) ST: Croplands

- SCAN
- TCW

r=0.719 RMSE=0.086m³/m³ ubRMSE=0.058m³/m³

r=0.433 RMSE=0.091m³/m³ ubRMSE=0.081m³/m³
Blending Method Comparison

Site (40.390° N, -109.350° E) ST: Grasslands

- **SCAN**: $r=0.657$, RMSE=0.059 m3/m3, ubRMSE=0.046 m3/m3
- **TCW**:

- **SCAN**: $r=0.460$, RMSE=0.058 m3/m3, ubRMSE=0.056 m3/m3
- **AVEW**:

STAR-JPSS Annual Science Team Meeting, August 28, 2018
Blending Method Comparison

With Respect to the SCAN SM measurements for 10 cm soil layer, differences in (a) correlations (r), (b) RMSE, and (c) $ubRMSE$ between AVEW and the scaled TCW SMOPS blended SM data over 1 April 2015-June 30 2017 period. Site in blue color denotes improvement.
Blending Method Comparison

CONUS domain-averaged (a) correlations, (b) RMSE and (c) ubRMSE for each of the 6 individual satellite SM retrievals with respect to the 5 cm SCAN SM measurements and both SMOPS blended SM datasets against to the SCAN SM measurements over 1 April 2015-June 30 2017 period.
Soil Moisture Daily Maps

To display maps, please select a data type, region, year, month, and date, and then click 'Refresh'.

Use the '<' and '>' buttons to step ahead or backward through the images. Soil moisture is expressed in Volumetric Soil Moisture Content [m^3 water/m^3 soil] (see Documents for details).

Data Type: NOAA-AMSR-E, Region: Global, Year: 2004, Month: 7, Day: 1

Data Types:
- **NOAA-AMSR-E**: NOAA Soil Moisture from AMSR-E: Land surface soil moisture retrieved from AMSR-E X-band brightness temperature (TB10H) observations using the Single-Channel-Retrieval (SCR) algorithm.
- **NOAA-WindSat**: NOAA Soil Moisture from WindSat: Land surface soil moisture retrieved from Naval Research Lab's (NRL) WindSat X-band brightness temperature (TB10H) observations using the Single-Channel-Retrieval (SCR) algorithm.
- **NOAA-TMI**: NOAA Soil Moisture from TMI: Land surface soil moisture retrieved from the X-band brightness temperature.
Many satellite soil moisture data products have been available while NWS users requested a combined data layer for their application convenience.

Using CDF match algorithm, SMOPS unified individual satellite retrievals to a common global satellite data climatology before blending them together.

Current operational SMOPS uses simple average as the blended SM data layer.

A testing indicates that weighted averaging using the TCEM-based relative RMSE of individual sensor retrievals may generate better blended products.

Upgrading SMOPS using the weighted averaging is to be explored with further evaluation and resources assessment.
Thanks!

Contacts for SMOPS:

Xiwu.Zhan@noaa.gov
Limin.Zhao@noaa.gov
Jicheng.Liu@noaa.gov