GRAVITE Support for NOAA-20 VIIRS SDR Reprocessing

Wayne McCullough
wayne.mccullough@noaa.gov
DPES Sustainment Team
Overview

- Background
 - GRAVITE
 - PGEs
 - ADL

- Request
 - NOAA 20 VIIRS had unexpected conditions after launch
 - SDR team wanted to reprocess with new LUTs

- Process
 - Strong user interaction

- Results
 - First run
 - Second run

- Conclusion
GRAVITE IPS

- GRAVITE has a lot of data
 - 112 Million Files, 91 Million unique granules (SNPP and NOAA-20)
 - All RDRs since launch, 34 day rolling storage of other XDRs
 - 560 TB of data

- GRAVITE has available resources
 - Computer
 - Workstations (at GSFC L40)
 - ICF Servers: dedicated to remote access and compute tasks
 - PGE Servers: dedicated to automated processing
 - All servers have direct access to data
 - 1.1 PB of dedicated disk space for operational system
 - Tools
 - IDL, Matlab, Python, Redmine, PGEs, etc.
 - Support
 - Operators, Developers, Engineers, etc.

- It is there for the JPSS Cal-Val & Data Quality community to use
• What is a PGE?
 – Product Generation Executable
 – Any code we automatically run against data for time periods
 • E.g., Run this analysis every hour when the data is available, etc.

• Initially used heavily for ground comparison

• Broader use now:
 – Instrument DQ Checks
 – Static plot generation
 – Data Preview Tile sets
 – Granulated Ancillary generation (uses ADL)
 – Reprocessing
• Conditions for running a PGE:
 – Have rules defining the time periods (Execution Blocks)
 • Hourly, daily, etc.
 • Orbit
 • Custom lookup
 – Define input products
 • Input products may be optional or required.
 • A minimum number or maximum time gap may be set.
 • A geo-spatial area may be set.
 • E.g. “If I have full coverage for VIIRS M7, the cloud mask, and the GEOs, run xxx for this hour”
 – Automatically run PGE when conditions are met
 • Queue task
 • Execute code on available node
 – Selected Outputs are archived by GRAVITE
• Simplified reflection of IDPS architecture:
 – Processing Subsystem (PRO)
 – Data Management Subsystem (DMS)
 – No Ingest Subsystem (ING), No Data Delivery Subsystem (DDS), No Infrastructure Subsystem (INF)
 • Some functions replaced by ADL Toolkit
• STAR VIIRS SDR team needed to regenerate SDRs from RDRs
 – Unexpected conditions shortly after launch
 – New Lookup Tables needed
 – Wanted to reprocess all NOAA-20 VIIRS Science RDRs (from launch November 2017 to end of February 2018)

• February 2018 DPES and STAR VIIRS SDR team met
 – Various approaches considered
 • All centered on many runs of ADL
 – SDR team needed more time to finalize LUTs
 – DPES team needed more time to test and refine ADL calls

• Goal:

 Start Processing by August 2018
● DPES dedicated three computers in GRAVITE for run
 – Each machine 24 core, 256 GB RAM
 • Dell PowerEdge R430 servers, with two Intel Xeon E5-2680v3 CPUs at 2.5GHz, eight 32GB RDIMM with Advanced ECC, and two Intel Ethernet X540 DP 10GBASE-T
 – Each machine to run a max of 16 ADL processes

● Set up ADL to run in a PGE
 – STAR VIIRS SDR team provided significant support:
 • patch to ADL to turn on compression
 • Testing and reference data
 • Final LUT package for reprocessing

● Runs as part of operational PGE system
 – No impact to current PGEs, only minor configuration changes needed
 – Reprocessing PGE delivered in GRAVITE v4.4
● First Run start 2018-07-05
● Finish 2018-07-17
● VIIRS SDR team noted that about 1% of outputs were missing
 – ADL was not called properly to handle A2 Granules
 – A fix was developed
● Decided to re-run everything
 – Ensure all data was correctly processed.
 – Avoid duplicates.
• Second Run start 2018-08-16 19:22
• Finish 2018-08-27 19:01
• Performance: ~85 days of data processed in 11 days
 – Average time to run each hour of data: 6 hours
 – Run 48 simultaneously across three computers
 – Net: ~7.8x faster than real time
 – If needed, we could parallelize it more
• Outputs: ~42 TB of data
 – Segmented into the gvo domain. (i.e., Not ops, pop, or int)
 – DPES will keep for 1 year
 – Available for all GRAVITE users
Time to Run ADL
Conclusion

- **GRAVITE** can use ADL to reprocess large amounts of data
 - ADL is a complex utility
 - Requires a bit of trial and error

- **GRAVITE IPS PGE** system can support large reprocessing runs
 - This is the first run of this nature we have tried
 - Overall, the GRAVITE IPS system did what it is supposed to do

- **DPES** can support JPSS Reprocessing via ADL
 - ADL available on ICF machines
 - Talk with DPES for larger runs
Contacts

• To subscribe to DQA alerts, contact:
 – ops-gravite-dpes-jpss@lists.nasa.gov
 (Subscribers need to have a GRAVITE account)
• New GRAVITE account request, contact:
 – Erica Handleman: erica.handleman@nasa.gov
• System access issues, contact:
 – gravite.service@noaa.gov
• DQA functions, contact:
 – dqst-dpes-jpss@lists.nasa.gov
• All other issues, contact:
 – ops-gravite-dpes-jpss@lists.nasa.gov
CRTM and Data Assimilation activities at STAR supporting JPSS

Kevin Garrett1

CRTM Federal Manager
NESDIS Associate Director for the Joint Center for Satellite Data Assimilation

Tong Zhu1,2, Ming Chen1,3, Biljana Orescanin1,3, Yingtao Ma4

Acknowledgments: Jean-Luc Moncet4, Mark Liu1, Benjamin Johnson5, Hui Shao5

1: NOAA/NESDIS/STAR 2: CIRA 3: CICS 4: AER, Inc. 5: UCAR/JCSDA
Outline

- **CRTM**
 - Status
 - Cal/Val and algorithm support
 - Current and future development

- **Data Assimilation**
 - Current activities
 - STAR plans/priorities
CRTM activities
CRTM development history
Impacting JPSS Applications

<table>
<thead>
<tr>
<th>CRTM Version</th>
<th>Date</th>
<th>Enhancements</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0/2.0.5</td>
<td>12/2011</td>
<td>• New user interface</td>
</tr>
</tbody>
</table>
| 2.1/2.1.1 | 3/2012 | • SOI solver
• Fastem5
• MW Land Surface Emissivity Model
• NLTE Correction |
| 2.1.3 | 6/2013 | • Implement reflection correction in Fastem (use clear-sky trx)
• Enhanced absorption coefficients (6 absorbers)
• Solar irradiance in spectral coefficient files (CrIS)
• IRSSEM improvements |
| 2.2.1 | 4/2015 | • Enable reflection correction for non-scattering clouds
• Fastem6
• Revert to box car SRF for SNPP ATMS |
| 2.2.3 | 8/2015 | • IRRSEM improvements |
| 2.3 (current)| 11/2017 | • NOAA-20 coefficients
• ATMS snow and sea-ice emissivity models
• Cloud fraction capability
• Reflection correction (use cloudy trx) |
CRTM Cal/Val and algorithm support

Applications applied to JPSS data

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>CRTM v.</th>
<th>Current use</th>
<th>Some desired enhancements?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICVS</td>
<td>2.0.5-2.3</td>
<td>Forward operator, clear-sky, ocean</td>
<td>Ocean emissivity/reflectance modeling</td>
</tr>
<tr>
<td>MiRS</td>
<td>2.1.1</td>
<td>Forward operator, K-matrix, all-sky variational retrieval</td>
<td>Hydrometeor handling (scattering properties)</td>
</tr>
<tr>
<td>ACSPO</td>
<td>2.1.3</td>
<td>Forward operator, clear-sky, ocean</td>
<td>IRSSEM, reflectance enhancements, aerosol handling (species, scattering)</td>
</tr>
<tr>
<td>Enterprise Cloud Products</td>
<td>2.1.3</td>
<td>Long-wave IR clear-sky transmittance profiles</td>
<td>Shortwave IR transmittance, cloudy transmittances</td>
</tr>
<tr>
<td>Enterprise Volcanic Ash</td>
<td>2.1.3</td>
<td>Long-wave IR clear-sky transmittance profiles</td>
<td>Shortwave IR transmittance, cloudy transmittances</td>
</tr>
</tbody>
</table>

All applications could benefit from improved efficiency
• JCSDA partners collectively manage CRTM development (B. Johnson lead)

• STAR-led contributions to JCSDA CRTM project
 • Code management, new sensors, testing & maintenance, package/delivery of software
 • Surface emissivity modeling, BRDF improvements (CSEM)
 • Modernization of LBLRTM with through the Community Line-By-Line Model (CLBLM)
 • Extension to UV sensors

• Summary of other JCSDA projects
 • Fast solvers for scattering
 • Full Stokes polarization
 • Improvements to aerosol/hydrometeor scattering properties/LUTs
 • Improved code efficiency (vectorization/OpenMP)

• Next release is v3.0 ~Jan/Feb 2019
Objective: Release of the CSEM package and integration into CRTM

- CSEM is OOP-based system to compute emissivity and BRDF over all surfaces, in the MW, IR and Vis
 - Easy to integrate and test new emissivity models
 - Easy to interface with other tools (e.g. CRTM)
 - Includes tangent-linear and adjoint

Enhancements over existing CRTM surface emissivity models

<table>
<thead>
<tr>
<th>Microwave</th>
<th>Vis/IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved NESDIS Land Phys. Model</td>
<td>UW IR Emissivity Atlas (SEEBOR)</td>
</tr>
<tr>
<td>Semi-physical ATMS Snow Model</td>
<td>UW Vis/NIR BRDF Atlas (Vidot & Borbas)</td>
</tr>
<tr>
<td>Semi-Physical ATMS Sea-ice Model</td>
<td></td>
</tr>
<tr>
<td>TELSEM 1, 2 (climatology)</td>
<td></td>
</tr>
</tbody>
</table>

CSEM can be used as a stand-alone package or interface with other tools
CRTM current developments (CSEM)
The Community Surface Emissivity Model (CSEM)

O-B over land using NESDIS Land Physical Model
(TOP: CRTM 2.3) (Bottom: CSEM)

REL 2.3
23.8GHz

REL 2.3
50.3GHz

TELSEM

CSEM

O-B over sea-ice for 50.3 GHz
(TOP: TELSEM) (Bottom: CSEM)

CSEM

Demonstration of CSEM improvements
Objective: Development/release of the Community Line-By-Line Model (CLBLM)

- Monochromatic RTM to train CRTM fast model
- Modernization of heritage LBLRTM
 - Refactored/modular code
 - Improved I/O
 - Redesigned RT/Jacobian routines
 - Double line-shape convolution scheme for improved narrow-lines
- CLBLM Alpha released 1/2018
- CLBLM v1.0 released 8/2018
Data assimilation activities
Objective: Increase the number and quality of ATMS surface-sensitive (non-ocean) observations assimilated (NOAA GDAS/GFS)

• Requires accurate forward operator
• ...which requires accurate surface characterization (e.g. emissivity)

Implement in 2 phases

• Improve the background surface emissivity
• Implement surface emissivity as a control variable in the GSI

Compare Current Land Model in CRTM and TELSEM2 for background

<table>
<thead>
<tr>
<th></th>
<th>CRTM</th>
<th>TELSEM 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface type</td>
<td>All</td>
<td>Land & sea-ice only</td>
</tr>
<tr>
<td>Frequency</td>
<td>3 – 190 GHz</td>
<td>10 – 700 GHz</td>
</tr>
<tr>
<td>Polarization</td>
<td>H + V</td>
<td>H + V</td>
</tr>
<tr>
<td>Spatial Resolution</td>
<td>0.25°</td>
<td>0.25°</td>
</tr>
<tr>
<td>Temporal Resolution</td>
<td>Instantaneous</td>
<td>Monthly</td>
</tr>
<tr>
<td>Base</td>
<td>“Physical”</td>
<td>Empirical</td>
</tr>
</tbody>
</table>

CSEM improved Land Emissivity physical model will also be tested
Data assimilation activities

ATMS surface-sensitive radiance assimilation

Improving the background: 31 GHz Emissivity from 2 GDAS Cycles

Replacing the background to use TELSEM2 increases x2 the number of observations assimilated (from 2 GDAS cycles)
Data assimilation activities
ATMS surface-sensitive radiance assimilation

Improving the analysis: O-B, O-A, and Obs Count from 9 GDAS Cycles

While replacing the background (orange) improves the observation count, implementing emissivity as control variable improves the analysis.

Further improvement can be realized:
- Use off-diagonal elements of emissivity covariance matrix
- Improve bias correction over land
Data assimilation/CRTM activities

CrIS and IASI shortwave IR 4 µm band assimilation
(Boukabara, Ide, Garrett, Barnet)

- Assess CRTM capability
 - NLTE, shortwave reflectance
- Extend global DA
 - Dynamic CO2/N2O, obs errors, etc.
- Assess analysis and forecast impact vs longwave IR

Other efforts at STAR

IASI O-B without NLTE (top) and with NLTE (bottom)

Chen et al. 2013

Improve PMW all-sky radiance retrieval/assimilation

- Utilize datasets like GPM 2BCSATGPM
 - Quantify accuracy of CRTM in precip for ATMS
- ... or GPROF
 - Training set to improve a-priori of hydrometeor microphysical properties
Cal/Val Systems and Science Support from CRTM

- Address priorities and needs of STAR EDR, Cal/Val teams
 - Science needs, e.g. improvements to quality of output
 - Technical needs, e.g. supporting transitions to new versions

Science/Coordination Support for Data Assimilation

- Address priorities across STAR, NESDIS (program offices)
 - Assimilation of land EDRs (LST, GVF, soil moisture)
 - Assimilation of ocean EDRs (SST, color)
 - Assimilation of cryospheric products (IST, SIC, Snow Cover/SWE)
 - Assimilation of trace gases, aerosol (V8Tot/Pro, AOD)
CLASS Access and Future Trends for S-NPP and JPSS Data

Brent Hefner, CLASS Program Manager (Acting)
Alan Hall, CLASS System Owner & Operations Manager

2018 STAR JPSS Annual Science Team Meeting
August 28, 2018
Overview-
Comprehensive Large Array data Stewardship System (CLASS)

- CLASS provides long-term, secure storage of NOAA-approved data, information, and metadata and to enable access to these holdings through both human and machine-to-machine (M2M) interfaces
- CLASS is not intended to support near-real-time nor mission-critical product delivery
- CLASS follows the concepts defined in the Open Archival Information System Reference Model (OAIS-RM)
- CLASS Development phase completed on June 30, 2017
- CLASS has transitioned to Sustainment:
 - Minor problem resolution and enhancements are delivered through regularly scheduled Sustainment Software Releases
 - Software Releases are scheduled once per quarter

CLASS is fully operational and meeting all performance objectives
CLASS within the NESDIS Ground Enterprise
S-NPP and J1 Archive & Dissemination Metrics

• Recent Archive metrics

<table>
<thead>
<tr>
<th></th>
<th>May</th>
<th></th>
<th></th>
<th>June</th>
<th></th>
<th></th>
<th>July</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of Files</td>
<td>Volume (TB)</td>
<td>No. of Files</td>
<td>Volume (TB)</td>
<td>No. of Files</td>
<td>Volume (TB)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-NPP</td>
<td>965,298</td>
<td>40.5</td>
<td>775,771</td>
<td>40.14</td>
<td>805,603</td>
<td>41.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOAA-20</td>
<td>877,245</td>
<td>39.1</td>
<td>724,863</td>
<td>38.17</td>
<td>743,578</td>
<td>39.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• July Dissemination metrics

<table>
<thead>
<tr>
<th></th>
<th>July</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-NPP</td>
<td></td>
</tr>
<tr>
<td>Subscriptions</td>
<td>1,852,940</td>
</tr>
<tr>
<td>Ad-Hoc</td>
<td>1,172,499</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>July</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOAA-20</td>
<td></td>
</tr>
<tr>
<td>Subscriptions</td>
<td>1,047,550</td>
</tr>
<tr>
<td>Ad-Hoc</td>
<td>548,604</td>
</tr>
</tbody>
</table>
CLASS Website

- Provides access to CLASS information holdings
- Requires registration to order data
- www.class.noaa.gov
- Manage Subscription orders
- Place Ad-Hoc Orders
CLASS Access Services

<table>
<thead>
<tr>
<th>Order types</th>
<th>Avg Time to Available</th>
<th>File Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subscription</td>
<td>< 6-7 hours</td>
<td>No limit</td>
</tr>
<tr>
<td>(Standing orders)</td>
<td>(As little as 45m depending on data)</td>
<td></td>
</tr>
<tr>
<td>NPP-FTP</td>
<td>< 6-7 hours</td>
<td>No limit</td>
</tr>
<tr>
<td>(Rolling ~90 days)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ad-Hoc</td>
<td>~24 hours</td>
<td>Up to 3,000 files</td>
</tr>
<tr>
<td>(Historical/older data)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulk</td>
<td>24-48 hours</td>
<td>3000 to 6000</td>
</tr>
<tr>
<td>(Large/non-typical)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

Some data types are available as fast as can be processed, others are delayed by the Program (i.e. JPSS).

CLASS is a tape Library System, retrieval times can vary. Operators work with large data requests to facilitate best delivery.
Subscription Orders

• Subscriptions are standing orders for newly archived data which are fulfilled automatically
• Users can manage Subscription orders via the CLASS website
Ad-Hoc Orders

- Ad-Hoc orders can be placed through the CLASS website
- Data is grouped into product families which can be searched
NPP and J1 Rolling FTP Directory

- Located at ftp://ftp-npp.bou.class.noaa.gov/
- Easy to navigate directory of recently archived NPP and J1 data
- ~90 day rolling window

Index of /20180817/VIIRS-EDR/VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo/J01/

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Date Modified</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_28935.tar</td>
<td>1.9 GB</td>
<td>8/17/18, 2:00:00 AM</td>
</tr>
<tr>
<td>VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_28935.tar.manifest.xml</td>
<td>6.4 kB</td>
<td>8/17/18, 2:00:00 AM</td>
</tr>
<tr>
<td>VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_29997.tar</td>
<td>1.9 GB</td>
<td>8/17/18, 3:33:00 AM</td>
</tr>
<tr>
<td>VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_29997.tar.manifest.xml</td>
<td>6.4 kB</td>
<td>8/17/18, 3:33:00 AM</td>
</tr>
<tr>
<td>VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_30415.tar</td>
<td>1.9 GB</td>
<td>8/17/18, 6:03:00 AM</td>
</tr>
<tr>
<td>VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_30415.tar.manifest.xml</td>
<td>6.4 kB</td>
<td>8/17/18, 6:03:00 AM</td>
</tr>
<tr>
<td>VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_31155.tar</td>
<td>1.9 GB</td>
<td>8/17/18, 7:01:00 AM</td>
</tr>
<tr>
<td>VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_31155.tar.manifest.xml</td>
<td>6.4 kB</td>
<td>8/17/18, 7:01:00 AM</td>
</tr>
<tr>
<td>VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_31555.tar</td>
<td>1.9 GB</td>
<td>8/17/18, 8:23:00 AM</td>
</tr>
<tr>
<td>VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_31555.tar.manifest.xml</td>
<td>6.4 kB</td>
<td>8/17/18, 8:23:00 AM</td>
</tr>
<tr>
<td>VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_32095.tar</td>
<td>1.9 GB</td>
<td>8/17/18, 9:31:00 AM</td>
</tr>
<tr>
<td>VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_32095.tar.manifest.xml</td>
<td>6.4 kB</td>
<td>8/17/18, 9:31:00 AM</td>
</tr>
<tr>
<td>VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_32595.tar</td>
<td>1.9 GB</td>
<td>8/17/18, 11:02:00 AM</td>
</tr>
<tr>
<td>VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_32595.tar.manifest.xml</td>
<td>6.4 kB</td>
<td>8/17/18, 11:02:00 AM</td>
</tr>
</tbody>
</table>
Machine to Machine (M2M) Interface

- M2M API was designed for the purpose of enabling software developers to create access clients capable of searching for and ordering datasets held within CLASS
- NCEI has implemented M2M Clients
M2M Next Steps

• CLASS is planning an Engineering Assessment to determine the feasibility of extending the M2M interface to STAR
 – Performance impact analysis
 – Cost estimate
Summary

• CLASS is the archive for NPP and J1 data
• Multiple options exist for ordering data from CLASS
• CLASS is investigating making the M2M interface available to STAR