

GRAVITE Support for NOAA-20 VIIRS SDR Reprocessing

Wayne McCullough wayne.mccullough@noaa.gov DPES Sustainment Team

- Background
 - GRAVITE
 - PGEs
 - ADL
- Request
 - NOAA 20 VIIRS had unexpected conditions after launch
 - SDR team wanted to reprocess with new LUTs
- Process
 - Strong user interaction
- Results
 - First run
 - Second run
- Conclusion

- GRAVITE has a lot of data
 - 112 Million Files, 91 Million unique granules (SNPP and NOAA-20)
 - All RDRs since launch, 34 day rolling storage of other XDRs
 - 560 TB of data
- GRAVITE has available resources
 - Computer
 - Workstations (at GSFC L40)
 - ICF Servers: dedicated to remote access and compute tasks
 - PGE Servers: dedicated to automated processing
 - All servers have direct access to data
 - 1.1 PB of dedicated disk space for operational system
 - Tools
 - IDL, Matlab, Python, Redmine, PGEs, etc.
 - Support
 - Operators, Developers, Engineers, etc.
- It is there for the JPSS Cal-Val & Data Quality community to use

GRAVITE PGEs

- What is a PGE?
 - Product Generation Executable
 - Any code we automatically run against data for time periods
 - E.g., Run this analysis every hour when the data is available, etc.
- Initially used heavily for ground comparison
- Broader use now:
 - Instrument DQ Checks
 - Static plot generation
 - Data Preview Tile sets
 - Granulated Ancillary generation (uses ADL)
 - Reprocessing

GRAVITE PGEs

- Conditions for running a PGE:
 - Have rules defining the time periods (Execution Blocks)
 - Hourly, daily, etc.
 - Orbit
 - Custom lookup
 - Define input products
 - Input products may be optional or required.
 - A minimum number or maximum time gap may be set.
 - A geo-spatial area may be set.
 - E.g. "If I have full coverage for VIIRS M7, the cloud mask, and the GEOs, run xxx for this hour"
 - Automatically run PGE when conditions are met
 - Queue task
 - Execute code on available node
 - Selected Outputs are archived by GRAVITE

- Simplified reflection of IDPS architecture:
 - Processing Subsystem (PRO)
 - Data Management Subsystem (DMS)
 - No Ingest Subsystem (ING), No Data Delivery Subsystem (DDS), No Infrastructure Subsystem (INF)
 - Some functions replaced by ADL Toolkit

- STAR VIIRS SDR team needed to regenerate SDRs from RDRs
 - Unexpected conditions shortly after launch
 - New Lookup Tables needed
 - Wanted to reprocess all NOAA-20 VIIRS Science RDRs (from launch November 2017 to end of February 2018)
- February 2018 DPES and STAR VIIRS SDR team met
 - Various approaches considered
 - All centered on many runs of ADL
 - SDR team needed more time to finalize LUTs
 - DPES team needed more time to test and refine ADL calls
- Goal:

Start Processing by August 2018

- DPES dedicated three computers in GRAVITE for run
 - Each machine 24 core, 256 GB RAM
 - Dell PowerEdge R430 servers, with two Intel Xeon E5-2680v3 CPUs at 2.5GHz, eight 32GB RDIMM with Advanced ECC, and two Intel Ethernet X540 DP 10GBASE-T
 - Each machine to run a max of 16 ADL processes
- Set up ADL to run in a PGE
 - STAR VIIRS SDR team provided significant support:
 - patch to ADL to turn on compression
 - Testing and reference data
 - Final LUT package for reprocessing
- Runs as part of operational PGE system
 - No impact to current PGEs, only minor configuration changes needed
 - Reprocessing PGE delivered in GRAVITE v4.4

- First Run start 2018-07-05
- Finish 2018-07-17
- VIIRS SDR team noted that about 1% of outputs were missing
 - ADL was not called properly to handle A2 Granules
 - A fix was developed
- Decided to re-run everything
 - Ensure all data was correctly processed.
 - Avoid duplicates.

- Second Run start 2018-08-16 19:22
- Finish 2018-08-27 19:01
- Performance: ~85 days of data processed in 11 days
 - Average time to run each hour of data: 6 hours
 - Run 48 simultaneously across three computers
 - Net: ~7.8x faster than real time
 - If needed, we could parallelize it more
- Outputs: ~42 TB of data
 - Segmented into the gvo domain. (i.e., Not ops, pop, or int)
 - DPES will keep for 1 year
 - Available for all GRAVITE users

Time to Run ADL

- REAL PROPERTY OF COMMENT
- GRAVITE can use ADL to reprocess large amounts of data
 - ADL is a complex utility
 - Requires a bit of trial an error
- GRAVITE IPS PGE system can support large reprocessing runs
 - This is the first run of this nature we have tried
 - Overall, the GRAVITE IPS system did what it is supposed to do
- DPES can support JPSS Reprocessing via ADL
 - ADL available on ICF machines
 - Talk with DPES for larger runs

REAL PROPERTY OF COMPANY

- To subscribe to DQA alerts, contact:
 - <u>ops-gravite-dpes-jpss@lists.nasa.gov</u> (Subscribers need to have a GRAVITE account)
- New GRAVITE account request, contact: – Erica Handleman: <u>erica.handleman@nasa.gov</u>
- System access issues, contact:
 - gravite.service@noaa.gov
- DQA functions, contact:
 - dqst-dpes-jpss@lists.nasa.gov
- All other issues, contact:
 - ops-gravite-dpes-jpss@lists.nasa.gov

CRTM and Data Assimilation activities at STAR supporting JPSS

Kevin Garrett¹

CRTM Federal Manager NESDIS Associate Director for the Joint Center for Satellite Data Assimilation

Tong Zhu^{1,2}, Ming Chen^{1,3}, Biljana Orescanin^{1,3}, Yingtao Ma⁴

Acknowledgments: Jean-Luc Moncet⁴, Mark Liu¹, Benjamin Johnson⁵, Hui Shao⁵

1: NOAA/NESDIS/STAR 2: CIRA

3: CICS

4: AER. Inc. 5.

5.UCAR/JCSDA

CRTM

- Status
- Cal/Val and algorithm support
- Current and future development

Data Assimilation

- Current activities
- STAR plans/priorities

CRTM activities

CRTM development history

Impacting JPSS Applications

CRTM Version	Date	Enhancements
2.0/2.0.5	12/2011	New user interface
2.1/2.1.1	3/2012	 SOI solver Fastem5 MW Land Surface Emissivity Model NLTE Correction
2.1.3	6/2013	 Implement reflection correction in Fastem (use clear-sky trx) Enhanced absorption coefficients (6 absorbers) Solar irradiance in spectral coefficient files (CrIS) IRSSEM improvements
2.2.1	4/2015	 Enable reflection correction for non-scattering clouds Fastem6 Revert to box car SRF for SNPP ATMS
2.2.3	8/2015	IRRSEM improvements
2.3 (current)	11/2017	 NOAA-20 coefficients ATMS snow and sea-ice emissivity models Cloud fraction capability Reflection correction (use cloudy trx)

CRTM Cal/Val and algorithm support Applications applied to JPSS data

Algorithm	CRTM v.	Current use	Some desired enhancements?
ICVS	2.0.5-2.3	Forward operator, clear-sky, ocean	Ocean emissivity/reflectance modeling
MiRS	2.1.1	Forward operator, K-matrix, all-sky variational retrieval	Hydrometeor handling (scattering properties)
ACSPO	2.1.3	Forward operator, clear-sky, ocean	IRSSEM, reflectance enhancements, aerosol handling (species, scattering)
Enterprise Cloud Products	2.1.3	Long-wave IR clear-sky transmittance profiles	Shortwave IR transmittance, cloudy transmittances
Enterprise Volcanic Ash	2.1.3	Long-wave IR clear-sky transmittance profiles	Shortwave IR transmittance, cloudy transmittances

*All applications could benefit from improved efficiency

- JCSDA partners collectively manage CRTM development (B. Johnson lead)
- STAR-led contributions to JCSDA CRTM project
 - Code management, new sensors, testing & maintenance, package/delivery of software
 - Surface emissivity modeling, BRDF improvements (CSEM)
 - Modernization of LBLRTM with through the Community Line-By-Line Model (CLBLM)
 - Extension to UV sensors
- Summary of other JCSDA projects
 - Fast solvers for scattering
 - Full Stokes polarization
 - Improvements to aerosol/hydrometeor scattering properties/LUTs
 - Improved code efficiency (vectorization/OpenMP)
- Next release is v3.0 ~Jan/Feb 2019

Objective: Release of the CSEM package and integration into CRTM

- CSEM is OOP-based system to compute emissivity and BRDF over all surfaces, in the MW, IR and Vis
 - Easy to integrate and test new emissivity models
 - Easy to interface with other tools (e.g. CRTM)
 - Includes tangent-linear and adjoint

Enhancements over existing CRTM surface emissivity models

Microwave	Vis/IR
Improved NESDIS Land Phys. Model	UW IR Emissivity Atlas (SEEBOR)
Semi-physical ATMS Snow Model	UW Vis/NIR BRDF Atlas (Vidot & Borbas)
Semi-Physical ATMS Sea-ice Model	
TELSEM 1, 2 (climatology)	

CSEM can be used as a stand-alone package or interface with other tools

CRTM current developments (CSEM)

The Community Surface Emissivity Model (CSEM)

O-B over land using NESDIS Land Physical Model (TOP: CRTM 2.3) (Bottom: CSEM)

CSFN

-2.9 -2.2 -1.6 -1.0 -0.3 0.3 1.0 1.6 2.2 2.9 3.5

TELSEM 5 4000 -2.86

O-B over sea-ice for 50.3 GHz

(TOP: TELSEM) (Bottom: CSEM)

CRTM current developments The Community Line-By-Line Model (CLBLM)

Objective: Development/release of the Community Line-By-Line Model (CLBLM)

- Monochromatic RTM to train CRTM fast model
- Modernization of heritage LBLRTM
 - Refactored/modular code
 - Improved I/O
 - Redesigned RT/Jacobian routines
 - Double line-shape convolution scheme for improved narrow-lines
- CLBLM Alpha released 1/2018
- CLBLM v1.0 released 8/2018

Data assimilation activities

Data assimilation activities ATMS surface-sensitive radiance assimilation

Objective: Increase the number and quality of ATMS surface-sensitive (non-ocean) observations assimilated (NOAA GDAS/GFS)

- Requires accurate forward operator
- ...which requires accurate surface characterization (e.g. emissivity)

Implement in 2 phases

- Improve the background surface emissivity
- Implement surface emissivity as a control variable in the GSI

Compare Current Land Model in CRTM and TELSEM2 for background

	CRTM	TELSEM 2
Surface type	All	Land & sea-ice only
Frequency	3 - 190 GHz	10 - 700 GHz
Polarization	H + V	H + V
Spatial Resolution	0.25°	0.25°
Temporal Resolution	Instantaneous	Monthly
Base	"Physical"	Empirical

CSEM improved Land Emissivity physical model will also be tested

Data assimilation activities ATMS surface-sensitive radiance assimilation

Improving the background: 31 GHz Emissivity from 2 GDAS Cycles

CRTM

Emissivity

O-B Stats	CRTM	TELSEM 2	0.800	0.833	0.867	0.900	0.933	0.967	1.000
Number count	4104	8050							
Bias	-0.4	0.05							
Std. dev.	2.0	1.9							

Replacing the background to use TELSEM2 increases x2 the number of observations assimilated (from 2 GDAS cycles)

Data assimilation activities ATMS surface-sensitive radiance assimilation

Improving the analysis: O-B, O-A, and Obs Count from 9 GDAS Cycles

While replacing the background (orange) improves the observation count, implementing emissivity as control variable improves the analysis.

Further improvement can be realized:

- Use off-diagonal elements of emissivity covariance matrix
- Improve bias correction over land

Data assimilation/CRTM activities Other efforts at STAR

CrIS and IASI shortwave IR 4 μm band assimilation

(Boukabara, Ide, Garrett, Barnet)

- Assess CRTM capability
 - NLTE, shortwave reflectance
- Extend global DA
 - Dynamic CO2/N2O, obs errors, etc.
- Assess analysis and forecast impact vs longwave IR

Improve PMW all-sky radiance retrieval/assimilation

- Utilize datasets like GPM 2BCSATGPM
 - Quantify accuracy of CRTM in precip for ATMS
- ... or GPROF
 - Training set to improve a-priori of hydrometeor microphysical properties

Cal/Val Systems and Science Support from CRTM

- Address priorities and needs of STAR EDR, Cal/Val teams
 - Science needs, e.g. improvements to quality of output
 - Technical needs, e.g. supporting transitions to new versions

Science/Coordination Support for Data Assimilation

- Address priorities across STAR, NESDIS (program offices)
 - Assimilation of land EDRs (LST, GVF, soil moisture)
 - Assimilation of ocean EDRs (SST, color)
 - Assimilation of cryospheric products (IST, SIC, Snow Cover/SWE)
 - Assimilation of trace gases, aerosol (V8Tot/Pro, AOD)

CLASS Access and Future Trends for S-NPP and JPSS Data

Brent Hefner, CLASS Program Manager (Acting) Alan Hall, CLASS System Owner & Operations Manager

2018 STAR JPSS Annual Science Team Meeting August 28, 2018

Overview-Comprehensive Large Array data Stewardship System (CLASS)

- CLASS provides long-term, secure storage of NOAA-approved data, information, and metadata and to enable access to these holdings through both human and machine-to-machine (M2M) interfaces
- CLASS is not intended to support near-real-time nor mission-critical product delivery
- CLASS follows the concepts defined in the Open Archival Information System Reference Model (OAIS-RM)
- CLASS Development phase completed on June 30, 2017
- CLASS has transitioned to Sustainment:
 - Minor problem resolution and enhancements are delivered through regularly scheduled Sustainment Software Releases
 - Software Releases are scheduled once per quarter

CLASS within the NESDIS Ground Enterprise

3

S-NPP and J1 Archive & Dissemination Metrics

• Recent Archive metrics

	Мау		June		July	
	No. of Files	Volume (TB)	No. of Files	Volume (TB)	No. of Files	Volume (TB)
S-NPP	965,298	40.5	775,771	40.14	805,603	41.33
NOAA-20	877,245	39.1	724,863	38.17	743,578	39.1

• July Dissemination metrics

S-NPP	July			
J-INF F	No. of Files	Volume (TB)		
Subscriptions	1,852,940	135.34		
Ad-Hoc	1,172,499	55.4		

	July			
NOAA-20	No. of Files	Volume (TB)		
Subscriptions	1,047,550	91.06		
Ad-Hoc	548,604	50.88		

CLASS Website

5

- Provides access to CLASS information holdings
- Requires registration to order data
- www.class.noaa.gov
- Manage Subscription orders
- Place Ad-Hoc Orders

CLASS Access Services

Order types	Avg Time to Available	File Limit
Subscription (Standing orders)	< 6-7 hours (As little as 45m depending on data)	No limit
NPP-FTP (Rolling ~90 days)	< 6-7 hours	No limit
Ad-Hoc (Historical/older data)	~24 hours	Up to 3,000 files
Bulk (Large/non-typical)	24-48 hours	3000 to 6000

NOTES:

Some data types are available as fast as can be processed, others are delayed by the Program (i.e. JPSS)

CLASS is a tape Library System, retrieval times can vary. Operators work with large data requests to facilitate best delivery.

Subscription Orders

- Subscriptions are standing orders for newly archived data which are fulfilled automatically
- Users can manage Subscription orders via the CLASS website

Ad-Hoc Orders

- Ad-Hoc orders can be placed through the CLASS website
- Data is grouped into product families which can be searched

Temporal (maximum range is 366 days)				
(maximum range is 500 days)				
Start Date (format: YYYY-MM-DD)	2018-08-16	113	Start Time (UTC) (format: HH:MM:SSS)	00:00:00
End Date (format: YYYY-MM-DD)	2018-08-17		End Time (UTC) (format: HH:MM:SSS)	23:59:59

Specify the range of the times for: O Each Day Or O The Entire Range Of Days

Advanced Search

Datatype

- VIIRS Active Fires EDR
- UIRS Aerosol Optical Depth and Aerosol Particle Size EDRs
- VIIRS Volcanic Ash Detection and Height EDRs
- VIIRS Aerosol Detection EDR
- VIIRS Albedo (Surface) EDR

VIIDS Cloud Unight (Top and Pase) EDBs

Satellite	
NOAA-20	
S-NPP	Ŧ

NPP and J1 Rolling FTP Directory

- Located at ftp://ftp-npp.bou.class.noaa.gov/
- Easy to navigate directory of recently archived NPP and J1 data
- ~90 day rolling window

Index of /20180817/VIIRS-EDR/VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo/J01/

[parent directory]

Name	Size	Date Modified
VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_28955.tar	1.9 GB	8/17/18, 2:00:00 AM
VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_28955.tar.manifest.xml	6.4 kB	8/17/18, 2:00:00 AM
VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_29335.tar	1.9 GB	8/17/18, 3:33:00 AM
VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_29335.tar.manifest.xml	6.4 kB	8/17/18, 3:33:00 AM
VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_29975.tar	1.9 GB	8/17/18, 4:29:00 AM
VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_29975.tar.manifest.xml	6.4 kB	8/17/18, 4:29:00 AM
VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_30415.tar	1.9 GB	8/17/18, 6:03:00 AM
VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_30415.tar.manifest.xml	6.4 kB	8/17/18, 6:03:00 AM
VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_31155.tar	1.9 GB	8/17/18, 7:01:00 AM
VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_31155.tar.manifest.xml	6.4 kB	8/17/18, 7:01:00 AM
VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_31555.tar	1.9 GB	8/17/18, 8:23:00 AM
VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_31555.tar.manifest.xml	6.4 kB	8/17/18, 8:23:00 AM
VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_32095.tar	1.9 GB	8/17/18, 9:31:00 AM
VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_32095.tar.manifest.xml	6.4 kB	8/17/18, 9:31:00 AM
VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_32595.tar	1.9 GB	8/17/18, 11:02:00 AM
VIIRS-EDR_VIIRS-Near-Constant-Contrast-NCC-EDR-GTM-Geo_20180817_32595.tar.manifest.xml	6.4 kB	8/17/18, 11:02:00 AM

Machine to Machine (M2M) Interface

- M2M API was designed for the purpose of enabling software developers to create access clients capable of searching for and ordering datasets held within CLASS
- NCEI has implemented M2M Clients

M2M Next Steps

- CLASS is planning an Engineering Assessment to determine the feasibility of extending the M2M interface to STAR
 - Performance impact analysis
 - Cost estimate

- CLASS is the archive for NPP and J1 data
- Multiple options exist for ordering data from CLASS
- CLASS is investigating making the M2M interface available to STAR