

# Bill Sjoberg JPSS Program Office

National Oceanic and Atmospheric Administration | Joint Polar Satellite System (JPSS)

Joint Polar Satellite System

Bill Sjoberg – Global Science & Technology Contractor



## **PGRR Background**





## JPSS PGRR Background Definitions

#### Proving Ground

- Demonstration and utilization of data products by the end-user operational unit, such as a NWS Weather Forecast Office or Modeling Center.
- Promote outreach and coordination of new products with the end users, incorporating their feedback for product improvements

#### Risk Reduction

- Development of new research and applications to maximize the benefits of JPSS satellite data
  - Example use of Day Night Band for improved fog and low visibility products at night, benefiting transportation industry.
- Encourages fusion of data/information from multiple satellite, models and in-situ data
- Primary work is done at the algorithm and application developer's institution.
- Address potential risk in algorithms and data products by testing alternative algorithms.





## JPSS PGRR Background

• The PGRR Program was established in early 2012, following the launch of the Suomi National Polar Partnership (SNPP) satellite on 28 Oct 2011



- CFP 2012: 100 teams providing Letters-of-Intent (LOIs) with nearly 40 projects selected for funding
- CFP 2015: PGRR Initiatives were used as a focus for the responses to this CFP. Over 130 LOIs were received.
- CFP 2017: Sent out in Oct 2017. Over 130 LOIs received and funding selections recently made



### PGRR Proving Ground Initiatives Responding to User Feedback

- The River Ice and Flooding Initiative was the first attempt at this new partnership and it was established in response to Galena AK flooding in May 2013.
- The Initiative included River Ice and River Flooding Project teams, direct broadcast SMEs, and National Weather Service River Forecast Center forecasters.
- The success of River Ice and Flooding Initiative led to creation of other initiatives that guided the 2014 PGRR CFP.
- Initiatives have proven to be critical forums where JPSS personnel, product developers, and users interact. The effort is to evaluate current and future JPSS Capabilities in operational environments to determine which of these capabilities should be transitioned to operations.



### **PGRR Initiatives List**





## PGRR Proving Ground Initiatives Best Practices







#### PGRR Proving Ground Initiatives Partners





## **PGRR Initiatives**

| Initiative                                                             | Start Date    |
|------------------------------------------------------------------------|---------------|
| River Ice and Flooding                                                 | November 2013 |
| Fire and Smoke                                                         | May 2014      |
| Sounding Applications NOAA Unique CrIS/ATMS Processing System (NUCAPS) | July 2014     |
| Hydrology                                                              | July 2015     |
| Ocean and Coastal                                                      | March 2016    |
| Severe Weather/NWP/Data Assimilation                                   | March 2016    |
| Arctic Initiative                                                      | June 2016     |
| Hurricanes and Tropical Storms Initiative                              | June 2018     |
| Aviation Initiative                                                    | June 2018     |
| Training Initiative                                                    | June 2018     |
| Volcano Initiative                                                     | June 2018     |





## JPSS and the Fire Mission





#### How the Fire and Smoke Initiative Began



#### We must find a way to deal effectively with fire events and smoke forecasts! Andy Edman NWS WR SSD Chief





#### Fire and Smoke Initiative Objectives

- Organize a forum to allow stakeholders supporting Fire and Smoke products development to interact with key users of the capabilities.
- Understand the current use of geostationary and polar orbiting satellite capabilities in support of Fire and Smoke detection and forecasting mission
- Identify current SNPP/JPSS and new GOES-R Fire and Smoke data and capabilities with the potential to improve support to this mission
- Establish methodologies and procedures for the operational demonstrations of these capabilities
- Following these operational demonstrations, identify the satellite capabilities whose operational impacts are sufficient to warrant transition from research to operations
- Determine required actions for an effective transition of these capabilities to operations that can be maintained over the long term.
- As the Initiative Team met over the months and years, actions were taken to implement these objectives, and new objectives were identified and worked.





## Typical Telecon Participants

| Name               | Organization      | Name             | Organization              | Name             | Organization                   |  |
|--------------------|-------------------|------------------|---------------------------|------------------|--------------------------------|--|
| Raman Ahmadov      | CIRA              | Chad Kahler      | NWS Western<br>Region     | Brad Pierce      | STAR                           |  |
| Bret Anderson      | US Forest Service | Hyun Kim         | NOAA Air<br>Resources Lab | Julie Price      | JPSS                           |  |
| Nazmi<br>Chowdhury | JPSS              | Adam Kochanski   | Univ of UT                | Pete Roohr       | NWS                            |  |
| Russell Dengel     | CIMSS             | Mark Loeffelbein | NWS – Western<br>Region   | Katherine Rowden | NWS – Service<br>Hydro Spokane |  |
| Evan Ellicott      | UofMD             | Jan Mandel       | Univ of CO -<br>Denver    | Scott Rudlosky   | CICS                           |  |
| Rick Graw          | US Forest Service | Jeff McQueen     | NCEP                      | Bill Sjoberg     | JPSS                           |  |
| Robyn Heffernan    | NWS               | Matt Mehle       | NWS                       | Jebb Stewart     | ESRL                           |  |
| Amy Huff           | PSU               | Brian Motta      | NWS                       | William Straka   | CIMSS                          |  |
| Eric James         | CIRES             | Susan O'Neill    | USFS                      | Jason Taylor     | NESDIS                         |  |
| Pedro Jimenez      | UCAR              | Li Pan           | OAR                       | Jorel Torres     | JPSS Training<br>Liaison       |  |



## Initiative Activities

- Boots on the ground. Personnel visited fires to evaluate what environmental data is used and to provide info on JPSS fire support capabilities.
- Visited key stakeholders, Alaska Fire Service as an example, to help them access JPSS data and products consistently.
- Integrated VIIRS Active Fire and Fire Radiative Power as initial conditions for the HRRR Smoke Model.
- Integrated Air Quality (AQ) specialists into the Initiative Team to ensure AQ issues are addressed.
- Briefed at the last three NWS IMET Conferences to go through with participants the products available on AWIPS Thin Client and new initiatives.
- Evaluated JPSS Products during key fire events such as the Rim Fire in CA, the Fort McMurray Fire in Canada, and 2018 Western Region Fires.
- Welcomed developers for various smoke models, Blue Smoke as an example, to participate in the F&S Initiative Team to determine how VIIRS could be used in their models.
- And more.....



#### King Fire Sep 2014 Views via SNPP VIIRS DNB Night Time Visible



## Western Washington State 1 Aug 2015

#### Wolverine Fire



#### THE FORT MCMURRAY WILDFIRE MAY 2016



Image: Ft. McMurray Wildfire as it spreads across the Alberta landscape Source: Public Service Alliance of Canada

17



#### NCC Imagery of Ft McMurray Wildfire 17 May at 0930 UTC





## NCC Imagery 17 May 2016 at 0929Z (i.e., 05:29 a.m. ET)

Tuesday, May 17, 2016 - as of 10:30 a.m. (ET)



MURAT YÜKSELIR/THE GLOBE AND MAIL ) SOURCES: OIL SANDS COMMUNITY ALLIANCE; NATURAL RESOURCES CANADA



COMPARISON BETWEEN ESTIMATED FIRE PERIMETER AND NCC IMAGERY



### Oklahoma Fires – 7 Mar 2017







## Thomas Fire – California Day Night Band







#### Container Ship Maersk Honam on Fire 7 Mar 2018





### **Early HRRR-Model Output**

VIIRS smoke mask and HRRR-Smoke forecast for vertically integrated smoke, July 28 2016







## HRRR – Smoke Model Updated Version

https://rapidrefresh.noaa.gov/hrrr/HRRRsmoke/



24



### RAP Model Provides More Smoke Forecast Coverage





#### Fire Smoke Models in Use Rick Graw AQ Pgm Mgr USDA Forest Service

| Model<br>Compone<br>nt | Blue Sky Daily<br>Operational Runs<br>(v3.5.1)                                                                                                         | HRRR Smoke                                                                                                                                                                                               | FireWork                                                                                                             | AIRPACT 5                                                                                  | NOAA/NWS National Air<br>Quality Forecast                                                                                                                                                                | Comments                                                                                         |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Purpose                | Simulate the emissions,<br>transport, and<br>concentration of smoke<br>from wildfire and<br>prescribed fire.                                           | Addresses the need for<br>a coupled<br>meteorological-wildfire<br>smoke forecast model.                                                                                                                  | To provide numerical<br>guidance (PM2.5<br>concentrations) to<br>forecasters for<br>inclusion of biomass<br>burning. | Provide timely air quality<br>information to people in<br>the Pacific Northwest<br>region. | Provide next day operational<br>predications for ground level<br>ozone, smoke, and dust                                                                                                                  |                                                                                                  |
| Products               | Surface levels of PM2.5:<br>• hourly<br>• 3-hr<br>• 24-hour:<br>• daily 1 hr max                                                                       | <ul> <li>Fire radiative<br/>power</li> <li>Near-surface<br/>smoke</li> <li>Vertically-<br/>integrated<br/>smoke</li> <li>10m wind</li> <li>1hr<br/>precipitation</li> <li>2 m<br/>temperature</li> </ul> | PM2.5 (from biomass<br>burning emissions)<br>Ground level:<br>• 24 and 48<br>hour avg.<br>• 1-hr max<br>Total column | Surface PM2.5<br>Surface Ozone<br>N and S Deposition                                       | HYSPLIT Smoke and Dust<br>Surface<br>Vertical Integration<br>CMAQ :<br>Surface Ozone<br>(does not include<br>gaseous emissions<br>from wildfires).<br>1-hr and 24-hr total<br>PM2.5 ( & bias corrected): | Daily average PM2.5<br>is helpful for<br>comparison with EPA<br>AQI which is also 24-<br>hr avg. |
| Domain                 | Variable from Canada<br>and CONUS, to sub-<br>regions.                                                                                                 | Continental US<br>(CONUS)                                                                                                                                                                                | North America                                                                                                        | Washington, Oregon,<br>Idaho, and parts of MT,<br>CA, NV, UT, and WY                       | HYSPLIT smoke: North<br>America CMAQ PM2.5 with<br>smoke emissions: CONUS,                                                                                                                               |                                                                                                  |
| Frequenc<br>y of runs  | Once a day for WRF.<br>Twice a day for the NAM<br>domains (00z and 12Z)<br>Up to 4x/day for the NAM<br>1 km domains                                    | Four times a day<br>Every 6 hours (00, 06,<br>12 and 18 Z)                                                                                                                                               | Twice daily: 00z and 12z                                                                                             | Once per day.                                                                              | HYSPLIT: 1/day (06Z)<br>CMAQ: 2/day (06Z, 12Z)                                                                                                                                                           |                                                                                                  |
| Forecast<br>period     | 36 hours (1 km variable)<br>60 hours (1.33 km PNW)<br>72 hours (4 km PNW)<br>84 hours (12 km CONUS)<br>48 hours (3 km CONUS)<br>5 days for 0.5 degrees | 36 hours                                                                                                                                                                                                 | 48 hours                                                                                                             | 48 hours                                                                                   | 48 hours                                                                                                                                                                                                 |                                                                                                  |
| Website                | https://www.airfire.org/dat<br>a/bluesky-daily/                                                                                                        | https://rapidrefresh.noa<br>a.gov/hrrr/HRRRsmoke<br>/                                                                                                                                                    | http://weather.gc.ca/fir<br>ework<br>Development site<br>(pw)                                                        | http://www.lar.wsu.edu/a<br>irpact/gmap/ap5/ap5sm<br>oke.html                              | http://airquality.weather.gov/<br>CMAQ PM:<br>http://www.emc.ncep.noaa.go<br>v/mmb/aq/                                                                                                                   |                                                                                                  |
| Contact                | Susan O'Neill<br>(206) 73207851<br><u>smoneill@fs.fed.us</u>                                                                                           | Ravan Ahmadov<br>(303) 497-4314<br>ravan.ahmadov@noaa.<br>gov                                                                                                                                            | Radenko Pavlovic<br>radenko.pavlovic@ca<br>nada.ca<br>Jack Chen<br>(613) 991-9459<br>Jack.chen@canada.c<br>a         | Farren Herron-Thorpe<br>(360) 407-7658<br>fher461@ecy.wa.gov                               | Ivanka Stajner<br><u>ivanka.stajner@noaa.gov</u><br>Jeff McQueen:<br>jeff.mcqueen@noaa.gov                                                                                                               |                                                                                                  |





#### **Future Satellite Support to the Fire Mission**

- Fully implement GOES-17 and NOAA-20 Fire Products
- Continue to reach out to current users and potential users to work with them to evaluate satellite capabilities. User feedback to guide future decisions.
- Keep IMETs, Air Quality personnel, and others informed of continued work and provide training on products
- Respond to requests for satellite fire and smoke capabilities during fire events
- > Look for additional opportunities to blend JPSS/GOES-R capabilities
- > Smoke Modeling
  - > Add other satellite (NOAA-20, GOES-R...) fire products to the HRRR-Smoke Model
  - Help transition the smoke parameterization into the global FV3 in the future in synergy with EMC and ARL



#### **For More Information on the**



#### JPSS Program (WWW.JPSS.NOAA.GOV)





## VIIRS FIRE PRODUCT STATUS

Ivan Csiszar (STAR) Marina Tsidulko (IMSG@STAR) Wilfrid Schroeder (OSPO) Zhaohui Cheng (OSPO) and many other contributors

#### JPSS VIIRS Active Fire Algorithm Cal/Val Team

#### Algorithm Cal/Val Team Members and key stakeholders

| Name                  | Organization | Major Task                                                                          |
|-----------------------|--------------|-------------------------------------------------------------------------------------|
| Ivan Csiszar          | NESDIS/STAR  | Active Fire product lead                                                            |
| Marina Tsidulko       | IMSG         | STAR code development, data analysis                                                |
| Wilfrid Schroeder     | OSPO         | I-band Algorithm development, validation;<br>Hazard Mapping System user / developer |
| Mike Wilson           | IMSG         | STAR ASSIST integration                                                             |
| Louis Giglio          | UMD          | M-band Algorithm developer                                                          |
| Zhaohui Cheng         | OSPO         | Product Area Lead                                                                   |
| Evan Ellicott         | UMD          | User outreach                                                                       |
| Shobha<br>Kondragunta | STAR         | Smoke / aerosol user outreach and analysis                                          |
| Ravan Ahmadov         | ESRL         | HRRR-smoke POC                                                                      |
| Bill Sjoberg          | NJO          | Fire and Smoke Initiative coordinator                                               |

#### Primary VIIRS bands used for heritage MODIS / AVHRR – like active fire algorithms

|       | VIIRS           |         | Ν    | IODIS Equivalen | t    | AVHRR-3 Equivalent |          | OLS Equivalent             |         |                 |                                |             |
|-------|-----------------|---------|------|-----------------|------|--------------------|----------|----------------------------|---------|-----------------|--------------------------------|-------------|
| Band  | Range (um)      | HSR (m) | Band | Range           | HSR  | Banc               | d        | Range                      | HSR     | Band            | Range                          | HSR         |
| DNB   | 0.500 - 0.900   |         |      |                 |      |                    |          |                            |         | HRD<br>PMT      | 0.580 - 0.910<br>0.510 - 0.860 | 550<br>2700 |
| M1    | 0.402 - 0.422   | 750     | 8    | 0.405 - 0.420   | 1000 |                    | ş        |                            | 1       |                 |                                |             |
| M2    | 0.436 - 0.454   | 750     | 9    | 0.438 - 0.448   | 1000 |                    | M-k      | <b>band:</b> 75            | 50m re  | esolu           | ution                          |             |
| M2    | 0 479 - 0 409   | 750     | 3    | 0.459 - 0.479   | 500  |                    |          | hi                         | ah 1 i  | .m /I           |                                | ration      |
| IVIS  | 0.470 - 0.490   | 750     | 10   | 0.483 - 0.493   | 1000 |                    |          | 111                        | gii 4 l | <b>1</b> 111 (1 | viis) satui                    | atioi       |
| М4    | 0 545 - 0 565   | 750     | 4    | 0.545 - 0.565   | 500  |                    |          | g                          | ood sig | gnal            | for FRP                        |             |
| 101-7 | 0.040 0.000     | 100     | 12   | 0.546 - 0.556   | 1000 |                    |          | 0                          | •       | 5               | 8                              |             |
| l1    | 0.600 - 0.680   | 375     | 1    | 0.620 - 0.670   | 250  | 1                  | 0.5      | 572 - 0.703                | 1100    |                 |                                |             |
| M5    | 0 662 - 0 682   | 750     | 13   | 0.662 - 0.672   | 1000 | 1                  | d        | Hybrid.                    | I-ha    | nd f            | or detectio                    | n           |
|       | 0.002 0.002     | 100     | 14   | 0.673 - 0.683   | 1000 |                    |          | irysiia.                   | 1 50    |                 |                                | ́" Ц        |
| M6    | 0.739 - 0.754   | 750     | 15   | 0.743 - 0.753   | 1000 |                    |          |                            | M-      | banc            | d for FRP                      |             |
| 12    | 0.846 - 0.885   | 375     | 2    | 0.841 - 0.876   | 250  | 2                  | <b>C</b> | 120 1.000                  |         |                 | 8                              |             |
| M7    | 0.846 - 0.885   | 750     | 16   | 0.862 - 0.877   | 1000 | 2                  | 07       | 720 - 1 000                | 1100    |                 |                                |             |
| M8    | 1.230 - 1.250   | 750     | 5    | SAME            | 500  |                    | I_F      | hand                       | 375m    | resc            | olution                        |             |
| M9    | 1.371 - 1.386   | 750     | 26   | 1.360 - 1.390   | 1000 |                    | · · ·    | sana.                      |         | 1030            |                                |             |
| 13    | 1.580 - 1.640   | 375     | 6    | 1.628 - 1.652   | 500  |                    |          |                            | low 4   | μm              | (I4) saturat                   | tion        |
| M10   | 1.580 - 1.640   | 750     | 6    | 1.628 - 1.652   | 500  | 3a                 |          |                            | noor    | ians            | l for EPD                      |             |
| M11   | 2 225 - 2 275   | 750     | 7    | 2.105 - 2.155   | 500  |                    |          |                            |         | Sigilo          |                                |             |
| 14    | 3.550 - 3.930   | 375     | 20   | 3.660 - 3.840   | 1000 | Rh                 |          | SAME                       | 1100    |                 |                                |             |
| M12   | 3 660 - 3 840   | 750     | 20   | SAME            | 1000 | 3b                 | 3.5      | 550 - 3.930                | 1100    |                 |                                |             |
|       |                 |         | 21   | 3.929 - 3.989   | 1000 |                    | 1        |                            |         |                 |                                |             |
| M13   | 3.973 - 4.128   | 750     | 22   | 3.929 - 3.989   | 1000 |                    |          |                            |         |                 |                                |             |
|       |                 |         | 23   | 4.020 - 4.080   | 1000 |                    |          |                            |         |                 |                                |             |
| M14   | 8 400 - 8 700   | 750     | 29   | SAME            | 1000 |                    |          |                            |         |                 |                                |             |
| M15   | 10.263 - 11.263 | 750     | 31   | 10.780 - 11.280 | 1000 | 4                  | 10.3     | 300 - 11.300               | 1100    |                 |                                |             |
| 15    | 10 500 12 100   | 275     | 31   | 10.780 - 11.280 | 1000 | 4                  | 10.3     | 300 - 11.300               | 1100    |                 | 10 200 12 000                  | 550         |
| GI    | 10.300 - 12.400 | 313     | 32   | 11.770 - 12.270 | 1000 | 5                  | 11.5     | 500 - 12.500               | 1100    | пкD             | 10.300 - 12.900                | 550         |
| M16   | 11.538 - 12.488 | 750     | 32   | 11.770 - 12.270 | 1000 | 5                  | 11.5     | 500 - 12.5 <mark>00</mark> | 1100    |                 |                                |             |



 Product performance requirements from JPSS L1RD supplement (threshold) versus observed/validated

| Active Fires                                    |                           |                                                |               |                     |  |  |
|-------------------------------------------------|---------------------------|------------------------------------------------|---------------|---------------------|--|--|
| ATTRIBUTE                                       | THRESHOLD                 |                                                | OBJECTIVE     |                     |  |  |
| a. Horizontal Cell Size                         |                           |                                                |               | _                   |  |  |
| 1. Nadir                                        | 0.80 km                   | Current                                        | 0.25 km       | Target              |  |  |
| 2. Worst case                                   | 1.6 km                    | operational                                    |               | operational         |  |  |
| b. Horizontal Reporting Interval                | HCS                       | 750m NDE                                       |               | 375m NDE            |  |  |
| c. Horizontal Coverage                          | Global                    | products                                       | Global        | products            |  |  |
| d. Mapping Uncertainty, 3 sigma                 | 1.5 km                    |                                                | 0.75 km       |                     |  |  |
| e. Measurement Range                            |                           |                                                |               |                     |  |  |
| 1. Fire Radiative Rower (FRP)                   | 1.0 to 5.0 (10            | )) <sup>3</sup> MW                             | 1.0 to 1.0 (1 | 10) <sup>4</sup> MW |  |  |
| 2. Sub-pixel Average Temperature of Active Fire | N/A                       |                                                | N/A           |                     |  |  |
| 3. Sub-pixel Area of Active Fire                | N/A                       |                                                | N/A           |                     |  |  |
| f. Measurement Uncertainty                      |                           |                                                |               |                     |  |  |
| 1. Fire Radiative Rower (FRP)                   | 50%                       |                                                | 20%           |                     |  |  |
| 2. Sub-pixel Average Temperature of Active Fire | N/A                       |                                                | N/A           |                     |  |  |
| 3. Sub-pixel Area of Active Fire                | N/A                       |                                                | N/A           |                     |  |  |
| g. Refresh                                      | At least 90% hours (month | coverage of the globe every 12<br>hly average) | N/A           |                     |  |  |

#### **IPSE** NDE/STAR VIIRS Active Fire Production Status

| Algorithm              | Suomi NPP                                                  | NOAA-20                                                    |
|------------------------|------------------------------------------------------------|------------------------------------------------------------|
| 750m M-band            | NDE<br>Operational since<br>March 15, 2016                 | NDE<br>Operational since<br>August 13, 2018                |
| 375m/750m I/M-<br>band | STAR<br>Systematic<br>production since<br>January 30, 2018 | STAR<br>Systematic<br>production since<br>February 5, 2018 |

#### • CSPP

- 750m product included
- 375m product delivered to CSPP for integration
- Both Suomi NPP and NOAA-20

#### HRRR-smoke

- Non-operational products provided through STAR ftp
- Operational products through PDA

#### VIIRS 750m Active fires on January 5, 2018

Suomi NPP 5:11 UTC (operational) Level 2 product



#### NOAA-20 6:01 UTC (early example – evaluation ongoing)



Fires in Western US VIIRS 750m FRP August 20, 2018 ~20:40 UTC NOAA-20 - daytime

JSTAR Mappe

٢



JSTAR Mappe


#### 10-min granule

#### 1: S-NPP/VIIRS 1810UTC



#### 10-min granule

1: S-NPP/VIIRS 1810UTC \* S-NPP VIIRS 750m fire pixels



#### 2x86sec granule

#### 2: NOAA-20/VIIRS 1900UTC



2x86sec granule

2: NOAA-20/VIIRS 1900UTC \* S-NPP VIIRS 750m fire pixels o NOAA-20 VIIRS 750m fire pixels



10-min granule

3: S-NPP/VIIRS 1950UTC \* S-NPP VIIRS 750m fire pixels o NOAA-20 VIIRS 750m fire pixels



10-min granule

3: S-NPP/VIIRS 1950UTC \* S-NPP VIIRS 750m fire pixels o NOAA-20 VIIRS 750m fire pixels



## **Quality flags and quality indicators**

| Output                       | Туре                          | Description          |                                                         | Bits                                  | Description                                                                                                       |
|------------------------------|-------------------------------|----------------------|---------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Fire Mask                    | 8-bit<br>unsigned<br>integer  | Missing – 0          | Missing input data                                      | 0-1<br>2                              | Surface Type (water=0, coastal=1, land=2)<br>EDR ground bowtie deletion zone (0=false, 1=true)                    |
|                              |                               | Scan – 1             | On-board bowtie deletion                                | 3<br>4                                | Atmospheric correction performed (0=false, 1=true)<br>Day/Night (daytime = 1, nighttime = 0)                      |
|                              |                               | Other – 2            | Not processed (obsolete)                                | 5                                     | Potential fire (0=false, 1=true)                                                                                  |
|                              |                               | Water – 3            | Pixel classified as non-fire water                      | 7-10<br>11                            | Background window size parameter<br>Fire Test 1 valid (0 - No, 1 - Yes)                                           |
|                              |                               | Cloud – 4            | Pixel classified as cloudy                              | 12<br>13<br>14                        | Fire Test 2 valid (0 - No, 1 - Yes)<br>Fire Test 3 valid (0 - No, 1 - Yes)<br>Fire Test 4 valid (0 - No, 1 - Yes) |
|                              |                               | No Fire – 5          | Pixel classified as non-fire land                       | 15<br>16                              | Fire Test 5 valid (0 - No, 1 - Yes)<br>Fire Test 6 valid (0 - No, 1 - Yes)                                        |
|                              |                               | Unknown – 6          | Pixel with no valid background pixels                   | 17-19<br>20<br>21                     | spare<br>Adjacent clouds (0/1)<br>Adjacent water (0/1)                                                            |
|                              |                               | Fire Low – 7         | Fire pixel with confidence strictly less than 20% fire  | 22-23<br>24<br>25                     | Sun Glint Level (0-3)<br>Sun Glint rejection<br>False Alarm (excessive rejection of legitimate background pixels) |
|                              |                               | Fire Medium – 8      | Fire pixel with confidence                              | 26<br>27<br>28                        | Amazon forest-clearing rejection test<br>False alarm (rejection of water pixel due to land or coastal background) |
|                              |                               |                      | between 20% and 80%                                     | 29-31                                 | spare                                                                                                             |
|                              |                               | Fire High – 9        | Fire pixel with confidence greater than or equal to 80% | New information has been added on bow |                                                                                                                   |
| Fire<br>Algorithm<br>QA Mask | 32-bit<br>unsigned<br>integer | Details in Table 1-5 |                                                         | tie de                                | letion.                                                                                                           |









STAR JPSS Annual Science Team Meeting, August 27-30, 2018





STAR JPSS Annual Science Team Meeting, August 27-30, 2018



















## **OSPO** product monitoring





## **OSPO** product monitoring

| <u>F</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp — — — — — — — — — — — — — — — — — — — |                                                                                                                                                                                                                                    |    |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|--|--|
| 📔 Inbox (6,008) - zhaohu 🗙 🛛 🔺 J-1 Acti                                                                                                    | re Fire ORR - G 🗙 🛛 🧱 National Oceanic and 🗙 🖌 🌀 JPSS JERD - Google Se 🗙 🛛 🌞 Options 🛛 🗙 🛛 prodmond/mtool/ 🛛 🗙 Product Monitor - Plotting 🗙                                                                                        | +  |  |  |  |  |  |  |  |  |
| $(\leftarrow) \rightarrow \mathbf{C} \mathbf{\hat{c}}$                                                                                     | ) prodmond/mtool/new_prodmon_plot_ts.html … 🛛 🏠 🔍 Search 👱 🛝 🖸                                                                                                                                                                     | ₽  |  |  |  |  |  |  |  |  |
| 🌣 Most Visited 🛞 Getting Started 🔊 L                                                                                                       | test Headlines 🕂 Time & Attendance  😈 Royal Caribbean Cruis 🝐 FY16 PSDI Funding - G 🛞 PATRON ல Course: Project Mana 🛞 Index of ftp://cw-okea                                                                                       | >> |  |  |  |  |  |  |  |  |
|                                                                                                                                            | (Year=NULL means start/end at first/last available data point.)                                                                                                                                                                    |    |  |  |  |  |  |  |  |  |
| Product Group:                                                                                                                             | Graphing Options: Draw line Invert y-axis Draw 'Good' Thresholds (if available)                                                                                                                                                    |    |  |  |  |  |  |  |  |  |
| NPP_ACTIVE_FIRE                                                                                                                            | NPP_ACTIVE_FIRE MEANFRP<br>REFRESH-RATE                                                                                                                                                                                            |    |  |  |  |  |  |  |  |  |
| Product Name:                                                                                                                              | 1000                                                                                                                                                                                                                               |    |  |  |  |  |  |  |  |  |
| npp_active_fire 🗹                                                                                                                          | 900 -                                                                                                                                                                                                                              |    |  |  |  |  |  |  |  |  |
| Data Name and Options:                                                                                                                     | 800 -                                                                                                                                                                                                                              |    |  |  |  |  |  |  |  |  |
| mask8Pct ^                                                                                                                                 | 700 -                                                                                                                                                                                                                              |    |  |  |  |  |  |  |  |  |
| mask9Pct<br>meanERP                                                                                                                        | 600 -                                                                                                                                                                                                                              |    |  |  |  |  |  |  |  |  |
| totFRP                                                                                                                                     | 500 - +                                                                                                                                                                                                                            |    |  |  |  |  |  |  |  |  |
| refresh-rate ~                                                                                                                             |                                                                                                                                                                                                                                    |    |  |  |  |  |  |  |  |  |
|                                                                                                                                            |                                                                                                                                                                                                                                    |    |  |  |  |  |  |  |  |  |
|                                                                                                                                            |                                                                                                                                                                                                                                    |    |  |  |  |  |  |  |  |  |
|                                                                                                                                            |                                                                                                                                                                                                                                    |    |  |  |  |  |  |  |  |  |
|                                                                                                                                            |                                                                                                                                                                                                                                    |    |  |  |  |  |  |  |  |  |
| Up to 4 data names can be plotted                                                                                                          | on $\overline{}$                                                                                                                                                                                                                   |    |  |  |  |  |  |  |  |  |
| one plot.                                                                                                                                  | ້ອງ ເບັ້ນ ເບັ້ນ<br>ເບັ້ນ ເບັ້ນ ເບັ |    |  |  |  |  |  |  |  |  |
| Submit                                                                                                                                     | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0                                                                                                                                                                                           |    |  |  |  |  |  |  |  |  |
|                                                                                                                                            | وفت                                                                                                                                                                                            |    |  |  |  |  |  |  |  |  |
|                                                                                                                                            |                                                                                                                                                                                                                                    | ×  |  |  |  |  |  |  |  |  |



- OSPO / Hazard Mapping System
  - VIIRS 375m fire data processing (including visualization by-products) is up an running at OSPO/SPSD/SAB
  - Final shake down taking place in HMS development environment
  - Full operational use to start in the next 1-2 weeks
  - New data will replace 750m fire product/imagery
- STAR
  - Systematic global production
  - Partnership with OSPO and ESRL for impact assessment / demonstration
  - Work towards NDE implementation



### Fires in Greece on July 23, 2018

#### VIIRS 375m product generated at STAR





#### VIIRS 750m vs. 375m













- Detection rates relative to the experimental 375m I/M "hybrid" product as a function of the number of I-band resolution detections within the M-band pixel footprint
- Frequency of M-band detections without a single I-band detection were used as a proxy for commission errors
- Increase of detection rates with increasing number of I-band detections
- Good consistency of detection rates between Suomi NPP and NOAA-20
- Significant differences between daytime and nighttime detection rates, indicating a more conservative performance of the nighttime M-band algorithm



Daytime (left) and nighttime (right) relative detection performance between the operational 750m M-band and the experimental 375m I/M-band VIIRS active fire products



## **User Feedback**

| Name                                | Organization | Application                                | User Feedback                                                                                                                      |
|-------------------------------------|--------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Ravan<br>Ahmadov                    | NOAA ESRL    | High Resolution<br>Rapid Refresh-<br>Smoke | Plans to use the NOAA-20 VIIRS FRP<br>data in HRRR-Smoke forecasting.<br>Working on sample files to modify<br>preprocessing tools. |
| John Simko                          | OSPO SAB     | Hazard Mapping<br>System                   | Working towards bringing the 375m I/M<br>into OSPO production over HMS<br>domain                                                   |
| Shobha<br>Kondragunta               | STAR         | eIDEA, GBBEP                               | Incorporate NOAA-20 products into eIDEA                                                                                            |
| Jerry Zhan                          | STAR         | Surface Type<br>Change                     | Plan to use NDE Active Fire information                                                                                            |
| Andy<br>Edman                       | NWS          | Fire weather                               | Increasing need for data with the onset<br>of the fire season                                                                      |
| Tony Salemi                         | NCEP         |                                            | TBC                                                                                                                                |
| Natalia<br>Donoho and<br>HongmingQi | OSPO         | GEONETCast                                 | Plan to replace the SNPP Active Fire with N20 Active Fire                                                                          |
| Tom<br>Sheasby                      | EUMETSAT     |                                            | Evaluating the sample files                                                                                                        |



- 750m algorithm and product improvements
  - Edge effect (no complete windows for spatial heterogeneity test in first and last scan of the granule)
    - Re-configure processing to rolling triplets of granules
  - Conservative spatial heterogeneity tests
    - Further algorithm tuning
  - Conservative nighttime detection thresholds
    - Algorithm tuning
  - No atmospheric correction for FRP
    - Develop / implement atmospheric correction
- Future Cal/Val activities / milestones
  - Validated maturity
    - Including validation with new in-situ data
  - 375m (I-band) transition



- 375m algorithm and product
  - Proven high quality performance
  - Continues to rely on M13 for FRP retrieval
  - Has been produced systematically in STAR's computing environment
  - Needs operational data flow of unaggregated dual-gain
    M13 data into NDE
  - OSPO limited operational processing also used for impact assessment
- Multi-satellite observing system
  - Enterprise algorithm elements
  - Leverage spatial and temporal coverage between polar and geostationary
  - Common physical basis; differences in current implementation between GEO and LEO



## Fires, Smoke, and Air Quality

#### Shobha Kondragunta

NOAA/NESDIS Center for Satellite Applications and Research

#### Chuanyu Xu and Hai Zhang

IMSG

**Ravan Ahmadov** 

NOAA/ESRL





# **Biomass Burning**

- Fires release large amounts of aerosols into the atmosphere that have adverse affects on human health and economy
  - Long range transport of smoke from fires impacts air quality in downwind regions. Worldwide 250,000 premature deaths per year (Jacobson, JGR, 2014).
  - Impacts national parks, monuments, and transportation due to reduced visibility.

## Ft. McMurray Fire, Canada, May 2016





# **Types of Fires**













# **Trends in Fire Activity**



Zhang, X., Kondragunta, S., and Roy, D.P., 2014. Interannual variation in biomass burning and fire seasonality derived from geostationary satellite data across the contiguous United States from 1995 to 2011. *Journal of Geophysical Research-Biogeosciences*, <u>http://dx.doi.org/10.1002/2013JG002518</u>.







- > Near real time information from satellites that models need
  - Fire location yes
  - Fire Radiative Power (a proxy to calculate emissions) yes
  - Fire duration (if satellite is in geostationary orbit) yes
  - Plume injection *no*
  - Aerosol composition no









# **Air Quality Predictions**



High Resolution Rapid Refresh (HRRR-Smoke) Model



HRRR Vertically Intergrated Smoke  $(mg/m^2)$  08–19–2018 06:00 Forecast time: 01



$$AOD = n_c x f$$

 $\begin{array}{l} n_c \text{ is column} \\ \text{concentration} \\ (mg/m^2); \ \beta \ \text{is mass} \\ \text{extinction efficiency} \\ (m^2/g) \end{array}$ 



HRRR Smoke AOD 08-19-2018 06:00 Forecast time: 01



# Evaluation of HRRR-Smoke using VIIRS AOD

## Caveats – VIIRS AOD

- VIIRS AOD has gaps
  - Clouds
  - Very thick smoke
    - Cloud mask calls smoke confidently cloudy
    - AODs are out of range (> 5.0)
- VIIRS smoke mask is qualitative indicator of smoke and only 80% accurate

## Caveats – HRRR Smoke

- Simple scaling of particle concentration to AOD
- No secondary aerosol formation
- No hygroscopic particle growth



# **Match-Up Criteria**

- □ VIIRS AOD pixels in a granule with co-existing VIIRS smoke mask are retained as "smoke AOD"
- VIIRS smoke AOD re-mapped to 0.05° x 0.05°
- □ HRRR smoke AOD re-mapped to 0.05° x 0.05°
- $\square$  Each VIIRS granule matched to HRRR-Smoke ±30 minutes of VIIRS overpass time





## **Match-Up Criteria**

VIIRS SMoke AOD 201808192010



11


12

# HRRR-Smoke vs. VIIRS Smoke AOD

HRRR Smoke AOD 20180819



Likely source of bias:

- Transported smoke
- Fire emissions
- Matchup method



# HRRR-Smoke vs. VIIRS Smoke AOD

13









- Analyzed one week of data but presented only one day of comparisons
- HRRR-Smoke model spatial patterns of smoke agree well with VIIRS observations matched up in space and time;
  - For qualitative applications such as informing field forecasters, IMETs et al. about locations of smoke, the model is performing very well.
- HRRR-Smoke model column aerosol concentrations are under-predicted and therefore AOD. HRRR-Smoke surface PM2.5 concentrations are likely correct
- The entire month of August data will be analyzed and stratified statistics will be generated to understand model performance for smoke events with smoke generated locally vs. transported smoke from Canada into the US domain;
- ➢ GOES-16 ABI AOD shows that smoke plume spatial patterns change rapidly
- Better matchups with GOES-16 ABI AOD expected to improve the matchups and results





### **Rapid Refresh and High-Resolution Rapid Refresh with Smoke** (RAP/HRRR-Smoke experimental forecast models)

Ravan Ahmadov<sup>1,2</sup> (ravan.ahmadov@noaa.gov)

Acknowledgement: E. James<sup>1,2</sup>, G. Grell<sup>2</sup>, C. Alexander<sup>2</sup>, S.Benjamin<sup>2</sup>, B.Jamison<sup>1,2</sup>, M. Pagowski<sup>1,2</sup>, J. Hamilton<sup>1,2</sup>, S. Albers<sup>7,2</sup>, J. Stewart<sup>7,2</sup>, S. Freitas<sup>3</sup>, G. Pereira<sup>4</sup>, I. Csiszar<sup>5</sup>, M. Tsidulko<sup>8</sup>, W.Straka<sup>6</sup>, B. Pierce<sup>6</sup>, S. McKeen<sup>1,2</sup>, S.Kondragunta<sup>5</sup>, A. Edman<sup>9</sup>, M. Goldberg<sup>10</sup>, B. Sjoberg<sup>10</sup> JPSS proving ground and risk reduction program Western Region office, NWS <sup>1</sup> Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO, USA <sup>2</sup> Earth System Research Laboratory, NOAA, Boulder, CO, USA <sup>3</sup>NASA Goddard Space Flight Center & USRA/GESTAR, Greenbelt, MD, USA <sup>4</sup> Federal University of São João del-Rei, MG, Brazil <sup>5</sup> Center for Satellite Applications and Research, NOAA/NESDIS, College Park, MD, USA, <sup>6</sup> Advanced Satellite Products Branch, Center for Satellite Applications and Research, NOAA/NESDIS, Madison, WI, USA <sup>7</sup> Cooperative Institute for Research in the Atmosphere, MD, USA <sup>8</sup> I.M. Systems Group, Inc, Rockville, MD, USA <sup>9</sup> National Weather Service, NOAA, USA <sup>10</sup> NOAA's Joint Polar Satellite System Program Office

STAR JPSS annual conference August 28, 2018





Smoke and haze from wildfires hovers over the skyline Thursday, Oct. 12, 2017, in San Francisco. Gusting winds and dry air forecast for Thursday could drive the next wave of devastating wildfires. (Eric Risberg / Associated Press)



There is a high demand for high-resolution smoke forecasts over the US for different applications:

- > Air quality forecasting
- Visibility (transportation, aviation...)
- Smoke impact on meteorology to improve weather forecasting



### HRRR-Smoke model

The main strengths of the HRRR-Smoke modeling system:

- First, we take advantage of the existing NWP systems by adding a single tracer (smoke) to GSD's HRRR model.
- It is a 3D model running on high spatial resolution (3km) to allow simulation of mesoscale flows and smoke dispersion over complex terrain.
- Full coupling between meteorology and smoke: feedback of smoke on predicted radiation, cloudiness, and precipitation.
- Biomass burning emissions and inline plume rise parameterization based on the satellite FRP data.
- A rapidly updating data assimilation cycle for meteorology;
- HRRR-Smoke uses meteorological input data prepared by the GSI data assimilation system and boundary conditions from Rapid Refresh (RAP).
- Currently the forecast lead time is 36 hours. Four times a day (00, 06, 12 and 18UTC) a new forecast starts. We plan to simulate smoke within HRRRX with hourly refresh cycle.



Operational weather forecast models at NWS: RAP (white), 13km resolution HRRR model domains (green), **3km** resolution (https://rapidrefresh.noaa.gov/)

### Mapping the VIIRS and MODIS FRP data to the HRRR-Smoke CONUS grid

The clustering procedure performs a combination of all detected fires from VIIRS and MODIS according to the model spatial resolution and grid configuration.



Averaged satellite FRP data mapped over 3x3km HRRR CONUS grid pixels for August 19, 2018



#### Experimental RAP-Smoke (13.5 km resolution) model development

- Covers the entire North America
- Taking advantage of the global satellite data from VIIRS and MODIS
- Feeds boundary conditions for smoke to the HRRR-Smoke over the CONUS domain
- Enables capturing smoke transport from Canada and Mexico to the CONUS domain
- Forecast lead time is 48 hours. A new forecast starts every 6 hours.
- The experimental smoke forecast products are displayed: https://rapidrefresh.noaa.gov/RAPsmoke/



#### HRRR-Smoke Model Fields - Experimental

Model: HRRR-smoke (Experimental) Area: Full Date: 19 Aug 2018 - 00Z

\*\*\* Experimental forecast, use at your own risk \*\*\* - Quick Guide RAP-Smoke (North America domain, 13.5 km resolution)

Visualization on Interactive Map

#### **VIIRS Active fire quick guide**

Model: HRRR-smoke (Experimental) ODmain: Full ODate: 19 Aug 2018 - 002 O

|                             |       |      |     | Valid Time |     |     |     |     |     |      |           |     |                 |           |           |           |            |           |           |           |           |           |     |           |     |     |      |     |     |      |     |     |           |           |           |     |           |           |           |
|-----------------------------|-------|------|-----|------------|-----|-----|-----|-----|-----|------|-----------|-----|-----------------|-----------|-----------|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----|-----------|-----|-----|------|-----|-----|------|-----|-----|-----------|-----------|-----------|-----|-----------|-----------|-----------|
|                             |       |      | Sun | Sun        | Sun | Sun | Sun | Sun | Sun | Sun  | Sun       | Sun | Sun             | Sun       | Sun       | Sun       | Sun        | Sun       | Sun       | Sun       | Sun       | Sun       | Sun | Sun       | Sun | Sun | Mon  | Mon | Mon | Mon  | Mon | Mon | Mon       | Mon       | Mon       | Mon | Mon       | Mon       | Mon       |
|                             |       |      | 00  | 01         | 02  | 03  | 04  | 05  | 06  | 07   | 08        | 09  | 10              | 11        | 12        | 13        | 14         | 15        | 16        | 17        | 18        | 19        | 20  | 21        | 22  | 23  | 00   | 01  | 02  | 03   | 04  | 05  | 06        | 07        | 08        | 09  | 10        | 11        | 12        |
|                             | All   | Leen |     |            | •   |     |     |     |     |      |           |     |                 |           |           |           |            |           |           | F         | Forecast  |           |     |           |     |     |      |     |     |      |     |     |           |           |           |     |           |           |           |
|                             | times | Loop | 00  | 01         | 02  | 03  | 04  | 05  | 06  | 07   | 08        | 09  | 10              | 11        | 12        | 13        | 14         | 15        | 16        | 17        | 18        | 19        | 20  | 21        | 22  | 23  | 24   | 25  | 26  | 27   | 28  | 29  | 30        | 31        | 32        | 33  | 34        | 35        | 36        |
| all fields                  |       |      | 00  | 01         | 02  | 03  | _04 | 05  | 06  | _07  | 08        | 09  | 10              |           | 12        | 13        | _14        | 15        | <u>16</u> | _17       | 18        | <u>19</u> | 20  | 21        | 22  | 23  | 24   | 25  | 26  | 27   | 28  | 29  | 30        | 31        | 32        | 33  | 34        | 35        | 36        |
| fire radiative power        | <     | -    | 00  | 01         | 02  | 03  | _04 | 05  | 06  | _07_ | 08        | 09  | 10              |           | 12        | <u>13</u> | _14        | <u>15</u> | <u>16</u> | _17       | <u>18</u> | <u>19</u> | 20  | 21        | 22  | 23  | _24  | 25  | 26  | _27  | 28  | 29  | 30        | <u>31</u> | <u>32</u> | 33  | <u>34</u> | 35        | <u>36</u> |
| near-surface smoke          | ~     | ~    | 00  | 01         | 02  | 03  | _04 | 05  | 06  | _07  | 08        | 09  | 10              |           | 12        | <u>13</u> | _14        | <u>15</u> | <u>16</u> | _17       | <u>18</u> | <u>19</u> | 20  | 21        | 22  | 23  | _24  | 25  | 26  | _27  | 28  | 29  | 30        | <u>31</u> | 32        | 33  | <u>34</u> | 35        | 36        |
| 1000 ft AGL smoke           | ~     | -    | 00  | 01         | 02  | 03  | _04 | 05  | 06  | _07  | 08        | 09  | <u>   10   </u> |           | 12        | <u>13</u> | _14        | <u>15</u> | <u>16</u> | _17       | <u>18</u> | <u>19</u> | 20  | 21        | 22  | 23  | _24  | 25  | 26  | _27  | 28  | 29  | 30        | <u>31</u> | <u>32</u> | 33  | <u>34</u> | 35        | 36        |
| 6000 ft AGL smoke           | <     | 1    | 00  | 01         | 02  | 03  | 04  | 05  | 06  | _07_ | 08        | 09  | <u>   10   </u> |           | <u>12</u> | <u>13</u> | _14        | <u>15</u> | <u>16</u> | _17_      | <u>18</u> | <u>19</u> | 20  | <u>21</u> | 22  | 23  | _24  | 25  | 26  | _27_ | 28  | 29  | 30        | <u>31</u> | 32        | 33  | <u>34</u> | 35        | 36        |
| vertically integrated smoke | ~     | ~    | 00  | 01         | 02  | 03  | _04 | 05  | 06  | _07_ | <u>08</u> | 09  | <u>   10   </u> | <u>11</u> | <u>12</u> | <u>13</u> | <u>_14</u> | <u>15</u> | <u>16</u> | <u>17</u> | <u>18</u> | <u>19</u> | 20  | <u>21</u> | 22  | 23  | _24_ | 25  | 26  | _27_ | 28  | 29  | <u>30</u> | <u>31</u> | <u>32</u> | 33  | <u>34</u> | <u>35</u> | <u>36</u> |
| 10m wind                    | -     | 1    | 00  | 01         | 02  | 03  | 04  | 05  | 06  | 07   | 08        | 09  | 10              |           | 12        | 13        | _14        | 15        | 16        | _17       | <u>18</u> | 19        | 20  | 21        | 22  | 23  | 24   | 25  | 26  | 27   | 28  | 29  | 30        | 31        | 32        | 33  | 34        | 35        | 36        |
| 1h precip                   | ~     | -    |     | 01         | _02 | 03  | _04 | 05  | 06  | _07  | 08        | 09  | <u>   10   </u> |           | 12        | <u>13</u> | _14        | <u>15</u> | <u>16</u> | _17_      | <u>18</u> | <u>19</u> | 20  | 21        | 22  | 23  | _24  | 25  | 26  | _27  | 28  | 29  | 30        | <u>31</u> | <u>32</u> | 33  | <u>34</u> | 35        | 36        |
| 2m temperature              | ~     | ~    | 00  | 01         | 02  | 03  | _04 | 05  | 06  | _07_ | 08        | 09  | 10              |           | 12        | <u>13</u> | _14        | <u>15</u> | <u>16</u> | _17       | <u>18</u> | <u>19</u> | 20  | 21        | 22  | 23  | _24  | 25  | 26  | _27_ | 28  | 29  | 30        | <u>31</u> | 32        | 33  | <u>34</u> | 35        | 36        |
| surface visibility          | -     | 1    | 00  | 01         | 02  | 03  | 04  | 05  | 06  | _07  | 08        | 09  | 10              |           | 12        | 13        | _14        | 15        | <u>16</u> | 17        | <u>18</u> | 19        | 20  | 21        | 22  | 23  | 24   | 25  | 26  | 27   | 28  | 29  | 30        | 31        | 32        | 33  | <u>34</u> | 35        |           |
| process contion WE CAN CNI  |       |      |     |            |     |     |     |     |     |      |           |     |                 |           |           |           |            |           |           |           |           |           |     |           |     |     |      |     |     |      |     |     |           |           |           |     |           |           |           |

#### Experimental smoke forecast for August 19, 2018 (rapidrefresh.noaa.gov/hrrr/HRRRsmoke/)

This plot shows simulated fine particulate matter (PM2.5 or fire smoke) concentrations and wind at the first model level (~8m above ground). This is the experimental forecast of the near-surface fire smoke for August 19, 6pm EDT over the CONUS. This forecast is based on the model simulation of 24 hours from the model initialization time, which is 6pm EDT, August 18, 2018.



#### Experimental smoke forecast for August 19, 2018 (rapidrefresh.noaa.gov/hrrr/HRRRsmoke/)

This plot shows simulated vertically integrated fire emitted fine particulate matter (PM2.5 or fire smoke) concentrations for the same forecast date/time as in previous slide.



### Numerous wildfires in the northwestern US last summer





### AOD from HRRR-Smoke





# Qualitative verification of a recent HRRR-Smoke forecast using the S-NPP nighttime images





## **Experimental surface visibility forecasts**



50



Experimental NWP system w/o smoke

Experimental NWP system with smoke

Visibility is an important forecast product (traffic, aviation...)



# Verification of the surface visibility forecasts over the western US

#### CSI (Critical Success Index), (visibility < 10 mi), forecast length: 12h, average over the domain



# Thank you for your attention

Core

0



date acquired December 13, 2017







# NWS/WR Science and Technology Infusion Division (STID)







Andy Edman JPSS Conference Aug 28, 2018

### Key Points:

- Madison Sat Conf world is changing
  - Value of sat obs based on their impact to modeling this project is a good example
- Great teamwork
  - Improved FRP + HRRR upgraded with aerosols -> HRRR Smoke
- FY18 Summer fire season optimal for smoky fires
  - Deep unstable layers weak transport winds
- R&D project but WFO and Public acceptance very good
  - HRRR animations very successful

#### New Series - Highlight emerging new science tools to improve IDSS messaging and community impacts

#### Major upgrades to HRRR Smoke

With the fire season starting, there are some important improvements to thw developmental HRRR smoke effort, based partially on WR Feedback

#### Key Points:

• The largest scale for smoke assimilation has been expanded to include Alaska, Canada and Mexico. This will better capture fire events over North America where the smoke drifts down into the CONUS - see domain below

Special thanks to Chris Gibson (SOO-Missoula) and Ron Miller (SOO-Spokane) for their feedback last year on this issue, it did have an impact!

The EPA was also very interested in this capability as the HRRR represents the next generation aerosol modeling capability and smoke affects community air pollution attainment far downstream of the fires

. How does this work? As a reminder, the RAP model provides the background initial conditions to the hourly 3km CONUS HRRR

#### » Link to the RAP based smoke - https://rapidrefresh.noaa.gov/RAPsmoke/

a Link to the HRRR \$moke CONUS - https://rapidrefresh.nosa.gov/hrrr/HRRRsmoke/

. How does this capability compare with some of the other smoke options?

• The HRRR Smoke uses the satellite based Fire Radiative Power (FRP) to acquire the location of active fires. Most other smoke models rely on the smoke being detacted by ground aerosol observing systems. In essence the HRRR is the next generation approach to data assimilation and modeling --- much like how the HRRR data assimilates radar data to better capture thunderstorm activity. Both of these efforts are a work in progress!

#### Adding acrossi information will also improve other forecast elements, like temperature and precipitation forecasts

. The HRRR will be part of the NBM Blend

. These changes are making their way into each HRRR operational upgrade -- first baby step this summer

These changes are also informing decisions about what physics will be included in the new NCEP FV3

A special note: The Hawaiian volcano makes for an interesting tast. The FRP relies on the size and intensity of the heat signature. The FRP algorithm knows nothing about volcano is not producing that much smoke, it is useful test for an extreme high end heat event.

· Feedback requested: As we start another fire weather season your feedback is always appreciated and does have an impact







08-15 08-16 08-17 08-18 08-19 Click and drag in the plot area to zoom in. Click on the label in the legend to show or hide the line.

andye

HRRR smoke DSS messaging examples from last day(ish) -- note WAVE was used for many of the graphics

https://www.facebook.com/NWSSacramento/videos/1828276113875055/

https://www.facebook.com/NW/SHanford/videos/2069315783143888/

https://www.facebook.com/207213322649399/posts/1759572954080087/

https://www.facebook.com/157117197683462/posts/1895621047166393/

https://www.facebook.com/157117197683462/posts/1895386443856

https://www.weather.gov/lkn/

https://www.weather.gov/rev/



US National Weather Service Hanford California 🥏 July 17 - 🔗

High resolution smoke model showing the likely areas to be affected by fire from the Ferguson Fire. It should be noted the model assumes the fire remains constant, producing a continuous supply of smoke.

7.7K Views

24 Likes 14 Comments 88 Shares

## It just rained, so why is it so smoky?

By Laval Newlaws, KSL corts ( Posted - Aug 23rd: 2018 (): 5:44pm





10PM: It just rained, so why is it so smoky?

#### Show 2 more videos

SALT LAKE CITY --- Heavy August storms rolled through Utah Wednesday but left behind something a little puzzling: smoke.

Those hoping to finally see clear skies may have to wait a little longer. The front that brought the rain to the Beehive State also brought smoke from California and Oregon, according to a Facebook post from the Utah Department of Environmental Quality.



As the smoke plume settled, the air quality in most areas throughout the state remained moderate, but Tooele, Herriman, Rose Park and Weber County moved into the \*unhealthy for sensitive groups\* range. The department urged those with lung conditions to stay inside.

![](_page_99_Figure_1.jpeg)

![](_page_100_Picture_1.jpeg)

#### Elevated Fire Weather; Poor Air Quality This Week

#### Updates are Highlighted

#### Impacte

- · Potential rapid spread of fires
- Poor air quality for sensitive groups from wild fire smoke.

#### Forecast Confidence

High

#### Timing and Strength

- · Fire Weather

  - revealed on the state of the second state of the seco
- Isolated hunderstoms possible over the Coastal Range Friday attempon and evening (Updated)
  Brooke (See HRRR: Smoke of)
- Marker (See Price, Schwarg)
  As this cartiful to burn, sincke will cartiful to thi Interior northern California
  Areas of sincke will increase with fire activity from the Carr and Mendodino Complex fires
  Temperatures: [See MaxT Loop.gf)
  Today-Toursday, Not as hot; temperatures return to near or sightly above normal

#### Weather Summary

Area withfree continue to bring smoky conditions across surthern California, especially in the vicinity of the Carr and Metodocino Complex fires. Temperatures are expected be near or alghtly above normal into the weekend. Critical fee weather concerns for hidpes and caryons. Typystig through Setupting evening as winds increase with orshore flow. Monscored moteture apreeding north over the Coastal Hange may cause isolated thunderstorms has attend on and evening indep.

#### NWS will continue to provide updates as the situation develops.

Please do not reply to this email, rather contact NWS Sacramento at (916) 979-3045 for 24x7 forecaster assistance (please keep non-public)

Monitor NWS Sacramento Facebook, Twitter and Weather.gov for further updates.

You can help us by becoming a Weather Ready Nation Ambassadori (Click the WRN loon below for more information)

![](_page_100_Picture_24.jpeg)

#### 10 Attachmente

![](_page_100_Picture_26.jpeg)

Western Smoke Coverage

RECORD BREAKING FIRES

#### **Cliff Mass Weather and Climate Blog**

This blog discusses current weather, weather prediction, climate issues, and other topics

Sunday, August 26, 2018

Rain, Better Air Quality, And the End of Major Heat Waves for Perhaps the Rest of the Summer

![](_page_101_Picture_7.jpeg)

US. • Cirre + Justice | Energy + Environment | Editerre Weather | Space + Science  $P \equiv$ Smoke from the California wildfires is spreading 3,000 miles to New York City

Dysessical campisi and Haley Brink, CNN Dystated 8:33 AM ET, Fri August 10, 2018

![](_page_101_Picture_10.jpeg)

![](_page_101_Figure_11.jpeg)

5

(CNN) — Take a look at this forecast model from the National Weather Service. It shows how the smoke from the wildfires scorohing California is traveling thousands of miles. In this case, all the way to New York City -- about 3,000 miles away.

The weather service uses an experimental model that forecasts the spread of smoke from wildfires across the country. It says winds lift the smoke up and carry it across the US. And it doesn't stop there -- some of the particles move even beyond the East Coast.

#### (f) 🕒 📊

![](_page_101_Picture_15.jpeg)

Eos - Earth and Space Science News • 17/08 09:20 How Forecasting Models Are Changing the Way We Fight Fires

Eos speaks with Andy Edman, western region chief of the Science and Technology Infusion Division at the National Weather Service, about how the agency is helping wildfire crews fight fires from space.

(f) 🕒 📊

![](_page_101_Picture_19.jpeg)

The WR large airports were busy yesterday due to weather issues.

- SEA had 89 delays due to wildfire smoke and haze in the morning
- SFO had an all day GDP from low CIGs. 307 delays, 7 aircraft holds for 128 minutes and 37 diversions
- PHX had 53 delays and 5 diversions due to thunderstorms

Smoke and haze caused a 6.5 hour GDP at SEA that lasted until early afternoon. There were 158 delays.

![](_page_102_Picture_7.jpeg)

![](_page_103_Figure_1.jpeg)

![](_page_104_Picture_1.jpeg)

Click a location below for detailed forecast

![](_page_105_Figure_1.jpeg)

![](_page_106_Figure_1.jpeg)

### • FRP and HRRR-Smoke enhancements were significant

- 36 hour 3km animations are a huge selling point !!!!!
- Fires from Mexico, Canada and Alaska in RAP really helped
- Fire location/intensities were better
- OAR many model improvements really helped
- Reduced downtime helped with forecaster trust
- Helped with FV3 physics planning
- Used WAVE to make displays
- Still and R&D project
  - Smoke from Canadian fires a challenge
  - More verification and tuning
### Fire Weather/HRRR Smoke

#### Summary

- Science
  - HRRR Smoke shows how event will evolve
    - Organizations/people interested
  - Smoke distribution is not uniform either in horizontal and vertical HRRR Smoke shows this well
    - Nearby fires smoke under inversion
    - Distance generally above inversion but can mix down far downstream MN event
  - Impacts a number of forecast variables
- Societal
  - Affect health both near fire and distant EPA and local Air quality
  - Aircraft operations
  - Fire Operations
  - CALOES transportation Amtrak and highways
  - National Park Systems
  - Recreational and school sports
  - Visiual
- Educational opportunity
  - People are curious and want to know where smoke is coming from/when is it going to get better

Bottom-line: HRRR-Smoke is a foundational science change that helps everyone



# Support for Burned Area Debris Flow Forecasting Using VIIRS NDVI

Sam Batzli, Dave Parker, Russ Dengel, Nick Bearson Space Science & Engineering Center, University of Wisconsin-Madison

Ivan Csiszar NOAA/NESDIS – STAR Katherine Rowden NOAA/NWS – Spokane WFO







### Summary

The Problem: National Weather Service forecasters need timely burn intensity estimates to help forecast mud and debris flows following large wildland fires.

Landsat-derived Burned Area Reflectance Classification (BARC) maps from the US Forest Service and US Geological Survey are the gold standard for burn intensity estimates, *but they are often not available for forecasting* debris flows in a timely manner.

This project is intended to develop a semi-automated method for getting burn intensity information into the hands of forecasters sooner by:

- Using VIIRS data for a quicker, lower resolution estimation
- Automating processing to lower latency
- Providing forecasters a web-based tool to initiate processing and collect GIS-ready results





# Results from Previous Research

Feasibility Studies: R. Bradley Pierce, Ivan Cisizar, Katherine Rowden

- Successful test of VIIRS Change in Normalized Difference Vegetation Index (Delta-NDVI) product to provide a rapid assessment of burn scars.
- The VIIRS Delta-NDVI imagery provided timely information when clear, high-resolution imagery was not available.
- Identified need for Esri shapefiles, suitable for GIS debris flow model processing.
- Desire to streamline, automate, extend, and ultimately operationalize production.







## **Results from Previous Research**

Feasibility Studies: R. Bradley Pierce, Ivan Cisizar, Katherine Rowden





Jolly Mountain Fire: Difference between VIIRS NDVI on 20:43Z September 28, 2016 (pre-burn) and 20:41Z on September 26, 2017 (post-burn). Blue regions indicate reductions in NDVI following the Jolly Mountain Wildfire.





## **Results from Previous Research**

#### Feasibility Studies: R. Bradley Pierce, Ivan Cisizar, Katherine Rowden





Norse Peak Fire: Difference between VIIRS NDVI on 20:43Z September 28, 2016 (pre-burn) and 20:41Z on September 26, 2017 (post-burn). Blue regions indicate reductions in NDVI following the Norse Peak Wildfire.





### New Product

### **BRIDGE Maps:** Burn Intensity Delta Greenness Estimation

- BARC product is not intended to be used as an early warning tool.
- BRIDGE product will supplement, not replace BARC.
- BRIDGE product will evaluate NDVI from TOA (top of atmosphere), NDVI from TOC (top of canopy), and EVI (Enhanced Vegetation Index) from TOC in its production.
- BARC product is developed as a Delta NBR (Normalized Burn Ratio).
- NBR is not available as an operational and routinely produced VIIRS product at this time.
- This project will explore and test the potential for utilizing VIIRS NBR as well.

Integration of BRIDGE will result in improved situational awareness and will support decision making, especially before BAER assessment teams can deploy (typically at 80% containment) or before BARC maps are available.







## **Historical Analysis**

We are testing BRIDGE maps for historical Washington debris flow events that followed fires and also mapping fires from the past two years.

- 6/29/2013 2012 Peavine Fire
  - year after, so there was a BAER assessment
- 8/4/2013 2012 Wenatchee Fire
  - year after, so there was a BAER assessment
- 8/13/2013 2013 Colockum Tarps Fire
  - fire was still active, no BARC or BAER
- 8/21/2014 2014 Carlton Complex
  - fire was still active, no BAER team yet, there was a BARC, but it was not widely shared









#### Workflow for Automated VIIRS Burn Intensity Estimation: Satellite Inputs for Flash Flood and Debris Flow Situational Awareness and Modeling





## Summary of Tasks

Component 1: Web-Based Dashboard with RealEarth Map Embedded map with True/False color VIIRS imagery, NDVI, Active Fires, Cloud Mask, Current Large Fires, Burn Scar Maps, drop-down menus and drawing tools for user to select area of interest for analysis. **Component 2: Historical Fire Analysis** Run protocol with historical fires/burn scars that led to debris flow events. *Produce BRIDGE maps for large fires in recent years.* Component 3: Image Processing initiated by NWS-WFO Automate Delta-NDVI BRIDGE map production. Link dashboard controls to automated processing on dedicated server at UW-CIMSS. **Component 4: Results Visualized on Dashboard** Automate process of scaling and converting raster output to polygon Shapefile and GeoJSON for use in GIS. Display in Dashboard. **Component 5: Results Integrated into NWS-WFO Models** Evaluate effectiveness of BRIDGE maps in debris flow forecast models.



### **Component 1 Progress**

