

HYDROLOGY PRODUCTS OVERVIEW

Ralph Ferraro, NESDIS/STAR Ralph.R.Ferraro@noaa.gov

- Why we want to monitor it
- What do we consider as "Hydrology" Products?
 - Operational products
 - JPSS Baseline
 - Legacy POES baseline
 - Blended products (fall under both categories)
 - Emerging JPSS PGRR Products
- What we will hear in this session

Why We Need to Monitor and Understand it

This map denotes the approximate location for each of the 16 billion-dollar weather and climate disasters that impacted the United States during 2017.

Why We Need to Monitor and Understand it

This map denotes the approximate location for each of the 6 separate billion-dollar weather and climate disasters that impacted the United States from Jan–Jun 2018.

- JPSS Baseline products/systems
 - Primarily from ATMS, AMSR-2, VIIRS
- JPSS/Legacy POES "blended" products
 - Primarily MW driven, includes AMSU/MHS and non-NOAA satellites like GPM and DMSP
- JPSS Proving Ground Risk Reduction (PGRR) developmental products
 - Enhancements to baseline, could include data fusion with GOES and in-situ
 - Newer, pushing limits of sensor capabilities
- NOTE Many of the products are microwave sensor driven

Primary Operational Product Systems

(Support S-NPP, NOAA-20, GCOM, POES, others...)

- Microwave Integrated Retrieval System (MiRS)
 - <u>http://www.ospo.noaa.gov/Products/atmosphere/mirs/index.html</u>
- Microwave Snowfall Rate (SFR)
 - <u>http://www.ospo.noaa.gov/Products/atmosphere/mirs/index.html</u>
 - Also available on AWIPS
- NOAA Operational GCOM-W1 AMSR2 Products System (NOGAPS)
 - <u>http://www.ospo.noaa.gov/Products/atmosphere/gpds/</u>
- NESDIS Operational Soil Moisture Products (SMOPS)
 - <u>http://www.ospo.noaa.gov/Products/land/smops/index.html</u>
- Blended TPW/RR
 - <u>http://www.ospo.noaa.gov/Products/atmosphere/brr/</u>
- VIIRS snow and ice products
 - <u>https://www.star.nesdis.noaa.gov/jpss/EDRs/products_cryosphere.php</u>
 - <u>http://hippy.gina.alaska.edu/distro/ice_eval/</u>
 - <u>http://hippy.gina.alaska.edu/distro/ice_motion_eval/</u>
- Interactive MultiSensor Snow & Ice Mapping System (IMS)
 - <u>http://www.natice.noaa.gov/ims/index.html</u>

"Atmospheric Rivers" of High Concentrated Moisture into Alaska at 4 layers For a Week of Excessive Rainfall – Juneau, AK 11 & 13-14 December 2017 CIRA/Colorado State University Advected Layered Precipitable Water (ALPW) for 06 UTC 11 December 2017

CMORPH2 Precip Rate @ 2018.08.20 00:00Z (mm/hr)

AMSR-2 36.5CHz H-pol Date: 20180629-1218Z Storm Name: EMILIA Region: Eastern_Pacific AMSR2 L1B file: GW1AM2_201806290855_035B_L1SNBTBR_2220220.h5

JPSS PGRR Hydrology Initiative Projects/Participants FY15-FY17 (a few go into FY18)

Project Pl	Project Title		
Dave Gochis (NCAR)	Applying Snow Products from S-NPP JPSS and SNODAS to Seasonal Streamflow Forecasting at the NWS National Water Center		
Huan Meng (NESDIS/STAR)	Continued expansion, enhancement and evolution of the NESDIS snowfall rate product to support weather forecasting		
Pingping Xie (NWS/NCEP)	Reprocessing of JPSS precipitation and OLR products for improved operational climate applications		
John Forsythe <i>(CSU/CIRA)</i>	Using JPSS Retrievals to Implement a Multisensor, Synoptic, Layered Water Vapor Product for Forecasters		
Tony Wimmers <i>(UW/CIMSS)</i>	Strengthening TPW visualization in the OCONUS domain with JPSS data products		
Tarendra Lakhankar <i>(CUNY/CREST)</i>	Validation and Application of JPSS/GCOM-W Soil Moisture Data Product for operational flood monitoring in Puerto Rico		
Andi Walther (<i>UM/CIMSS</i>)	Further development of the VIIRS Nighttime Lunar Reflectance-derived Cloud Properties and the Demonstration for their use for Precipitation and Icing Applications		

Project Pl	Project Title		
Huan Meng (NESDIS/STAR)	Development of Snowfall Rate over Ocean, Sea Ice, and Coast Product to Support Weather Forecasting		
Pingping Xie (NWS/NCEP)	Improving and Reprocessing the CMORPH Satellite Precipitation Estimates and Global OLR Analysis with Retrievals from JPSS		
John Forsythe (CSU/CIRA) and Tony Wimmers (UW/CIMSS)	Merged Water Vapor Products for Forecasters using Advanced Visualization Methods		
Tarendra Lakhankar (CUNY/CREST)	Ensemble flood forecasting system coupling WRF-Hydro with Satellite Data (JPSS and GOES-R) for Puerto Rico		
Xiwu Zhan (<i>NESDIS/STAR</i>) and Nai-Yu Wang (<i>UMD/CICS</i>)	Improving JPSS Soil Moisture Data Products for Use in Evaluation and Benchmarking of the National Water Model		

Hydrology Initiative Accomplishments Past 3 years

- Moved the SFR product from a research product to a JPSS requirement
 - Allows for base funding to sustain the product for future sensors, perform routine validation, etc.
- Plans in place to get the LTPW into operational phase
- Matured engagement with NWS end users on several products
 - SFR NWSFO product evaluations, use in WPC Winter Experiment
 - Layered and MIMIC TPW
 - National Water Center/National Water Model
- Developing synergies with River Flood/Ice and NUCAPS initiatives
- Expanded working group to include JPSS and GOES-R baseline projects
 - An outcome enhancing bTPW product via L2 MiRS and GCOM TPW improvements
- Examining case studies of extreme events/product performance
 - CA Atmospheric Rivers past few winters
 - Hurricane rainfall, most recently, Harvey

The Remainder of the Session

Auditorium: Hydrology EDRs and Initiative - Trends and Drivers - Imagery EDRs and Visualization - Wrapup					
Time	Presentations / Topics Speaker		Affiliation		
0830 - 0900	Keynote Talk: Updates on CEOS/CGMS climate working group and how operational satellite programs can contribute to long term climate records	Jörg Schulz	EUMETSAT		
0900 - 1030	Hydrology EDRs and Initiatives (GCOM-W included) Chairs: Ralph Ferraro and Huan Meng Auditorium				
0900 - 0915	Hydrology Products Overview - Operational and PGRR products and projects	Ralph Ferraro	STAR		
0915 - 0930	MiRS Hydrological Products	Chris Grassotti	CICS-MD		
0930 - 0945	Microwave Snowfall Rates	Huan Meng	STAR		
0945 - 1000	GCOM Hydrological Products	Paul Chang	STAR		
1000 - 1015	SMOPS Soil Moisture Products	Jerry Zhan	STAR		
1015 - 1030	Satellite Hydrological Products Operational Applications in Alaska	Jessica Cherry	NWS/APRFC		
1030 - 1045	Break				

MICROWAVE INTEGRATED RETRIEVAL SYSTEM (MIRS): Hydrological Products and Applications

Chris Grassotti

CICS-MD and NOAA/NESDIS/STAR

MiRS Team: S. Liu, R. Honeyager, Y-K. Lee, Q. Liu Help from: G. Chirokova, P. Meyers, H. Meng

> christopher.grassotti@noaa.gov 29 August 2018

Algorithm Overview

- MW Only, Variational Approach: Find the "most likely" atm/sfc state that: (1) best matches the satellite measurements, and (2) is still close to an a priori estimate of the atm/sfc conditions.
- "Enterprise" Algorithm: Same core software runs on all satellites/sensors; facilitates science improvements and extension to new sensors.
- Initial capability delivered in 2007. Running v11.2 since Jan 2017 on SNPP/ATMS, N18, N19, MetopA, MetopB, F17, F18, GPM/GMI, Megha-Tropiques/SAPHIR. (eventually MetopC...)
- Delivery of v11.3 (extended to NOAA-20/ATMS) to operations on 8 June.
- External Users/Applications: TC Analysis/Forecasting at NHC, Blended Total/Layer PW Animations at NHC and WPC (CSU/CIRA, U. Wisconsin/CIMSS), CSPP Direct Broadcast (U. Wisconsin), NFLUX model (NRL, Stennis), Global blended precipitation analysis at NOAA/CPC (CMORPH),...
- All N20 results here are generated with MiRS v11.3 (offline processing in STAR), and TDR data generated in IDPS (Block 2 processing).

Examples of MiRS Products with Hydrology Applications

- 1DVAR retrieves pRWP and pGWP on 100 p layers
- Postprocessing:
 - Vertically integrate to obtain CLW, RWP GWP
 - \circ $\;$ Apply equation previously trained on mesoscale model simulations:

 $\blacksquare = 2.339 \times \square \blacksquare \square^{1.156}$

RR validation: N20 and SNPP vs. Stage IV 5-Day CONUS Averages (Dec 2017 – Jul 2018)

RR validation: N20 and SNPP vs. Stage IV 5-Day CONUS Averages (Dec 2017 – Jul 2018)

Hurricane Harvey: MiRS ATMS Rain Rate and TPW, 24 August 2017

STAR JPSS Annual Science Team Meeting, 27-30 August 2018

Hurricane Harvey: MiRS ATMS and ECMWF **Temperature Anomaly Cross-sections, 24 August 2017**

Lower level anomaly is artifact of rain contamination (see last year's presentation)

Hurricane Harvey: Comparison with MRMS

STAR JPSS Annual Science Team Meeting, 27-30 August 2018

Hurricane Harvey: 27 August, Day of Extreme Flooding

ATMS & MRMS Precipitation Rate @ 20170827-1018UTC

- MRMS: Operational Blended Radar-Gauge Analysis, 1 km resolution
- Both satellite and MRMS detected rainfall rates > 25 mm/h

Courtesy of Pat Meyers (CICS-MD)

Northeastern Snowstorm: 14 March 2017

- High rain rates over ocean and southern areas (Caribbean moisture plume)
- Missing RR over snow covered land (algorithm does not retrieve precipitation when snow cover detected)
- Complementarity with SFR algorithm (retrieves over land only); see Huan Meng's presentation next.

Application: Blended Layer Precipitable Water Combines MiRS WV from up to 7 Polar Satellites for Rapid Refresh and Advection (NWP-based winds)

To be implemented at NHC and WPC

Courtesy of John Forsythe

Meteor., 6 (6), 59-73, doi: https://doi.org/10.15191/nwajom.2018.0606

Dry-air intrusions:

- adversely affect TCs: inhibit convection, enhance cold downdrafts, contribute to storm asymmetry
- detected with TPW, LPW, WV imagery which do not provide quantitative information and do not always reflect moisture changes at mid-levels

MIST:

- detects and quantifies dry-air intrusions
- potential predictor for statistical TC intensity forecast models (SHIPS, LGEM, RII)

MIST shows moisture flux at R = 220 km from the storm center as a function of azimuth

Galina Chirokova (CIRA), Mark DeMaria (NOAA/NWS/NHC), John Knaff (NOAA/NESDIS)

Two Operational ATMS Better Than One: MiRS Bain Bate for Hurricane Hector

 Rain Rate for Hurricane Hector

 SNPP 2018-08-04, 1015 UTC

Summary

- MiRS products with hydrology applications: RR, RWP, GWP, CLW, TPW, Snowfall Rate, Sea Ice Concentration, Snow Water Equivalent
- Some products are used in downstream applications, e.g. Blended Layer and Total PW, TC Intensity
- Continued N20 validation (RR, TPW, SIC, SWE) indicates **extremely good agreement** with SNPP, and performance against external references very similar to SNPP
- Validation maturity status: Provisional maturity
- MiRS v11.3: Extension to N20 ATMS processing, delivered to OSPO/NDE on 8 June; operations possibly in September
- Path Forward
 - Continued validation, e.g. rain rate, CLW, cryosphere, T, WV,...
 - Additional DAP delivery in late 2018 (updated radiometric bias corrections, possible science improvements)
 - Stakeholders/user needs; <u>continue collaboration with applications developers and</u> <u>users</u>...
- MiRS data available at CLASS, and STAR ftp (S-NPP/ATMS, GPM/GMI, NOAA-20/ATMS)
- Software package available for download https://www.star.nesdis.noaa.gov/mirs

- Algorithm Overview
- Rain rate validation
 - N20 and SNPP ATMS comparisons with Stage IV
- Case Studies
 - Hurricane Harvey (August 2017)
 - Hurricanes Irma and Jose (Sept 2017)
 - Northeastern Snowstorm (14 March 2017)
 - Advantage of 2 operational ATMS for TC monitoring
- Summary and Path Forward

Hurricane Harvey: MiRS ATMS Rain Rate and TPW, 25 August 2017

STAR JPSS Annual Science Team Meeting, 27-30 August 2018

MiRS ATMS Rain Rate and TPW: 27 August 2017

STAR JPSS Annual Science Team Meeting, 27-30 August 2018

NOAA/NESDIS/STAR University of Maryland/ESSIC/CICS 301-405-8799, huan.meng@noaa.gov Huan Meng, Jun Dong, Cezar Kongoli, Ralph Ferraro

- Cal/Val Team Members (1 slide)
- Sensor/Algorithm Overview (1 slide)
- S-NPP/N-20 Product(s) Performance (1 slide)
- Major Risks/Issues and Mitigation (1 slide)
- Milestones and Deliverables (1 slide)
- Future Plans/Improvements (1 slide)
- Summary (1 slide)

Cal/Val Team Members

PI	Team Members	Organization	Roles and Responsibilities
Huan Meng		STAR	Develop project plan, manage project, develop algorithms, conduct cal/val, report progress
	Jun Dong	CICS-MD	Develop snowfall rate algorithm, conduct snowfall rate cal/val
	Cezar Kongoli	CICS-MD	Develop snowfall detection algorithm, conduct snowfall detection cal/val
	Ralph Ferraro	STAR	Provide overall supervision

- The ATMS snowfall rate (SFR) algorithm consists of two components: snowfall detection and rate estimation
 - Snowfall detection (SD): statistical model trained using in-situ observations
 - Snowfall rate: 1DVAR-based physical model; calibrated with Stage IV radar and gauge combined precipitation analyses
- Channels used: 11 ATMS channels from 23.8 to 183±1 GHz, including window, temperature and water vapor sounding channels
- Data
 - Inputs: ATMS TDRs
 - Outputs: SFR, quality flag
 - Ancillary data: GFS

S-NPP/N-20 Product(s) Overview

- S-NPP SFR reaches provisional maturity; NOAA-20 SFR reaches beta maturity
- S-NPP SD Performance Summary (N20 SFR: visual comparisons with S-NPP)
 - Over CONUS

Metrics	L1RDS APU Thresholds	S-NPP Performance	N-20 Performance
Prob of Detection (%)	40 / 50 (obj)	51	
False Alarm Rate (%)	15 / 10 (obj)	8	

Over Alaska

Metrics	L1RDS APU Thresholds	S-NPP Performance	N-20 Performance
Prob of Detection (%)	40 / 50 (obj)	46	
False Alarm Rate (%)	15 / 10 (obj)	10	

• S-NPP SFR Performance Summary - CONUS

Metrics	L1RDS APU Thresholds	S-NPP Performance	N-20 Performance
Accuracy (mm/hr)	0.30 / 0.15 (obj)	0.06	
Precision (mm/hr)	1.00 / 0.70 (obj)	0.74	

Provide updates for the status of the risks/actions identified

Risk/Issue	Description	Impact	Action/Mitigation
Complication with operational implementation	SFR is produced in MiRS. There might be potential complication caused by adding GFS ingestion to MiRS processing in NDE	Delayed MiRS DAP implementation	 Collaborations among NDE, MiRS team, and the algorithm developers to ensure the proper and timely implementation of the MiRS DAP (including SFR) MiRS v11.3 has been successfully built, integrated, and tested in NDE Dev as of July 26, 2018 MiRS v11.3 (including SFR) is scheduled for operational production in Sept/Oct 2018
Quality check flag	SFR quality check is not part of the MiRS quality flags	Quality uncertainty in application	Add SFR 1DVAR convergence status to MiRS quality flags in the next DAP scheduled for Dec 2018
Environmental impact on product quality	SD and SFR performance degrades with certain snowfall such as shallow cloud snowfall and snowfall along southern Alaska coastline	Quality degradation	Conduct focused study on these types of snowfall in the future

• FY19 Milestones/Deliverables

Task	Description	Deliverables	Scheduled Date
Maturity	N20 SFR reaches provisional maturity; N20 MiRS/SFR ARR	Sept 2018	Sept 2018
Development	 Train N20 snowfall detection model Update radiometric bias correction coefficients for N20 SFR 	Aug 2018	Aug 2018
Integration & Testing	 Support MiRS N20 SFR integration/testing Support NDE with N20 SFR implementation 	Mar 2019	Mar 2019
Calibration & Validation	 N20 SD and SFR calibration and validation against in-situ, Stage IV, and MRMS data S-NPP SD and SFR stratified validation 	Jul 2019	Jul 2019

- Algorithm Improvements
 - Advanced calibration (FY19~20)
 - Improved cloud microphysics (FY20~21)
- J2 and Beyond
 - Algorithm preparation (FY21)
 - Algorithm optimization (FY22)
- Reprocessing Plans/Status
 - SNPP SFR reprocessing (FY20)
 - N20 SFR reprocessing (FY21)
- Long Term Monitoring/Website links
 - ESPC web-based MiRS monitoring will be updated to include SFR
 - CICS: http://cics.umd.edu/sfr/index.php

- Summary
 - S-NPP ATMS SFR has reached provisional maturity
 - N20 ATMS SFR has reached beta maturity
 - ATMS SFR has been integrated in MiRS v11.3
 - MiRS v11.3 was successfully built, integrated, and tested in NDE Dev; scheduled for operational production in Sept/Oct 2018
 - N20 SFR will reach provisional maturity in FY19
- User Feedback
 - From NCEP CMORPH: The SFR product significantly enhances winter precipitation estimates and substantially expands the utilities of CMORPH2 (global blended precipitation analysis)
 - From assessment at NWS WFOs: The SFR product is useful in weather forecasting and improving forecasters situational awareness, especially in filling radar gaps

STAR GCOM-W1/AMSR2 PROJECT UPDATE AND STATUS

STAR GCOM-W1 Project Team Presented by Paul Chang

Paul Chang, Zorana Jelenak, Ralph Ferraro, Suleiman Alsweiss, Joe Sapp, Patrick Meyers, Qi Zhu, Xiwu Zhan, Jicheng Liu, Eileen Maturi, Andy Harris, Jeff Key, Cezar Kongoli, Walt Meier, Yong-Keun Lee, Walter Wolf, Tom King, Letitia Soullaird, Peter Keehn, Mike Wilson ...

Latest Updates and Projects

STAR – GCOM-W1 AMSR2 ALGORITHM SOFTWARE PROCESSOR (GAASP)

Major Updates

- Converted Ocean and Precipitation algorithms to use CMC SST ancillary data files instead of Reynolds SST
- Updated Precipitation algorithm
 - TMI correction
 - Snow Flagging new dynamic ancillary data file
 - Climatology Flagging
 - Clouds Screening Procedure
- Updated Ocean algorithm
 - Sea Surface Winds

DAP Deliveries

- GAASP_v2-4_20180117.tar.gz
 - Uses CMC SST instead of Reynolds SST
 - NDE on January 17, 2018
 - CSPP on January 17, 2018

- Rerun missing NRT data for STAR data repository
- Rerun data with new wind processor for Ocean algorithm development support
- Troubleshoot and Updated STAR local NRT processing scripts to be more robust with missing data
- Ran tests on the impacts of the new GFS FV3 ancillary data on the GCOM products

Future Plans

- Validate Ocean and Precipitation Updates
- Deliver Ocean and Precipitation Updates to NDE and CSPP
 - Also includes a minor update to netCDF metadata (production_site and production_environment added)
- Full GCOM life cycle local reprocessing with most up-to-date algorithms.

Land Products Update

JPSS GCOM-W1/AMSR2 Soil Moisture

Algorithm and Refinement:

- The LPRM algorithm was used to retrieve Vegetation Optical Depth (VOD) from TBv and TBh
- Derive VOD climatology for Single Channel Algorithm (SCA) of soil moisture retrieval with historical AMSR2 data
- Inverse soil moisture from TBh using the VOD scaled to VOD climatology with CDF matching
- Improved temporal dynamics and spatial coverage with improved LPRM vegetation Optical Depth retrieval algorithm (below).
- Improved spatial coverage with longer period of historical data for generating Cumulative Distribution Function (CDF) data base.
- Validation with global in situ measurement data and other products are ongoing.

AMSR2 Vegetation OD from LPRM (20170901).

More reliable CDF with more historical AMSR2 data

Better spatial coverage and the dynamic range of the final product.

Snow Products Update

AMSR2 Snow and Ice Products

Snow Water Equivalent

Sea Ice Concentration

Status: Operational, nominal, products meet requirements

Product Performance – AMSR2

Product	L1RDS APU Thresholds	Performance	Meets Spec?
Snow cover (binary)	80% correct typing	72-97%	Y
Snow depth	20 cm uncertainty	15-22 cm	Y (marginal)
SWE	50-70% uncertainty (shallow to thick snowpacks)	~20-22%	Y
Ice concentration	10% uncertainty	3.9% NH; 4.4% SH	Y
Ice type	70% correct typing	80-90%, Arctic winter	Y

Precipitation Products Update

- Eliminates automatic flagging in climatological snowy areas
 Use daily NOAA AutoSnow analysis for screening
- Applies no-cloud test to reduce false alarms
- Updated Tb-Rain Rate relationship
- Improved quality flags
 - Provide more valid retrievals (i.e. over snow)
- RMSE and rain detection improved by 10%

Screening Comparison

GPROF2010V3

GPROF2017

Ocean Products Update

AMSR–2 Wind Speed for 20180821

- Comprehensive validation analysis completed
 - Major improvements of high wind retrievals in rain and cloudy areas
 - Results to be published in a paper in J-STARS
 - New product has been publically available on the STAR GCOM web page (manati) since August 2018
 - Reprocessing of previous data in process

New Wind Speed Product

AMSR-2 Wind Speed for 20180822

 New wind processor presented during last year JPSS Annual Science meeting has
 been transitioned from research to operational code

AMSR-2 Wind Speed for 20180823

https://manati.star.nesdis.noaa.gov/datasets//GCOM2Data!php*

SST anomaly

- Calculated using the climatology from <u>Banzon et al. (2014)</u>, available from <u>NCEI</u>
- TPW anomaly defined as TPW Percent Normal
 - Calculated using NVAP-M daily level-3 dataset, which spans 1988 to 2009

https://manati.star.peselis.noaa.gov/datasets//GCOM2Data.php

Hurricane Jose and Maria Sep, 2017 High Wind and SST Anomaly Example

AMSR2 SST Anomaly for 20170922-1616

AMSR2 SST Anomaly for 20170924-0616

Jose on Sep, 22nd 2017

ZCZC MIATCDAT5 ALL TTAA00 KNHC DDHHMM

...

Hurricane Maria Discussion Number 34 NWS National Hurricane Center Miami FL AL152017 1100 AM EDT Sun Sep 24 2017

Some fluctuations in intensity could still occur during the next day or so while Maria moves over warm water and remains in a low shear environment. Later in the forecast period, cooler waters from the wake of Hurricane Jose that traversed the same area last week will likely cause a gradual decrease in intensity.

-80

+ Jose "Best Track"

AMSR2 Wind Speed for 20170921–0546

64

50

knots

/09/06 B:00

0

17/09/05 18:00

Max sustained winds 115mph

Maria "Best Track"

/09/10 18:00

9 18:00

-56

17/09/08 18:00

-52

2017/09/07 18:00

-48

Max sustained winds 120mph

AMSR2 SST Anomaly for 20170922-0628

AMSR2 Wind Speed for 20170922–0628 6 17/09/18 18 50 32 017/09/17 18 knots 7/99/13.18:00 34 2017/09/10 18:00 2017/09/09 18:00 2017/09/08 18:00 2017/09/07 18:00 /09/06 B:00 17/09/05 18:00 -48 0 + Jose "Best Track" Maria "Best Track"

Max sustained winds 125mph

AMSR2 SST Anomaly for 20170922-1616

Max sustained winds 125mph

AMSR2 SST Anomaly for 20170923-0534

Max sustained winds 120mph

AMSR2 SST Anomaly for 20170923-1701

Max sustained winds 115mph

Max sustained winds 110mph

Hurricane Maria Discussion Number 36 NWS National Hurricane Center Miami FL 1100 PM EDT Sun Sep 24 2017

AL152017

Max sustained winds 105mph

Observations from a NOAA aircraft indicate that the SSTs beneath Maria are on the order of 24-25 deg C, which has probably contributed to the decrease of intensity. These relatively cool waters are likely due to mixing and upwelling from slow-moving Hurricane Jose, which traversed the area a little over a week ago. Gradual weakening is anticipated for the next few days, and the official intensity forecast is near or above the latest model consensus. Maria is expected to remain a hurricane for at least the next few days, however.

AMSR2 SST Anomaly for 20170925-0658

AMSR2 Wind Speed for 20170925–0658 17/09/29 48:00:00 64 017/09/19 18:00 36 2017/09/18 18:00 50 2017/09/17 18:00 knots 2017/09/16 18:00 7/99/13.18:00 34 2017/09/10 18:00 2017/09/09 18:00 2017/09/08 18:00 2017/09/07 18:00 /09/06 B:00 17/09/05 18:00 -56 -48 0 + Jose "Best Track" - Maria "Best Track"

Max sustained winds 80mph

AMSR2 SST Anomaly for 20170925-1649

AMSR2 Wind Speed for 20170925–1649 17,009,280,48.008:00 64 /19 18:00 36 0/18 18:00 50 7 18:00 knots 8.00 5/99/13.18:00 34 17/09/10 18:00 2017/09/09 18:00 2017/09/08 18:00 2017/09/07 18:00 /09/06 B:00 17/09/05 18:00 -80 -48 0 + Jose "Best Track" - Maria "Best Track"

Max sustained winds 75mph

AMSR2 SST Anomaly for 20170926-0604

Max sustained winds 65mph

TPW Validation

- NOAA, RSS, and JAXA TPW
- All data shown is from a collocation with radiosondes
 - < 50km
 - < 1 hour</p>
 - No RFI, land mask (ours or RSS), no sunglint
- JAXA TPW is not very good
- Both RSS and NOAA slightly overestimate compared to radiosondes
 - Radiosonde "TPW" is actually "precipitable water below 500hPa", so maybe not exactly "total"

Mean TPW Composites – Atlantic TS

- Comparison of RSS and NOAA TPW products assessed using TPW composite field within different stages of tropical cyclone
- NOAA product is showing higher resolution by resolving finer field structures then RSS product

Mean TPW Composites - Atlantic Hurricanes Cat. 1/2

- Overall mean TPW field within category 1 and 2 hurricanes is larger in NOAA product than RSS product
- In RSS product highest TPW values are produced within storm center while in NOAA product highest values are concentrated more on the west side of the storm

275 snapshots

Mean TPW Composites – Atlantic Major

- Both NOAA and RSS products depicting double radius maxima TPW within major hurricanes however NOAA product is placing secondary maxima between 150-200km from the storm center while RSS product extends it up to 50-75km
- NOAA product is showing asymmetric nature of TPW field within first maxima while RSS product is not capable of resolving it

New Product TPW Percent Normal

AMSR2 Descending TPW Percent Normal for 20180820

 Percent normal compared to NVAP-M daily climatology

>250

 Very high percentage values (200% or more) indicate a strong flooding potential or a possible severe weather indicator, while low values indicate potential fire hazards.

Anomalous TPW Example: South Carolina Flooding Event Oct 3rd, 2015

Ferraro, R., et.al.,"Application of GCOM-W AMSR2 and S-NPP ATMS Hydrological Products to a Flooding Event in the United States" IEEE J-STARS, vol. 10, no. 9, pp. 3384-3891, Sept. 2017, DOI: 10.1109/JSTAR.2017.2696304

DISCUSSION...WATER VAPOR IMAGERY EARLY THIS MORNING SHOWED AN UPPER LOW CIRCULATING OVER THE FL PANHANDLE WITH A BROAD RIDGE EXTENDING ACROSS THE WESTERN ATLANTIC. THESE **COMBINED CIRCULATIONS HAVE HELPED CHANNEL A NARROW PLUME OF MOISTURE FROM THE VICINITY OF HURRICANE JOAQUIN** AND EXTENDING NORTHWESTWARD INTO THE SOUTHEASTERN U.S. THE BLENDED-TPW PRODUCT SUGGESTED THE EXTENT OF THE 2" **PWAT WITHIN THE TROPICAL MOISTURE PLUME WAS APPROXIMATELY 175 MILES**.

JP35 NOAA NASA

Unseasonably High Tropical Moisture Bringing Floods to East Coast, Sep 30th, 2015

DISCUSSION...SFC/RADAR IMAGERY SHOWS A WELL DEFINED MESO LOW CIRCULATION OVER NORTHERN MARYLAND RIDING NORTHEASTWARD ALONG RIBBON OF WEAK INSTABILITY TOWARD SOUTHEAST PENNSYLVANIA. SATELLITE IMAGERY CONTINUES TO SHOW FAIRLY COLD TOP CONVECTION WITH AND TO THE NORTHEAST OF THIS SYSTEM. **THE LOW ITSELF IS HELPING PROVIDE INCREASING MOISTURE CONFLUENCE/LIFT IN AN OTHERWISE IMPRESSIVE TROPICAL MOISTURE REGIME WELL IN ADVANCE OF A SYNOPTIC COLD FRONT** ACROSS THE OH VALLEY. SATELLITE AND GPS PWS NDICATE PWS AS HIGH AS 2.5 INCHES EAST OF THE LOW CIRCULATION AND THE COMBINATION OF THE VERY HIGH MOISTURE...TALL SKINNY CAPES...AND ENHANCED CONVERGENCE WITH THE LOW WILL CONTINUE TO LEAD TO SOME VERY IMPRESSIVE LOCALIZED HEAVY RAINFALL RATES. **AMSR2 Descending TPW Percent Normal for 20150929**

<=10

Hurricane Harvey Aug 25th, 2017

DISCUSSION...HURRICANE HARVEY CONTINUES MOVING NORTHWEST AT 10 MPH PER THE LATEST NHC ADVISORY. THE SYSTEM HAS RECENTLY EXHIBITED A DOUBLE EYEWALL STRUCTURE WITH THIRD NEARBY **INNER SPIRAL BANDEVIDENT, AND THE LEADING EDGE** OF ITS CDO LIES WITHIN AN HOUR OF THE COAST. PRECIPITABLE WATER VALUES ARE ~2.5" PER RECENT GPS DATA.

SHOULD THE SYSTEM NOT COMPLETE ITS EYEWALL REPLACEMENT CYCLE, THE OUTERMOST EYEWALL COULD REACH THE COAST AT THE END OF THE MPD HORIZON, HOURLY RAIN TOTALS UP TO 3" WITH LOCAL AMOUNTS UP TO 6" ARE EXPECTED. THIS SHOULD LEAD TO FLASH FLOODING. PARTICULARLY WITHIN **URBAN AREAS.**

METAR 170825/0900 WPC MPD #0722

Date: 20170825-10:30 UTC Storm Name: HARVEY AMSR2 L1B file: GW1AM2_201708250740_023B_L1SNBTBR_2220220.h5

AMSR-2 TPW Percent Normal

>310 290-310 270-290 250-270 230-250 210-230 190-210 170-190 150-170 130-150 110-130 90-110 70-90 50-70 30-50 10-30 <=10

FPW Percent Normal

90

5-90 0-85

5-80

0–75 5-70

0-65

5-60 0-55

5-50 0-45

5 - 40

5-30

0-25

5-20 0-15

=10

LATEST SPC/RAP MESOANALYSIS INDICATES PWAT VALUES OF 2.7-2.9 IN... LOW-LEVEL WATER

VAPOR IMAGERY SHOW VERY DRY AIR WRAPPING AROUND THE WESTERN SIDE OF IRMA, BUT AT THIS TIME THE DRY AIR IS FAILING TO SIGNIFICANTLY PENETRATE THE STORM'S CORE, KEEPING PWATS HIGH.

-80

-78

-76

TPW Percent Normal

STAR AMSR-2 Product Monitoring and Data Portal

https://manati.star.nesdis.noaa.gov/gcom

STAR AMSR-2 Product Monitoring and Data Portal

Sea Surface Temperature

44

Thank You

SOIL MOISTURE FROM SMOPS

Xiwu Zhan, NESDIS/STAR Xiwu.Zhan@noaa.gov

Jicheng Liu, Jifu Yin, Li Fang, Nai-Yu Wang, Mitch Schull UMD-CICS

Acknowledgment: Supports from JPSS PGRR and GCOM-W programs for soil moisture project are greatly appreciated

OUTLINE

- Why Soil Moisture
 - Sciences (water and energy cycle studies)
 - Applications (flood and drought monitoring/forecasts)
- Soil Moisture Operational Product System (SMOPS)
 - System Objectives and Architecture
 - Algorithms Updates for JPSS GCOM-W/AMSR2
- Supporting NWC NWM (JPSS PGRR)
- Summary and Path Forward

<u>Soil moisture</u> controls land surface water and energy partitioning through impacting <u>evapotranspiration</u> and is a critical component of both water and energy cycles

Evaporation & soil moisture **couple mass & energy balances** at land surface L is the latent heat of vaporization: 2.5×10^6 [J/kg]

Why Soil Moisture

Applications

NWS Operational Flash Flood Guidance (FFG) is Based on *Modeled* Soil Moisture Deficit

NOAA and National Drought Mitigation Center (NDMC) Operational Drought Indices are also based on *Modeled* Soil Moisture Data.

Soil moisture Observational data can replace model data or used to improve model estimates

Soil Moisture Operational Product System (SMOPS)

SMOPS ingests all currently available microwave satellite soil moisture observations and blends them into one data layer for NOAA and other users

Soil Moisture Operational Product System (SMOPS)

 * All data acquired within the 6 hour or whole day time period arrived in the past 48 hours.

SMOPS Output Data layers

Soil Moisture Product	SMOPS Version 1.3	SMOPS Version 2.0	SMOPS Version 3.0
SMOPS Blended	√ (1)	√ (1)	√ (1)
NOAA AMSR-E	√ (2)	×	×
NOAA NRT SMOS	×	√ (2)	√ (2)
ESA SMOS	√ (3)	√ (3)	√ (3)
EUMETSAT ASCAT-A	√ (4)	√ (4)	√ (4)
EUMETSAT ASCAT-B	√ (5)	√ (5)	√ (5)
NOAA WindSat	√ (6)	×	×
NOAA AMSR2	×	√ (6)	√ (6)
NOAA GMI	×	×	√ (7)
NOAA NRT SMAP	×	×	√ (8)
NASA SMAP	×	×	√ (9)

JPSS GCOM-W1/AMSR2 Soil Moisture

Algorithm and Refinement:

- The LPRM algorithm was used to retrieve Vegetation Optical Depth (VOD) from TBv and TBh
- Derive VOD climatology for Single Channel Algorithm (SCA) of soil moisture retrieval with historical AMSR2 data
- Inverse soil moisture from TBh using the VOD scaled to VOD climatology with CDF matching
- Improved temporal dynamics and spatial coverage with improved LPRM vegetation Optical Depth retrieval algorithm (below).
- Improved spatial coverage with longer period of historical data for generating Cumulative Distribution Function (CDF) data base.
- Validation with global in situ measurement data and other products are ongoing.

AMSR2 Vegetation OD from LPRM (20170901).

JPSS GCOM-W1/AMSR2 Soil Moisture

More reliable CDF with more historical AMSR2 data

JPSS GCOM-W1/AMSR2 Soil Moisture

Better spatial coverage and the dynamic range of the final product.

- 1) Comprehensive evaluation of both NWM output and JPSS satellite retrievals of soil moisture with independent data sets (e.g. in situ soil moisture measurement networks in CONUS and ground radar network precipitation data) for certain time periods and locations and for some major hydrological events (e.g. hurricane caused flooding);
- Identification of NWM needs/requirements for JPSS soil moisture data products in terms of spatial, temporal resolution, operational data formats, and accuracies;
- 3) Development and validation of JPSS improved soil moisture data products that meet the NWM data needs through data mining approaches to **downscale AMSR2 C-band soil moisture retrievals (25km) to 375m** scale with VIIRS 375m Vegetation Index, 750m VIIRS land surface temperature, 9km AMSR2 Ka-band brightness temperature, and diurnal ABI observations as well as L-band observations from NASA SMAP and ESA SMOS and ancillary data (e.g. DEM, 30m land cover type);
- 4) **Streamline the production procedure** of these products for potential operational applications in NWM.

Ground SM Measurements for Validation

NOAA US Climate Reference Network

USDA Soil Climate Analysis Network (SCAN)

-0.05

SMOPS SM Comparison with NWM SM

(a) RMSE for SMOPS

(c) Diff in RMSE (NWM minus SMOPS)

0

SCAN observations-based RMSE for

(a) SMOPS blended SM,

(b) NWM-based 0-10 cm SM,

(c) their differences.

0.05

SMOPS SM Comparison with NWM SM

From top to bottom: r between 8-daily EVI and (**Top**) 8-daily SMOPS blended SM, (**Middle**) 8-daily NWM-based 0-10 cm SM estimations, as well as (**Bottom**) their differences for a lag of SM preceding EVI by 8-day. The grey color shading indicates insignificant correlations (p>0.05).

The stronger correlations between SMOPS and EVI are observed over the Great Plains and in the southeastern United States, where moisture-limiting (as opposed to energy limiting) was identified for vegetation growth (Karnieli et al, 2010, JC; Anderson et al., 2011, JC.)

JPSS Downscaling for High Resolution for NWM

Figure 1. Comparison of SMAP SM data sets to be validated, over Oklahoma region (100.15W~ 94.53W, 34.2N~37.06N), on April 30th, 2015, including 1) SMAP SM product at 36km (L3_SM_P); 2) Enhanced SMAP radiometer-based SM at 9km (L3_SM_P_E); 3) Downscaled SMAP SM at 9km based on ESI; 4) Downscaled SMAP SM at 1km based on Regression Tree Algorithm, using MODIS LST and LAI (1km)

Figure 2. Comparison of SMAP SM data sets to be validated, over Texas region (98W~ 92.5W, 31N~35N), on April 2nd, 2016, including 1) SMAP SM product at 36km (L3_SM_P); 2) Enhanced SMAP radiometer-based SM at 9km (L3_SM_P_E); 3) Downscaled SMAP SM at 9km based on ESI; 4) Downscaled SMAP SM at 1km based on Regression Tree Algorithm, using MODIS LST and LAI (1km)

JPSS Downscaling for High Resolution for NWM

- NESDIS SMOPS has been ingesting global soil moisture data products from available microwave satellite observations including the JPSS/GCOM-W project supported AMSR2
- With longer data record, AMSR2 soil moisture data product has larger spatial coverage and is expected to have higher accuracy
- JPSS PGRR program supported project on soil moisture for National Water Model has started to comprehensively evaluating both satellite retrievals and model estimates of SM
- Leveraging NASA SMAP project, SMOPS soil moisture is being downscaled to high spatial resolution to meet NWM needs
- SMOPS team plans to upgrade the software system in order to operationally generate high resolution soil moisture data products for NOAA and other users if supports will be available

Alaska Hydrologic Remote Sensing: Current Capabilities and Needs

nnae

Alaska Pacific River Forecast Center August 29, 2018

Outline

NOAA's Hydrologic Endeavor in Alaska

Current JPSS products used

➤Gaps for future R&D

NOAA

MENT OF

Outline

NOAA

MENT OF

NWS Hydrologic Endeavor in Alaska
Current JPSS products used
Gaps for future R&D

NWS Hydrology Mission in Alaska: Current Graphical Products

NOAA

MENT OF

FORECAST	PAST WEATHER	SAFETY	INFORMATION	EDUCATION	NEWS	SEARCH	ABOUT
ocal forecast by New City, St" or ZIP code • § inter location Go ocation Help	ws Headlines Gend us your river observ	ations.					
laska-Pacific R ather.gov > Alaska-Pacific RFC	River Foreca	st Cente	ir			Alaska-I _{Ri}	Pacific R ver Forecast Ce
er Observations and Forecasts	s Weather Observation	s and Forecasts	Water Supply Clim	nate and History	Seasonal Interest	Additional Inf	0
ick here to send us a st	torm or flood repor	t					
Auto Refresh: OFF 🕻						📇 P	rint this ma
II Locations	▼ ● Ri	ver Observatio	ns 🄍 River Forecas	sts			
+			Beautor Sw	itch Basemap	Click on the map below:	or select one of t	ne data view
			F	Reset View	Alaska		
					NWS Weather F	orecast Offices	
	P. May				NWS River Fore	cast Centers	
	× *				Water Resource	s Regions	
Siberian Sea		ANGE W		Antoning of	O Observations on Observations on Observations on Forecasts availa Show all locations o Gauges: M	y available ble s in flood (1) ajor Flooding oderate Flooding inor Flooding aderate Flooding inor Flooding tegory Not Defin tegory Not Defin tegory Not Defin Servations Are Dut of Service s	a eshold e Not Curre
NWS Hydrology Mission in Alaska: Current Graphical Products

NOAA

MENT OF

HOME	FORECAST	PAST WEATHER	SAFETY	INFORMATION	EDUCATION	NEWS	SEARCH	ABOUT
Local foreca "City, St" or Enter location Location H	IST by Ne	ews Headlines Send us your river observ	ations.					
laska eather.gov >	Alaska-Pacific RFC	River Foreca	st Cente	Water Supply	ate and liston. So		Alaska-I	Pacific RF ver Forecast Cen
lick here	to send us a s	torm or flood repor	t	water suppry Chin	ate and history Se	asonal interes	Auditional III	.
Auto Refr	esh: OFF 🕻 🖒				GULKANA RI	VER AT SOUR	DOUGH	
All Location	ns		ver Observatio	RS 232 232 Aug 16 Aug 17 13 14 14 10 12 14 11 14 10 10 4 10 4 4 10 4 10	232 232 232 4015 Aug 19 Aug 20 erved value: 10,1 ft at 2: urg 2018. Flood Stage 12 Stage 2018. Flood Stage 12 Stage 2018. Flood Stage 12 Stage 2018. Flood Stage 12 Stage 2018. Stage 2018 Stage 2018. Stage 2018. Stage 2018 Stage 2018. Stage 2018. Stage 2018 Stage 2018. Stage 2018. Sta	232 232 Aug 21 Aug 22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	232 232 . Aug 23 Aug 24 Au 10 ft 10.07 ft 3 pm 3 pm 3 Thu Fri 3 Aug 23 Aug 24 Au - Forecast (issue 22:55)	222 232 232 232 232 232 232 232
	Bering Sea		Guir of Alasko	CAUTION: Son 2 - Gulkana River at S 3)	e web browsers m sourdough, AK	ay display ou hydrograp to get the 23/2018 at 07.41: 23/2018 at 23.41: Dis	tdated hydrogra h. If more than current version 38 pm EDT 88 UTC What is UTC ime? Map Help claimer	aphs. Check 30 minutes

NWS Hydrology Mission in Alaska: Current Model Framework

D ATMOSA

NOAA

TMENT OF CO

6

NWS Hydrology Mission in Alaska: Current Model Framework

D ATMOS

NOAA

TMENT OF CO

7

NWS Hydrology Mission in Alaska: Current Model Framework

ATMOSP

NOAA

RTMENT OF CON

NWS Hydrology Mission in Alaska: Current Model Forcing

nnae

MENT OF

NWS Hydrology Mission in Alaska: Current Model Forcing

INA

MENT OF

NWS Hydrology Mission in Alaska: **Current Model Forcing**

CAVE:ACR - GFE(SITEgfeConfig)	- • ×					
CAVE GFE WeatherElement Populate Grids Edit Consistency Products Maps Edit Areas Yerify Hazards Help						
\square = ↔ ++ D saved - • \square SA(= < > E U 🐺 \odot > \square CP \bigcirc T C ? = - Q 1 2 3 4	😰 📔 D2D 📑 Hydro 🐢 MPE 📗 GFE 💪 Localization					
Grid Manager	- 0					
Toshay Human High Tomotoge 3 1 K Day 4 Day 5 Day 5 Day 5						
Aug 24 (F12) Aug 25 (SaT) Aug 26 (SuD) Aug 27 (Web) Aug 28 (Web) Aug 29 (Web) Aug 30 (Web) Au	06 12 18 06 12 1					
00PF SFC Fcst (ACR) 6 06 19 19 19 19 19 19 19 19 19 19 19 19 19						
GFSQPF SFC Fcst (ACR) 7 7h	****					
□ HAHOPF SFC Fcst (ACR) 7 m m m m m m m m m m m m m m m m m m m						
ANDHGOPF SFC Fest (ACR)						
HestOPF SFC Fest (ACR)						
CURPF SFC Fcst (ACR)						
☐ #F00PF SFC Fcst (ACR) 2 min						
GENOPF SFC Fcst (ACR)						
GENREGOPF SFC Fcst (ACR)						
ARWOPF SFC Fcst (ACR)						
S Map 23	° 0					

NOAA

MENT OF C

ISCxmt: 🚺 Time: 00:10Z 24-Aug-18 316M of 500M

NWS Hydrology Mission in Alaska: Sparse Gage Network

NOAA

MENT OF C

IONIL	FORECAST	PAST WEATHER	SAFETY	INFORMATION	EDUCATION	NEWS	SEARCH	ABOUT
ocal forec City, St" or Enter location	ast by Ne r ZIP code Ne on Go • . Help	ws Headlines Send us your river observ	ations.					
ather.gov >	Alaska-Pacific RFC	River Foreca	st Cente	er			Alaska-I _{Ri}	Pacific RF ver Forecast Cer
ver Obser	vations and Forecast	ts Weather Observation	s and Forecasts	Water Supply Clim	nate and History	Seasonal Interes	t Additional Inf	ō
ick her	e to send us a s	torm or flood repor	t					
Auto Ref	resh: OFF 🕻						📇 P	rint this map
All Locatio	ons	🔻 🔍 Ri	ver Observatio	ns 🍳 River Forecas	sts			
+		1000		Beautor Sw	vitch Basemap	Click on the map below:	or select one of t	ne data views
				Sea F	Reset View	Alaska		
						NWS Weather F	orecast Offices	
						NWS River Fore	cast Centers	
		* ext				Water Resource	s Regions	
East Siberiar Sea		BROOKS R	A N G E			O Probability and f Observations on Forecasts availa 257 total gauges Show all locations	orecasts available ly available ble s in flood (1)	
			*u ^{µ0} *		Machentre	0 Gauges: M 1 Gauges: M 0 Gauges: M 3 Gauges: N 125 Gauges:	ajor Flooding oderate Flooding inor Flooding ear Flood Stage No Flooding	J
		· · · · ·				 100 Flood Ca 0 At or Belov 17 Gauges: 11 Gauges: 	ategory Not Defin v Low Water Thr Observations Are Out of Service	ned eshold e Not Curren
	Bering		6 6°		•	Show all location: Last map update: 08/23/2018 at 07:41:3	s 38 pm EDT	
	Sea	° 00	Gulf of Alaska	0° 0° 0		08/23/2018 at 23:41:	38 UTC What is UTC time? Map Help	
				¢.	Pe	_	Contract of Contract of Contract	

NWS Hydrology Mission in Alaska: Current Text Products

ATMOS

nnaf

MENT OF CO

NWS Hydrology Mission in Alaska: **Current Text Products**

ATMO

NOAA

MENT OF C

HOME	FOR	ECAST	F	ASTW	ATHER	2	SA	FETY		INFO	RMATIC	N	EDUCA	TION	N	EWS	SI	ARCH	1
River Weather.gov >	Fore	cast	Fiver Fo	Sol recast for	uthe Southeas	ast Alaska	A	lasl	ka									Alaska	I-Pac River Fo
River Observ	ations a	nd Foreca	asts	Veather	Observ	ations	and F	orecas	sts	Water	Supply	Clima	te and Hist	ory	Seasona	al Interes	st Ad	ditional	nfo
092 SRAK47 PAJ RVAAJK AKZ017>019	К 23200 -025>02)2 18																	
RIVER SUMM NATIONAL W 1200 PM AK	IARY AND IEATHER DT Thu	FORECA SERVICE Aug 23	ST FOR JUNE/ 2018	SOUTH	EAST A	LASKA													
Sites expe	cted to	be nea	n or a	bove f	lood s	tage:	Non	e											
10 4	M OBSER	VED STA	GES		FOREC	AST S 4AM	TAGE 10AM	FOR 4PM	 B-F	FLC									
Location		Lst Wk	Wed	Thu	Thu	Fri	Fri	Fri	Stg	Ste	5								
Montana (at Back	reek Lp Brg	11.3	11.2	11.3	11.1	11.1	11.2	11.9	15.0	15.9									
Jordan Cr nr Junea	eek u	7.6	7.6	7.6	7.6	7.6	7.9	8.1	9.2	9.7	,								
Staney Cr	eek ck	7.2	7.1	7.1	7.1	7.1	7.1	7.1	15.0	16.5									
	10 AM C	BSERVER	STAG	с	1004	FOREC		STAGE	B.F	FLI	-								
Location		Lst Wk	Wed	Thu	Fri	Sa	t	Sun	Stg	St	5								
Situk Riv nr Yakut	er at	68.1	66.8	66.7	66.7	66.	6	-	70.5	71.5	5								
Alsek Riv abv Bate	er s River	31.9	31.4	31.7	31.6	31.	5	-	31.5	32.5									
Tatshensh nr Dalto	ini Riv n Post	rer 16.4	16.4	16.2	16.1	16.	1	-	19.0	20.0									
Chilkat F at Klukw	iver an	124.0	124.7	123.9	123.8	123.	8	-	127.	0 128	5								
Taiya Riv nr Skagw	er ay	14.9	15.1	14.7	14.6	14.	7	-	16.0	16.5									
Skagway F at Skagw	iver ay	22.8	23.2	22.7	22.6	23.	1	-	26.5	26.5									
Mendenhal Lake Lev	l Lake el	5.2	5.3	5.7	5.7	6.	0	-	8.0	9.6									
Taku Rive nr Junea	in u	34.7	34.9	35.0	35.2	35.	0	-	41.7	43.0									
Stikine F at Teleg nr Wrang	iver raph Cr ell	4.8 15.3	4.5 16.4	4.5 16.4	4.5	4. 14.	4 4	-	20.0	23.0 27.0									
Iskut Riv	er son R	MSG	MSG	MSG	 7.3	7.	1	-	 14.0	17.6	j								

Flood Outlook Potential

NOAA

MENT OF C

Ice Jam, Rainfall, and Jökulhlaup-Generated Flooding are all Common in Alaska

Photo: NWS

Galena Flooding May 28, 2013

Video: KTOO Media

NOAA

MENT OF

NWS Hydrologic Endeavor in Alaska
 Current JPSS products used
 Gaps for future R&D

Current JPSS Workhorse for APRFC: GMU Flood and Ice Products

ATMOS

NOAA

MENT OF C

18

AD ATMOSA

NOAA

TMENT OF CON

NOAA

MENT OF

NWS Hydrologic Endeavor in Alaska
 Current JPSS products used
 Gaps for future R&D

Gaps

> Perhaps our greatest need is a high quality QPE product

- Upcoming effort will be by the NSSL and focus on MRMSlike approach, despite radar deficiency in Alaska
- We need a satellite-derived QPE developed for Alaska conditions based on the strengths and weaknesses of data in our domain
- Also need satellite-derived Snow Water Equivalent that works in the boreal forest

TMENT OF CO

Questions?

Jessica.Cherry@noaa.gov