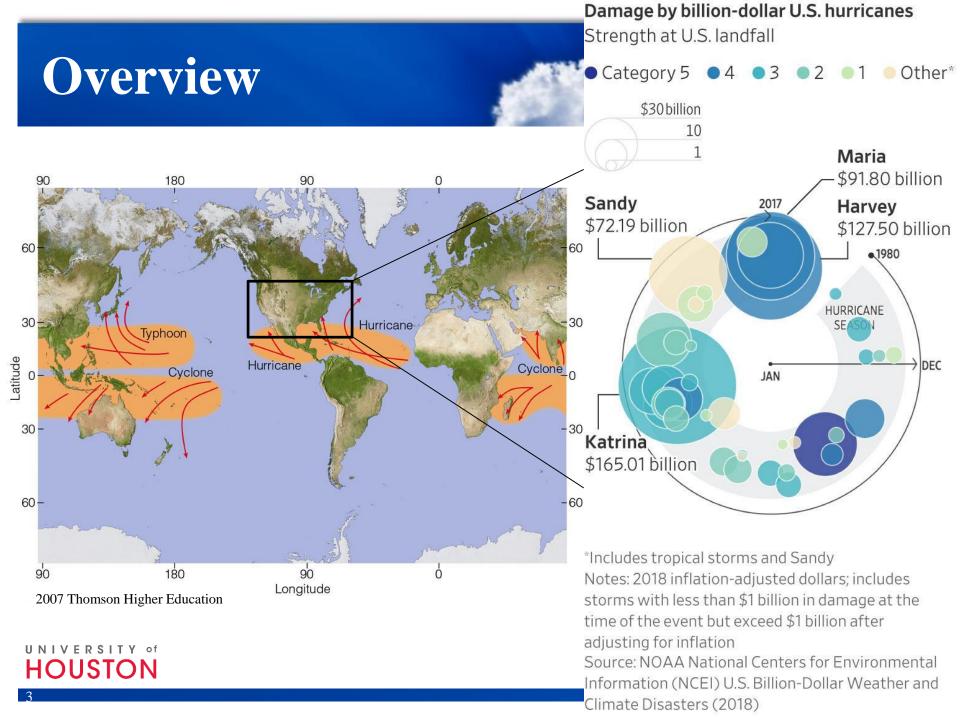


A hybrid AI hurricane forecasting system: deep learning ensemble approach and Kalman filter

Ebrahim Eslami and AI team members PI: Dr. Yunsoo Choi Department of Earth and Atmospheric Sciences University of Houston

April 2019



Overview

UNIVERSITY of

OUSTON

Tracking the path and forecasting the intensity of hurricanes are challenging:

- ✓ Dynamical models, like HWRF, produce a significant model-measurement error.
- ✓ Accurate forecasting is very difficult to achieve after landfall.
- ✓ Machine learning can be a supplementary approach to tune hurricane forecasting.

Tropical Cyclone History Pacific: since 1949, Atlantic: since 1851

The Internation (IBTrACS) store

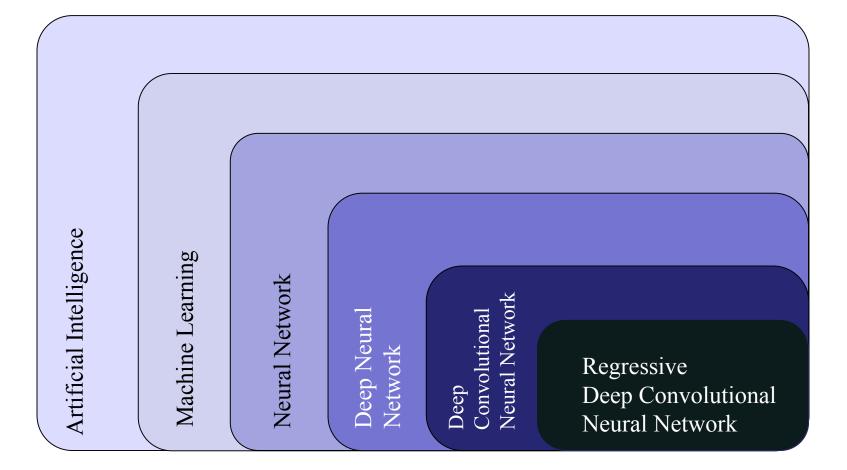
The International Best Track Archive for Climate Stewardship (IBTrACS) stores global tropical cyclone information. Saffir-Simpson Hurricane Wind Scale Category 1 Intensity Missing Tropical Depression Category 2 Category 3

Category 4

Tropical Storm

UNIVERSITY of HOUSTON

Deep Learning

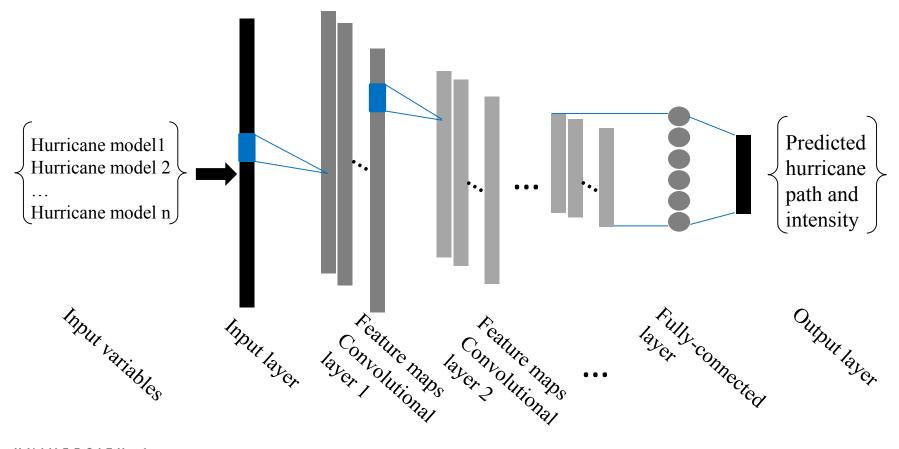


UNIVERSITY of HOUSTON

6

Deep Learning

Regressive Deep Convolutional Neural Network:



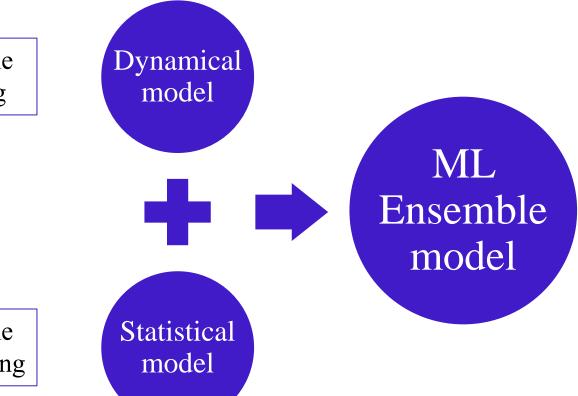
Hurricane Forecasting

- A tropical cyclone forecast involves the prediction of several interrelated features, including:
 - Track, intensity, rainfall, storm surge, areas threatened, etc.
- National Hurricane Center (NHC) normally issues a forecast every 6 hours and up to 72 hours.
- Official forecast is based on the guidance obtained from a variety of subjective and objective models.
- > Ensemble model is a mainstream approach in hurricane forecasting.
- > Machine learning (deep learning) is proven as a powerful ensemble technique.

Hurricane Forecasting

Best for hurricane track forecasting

Best for hurricane intensity forecasting

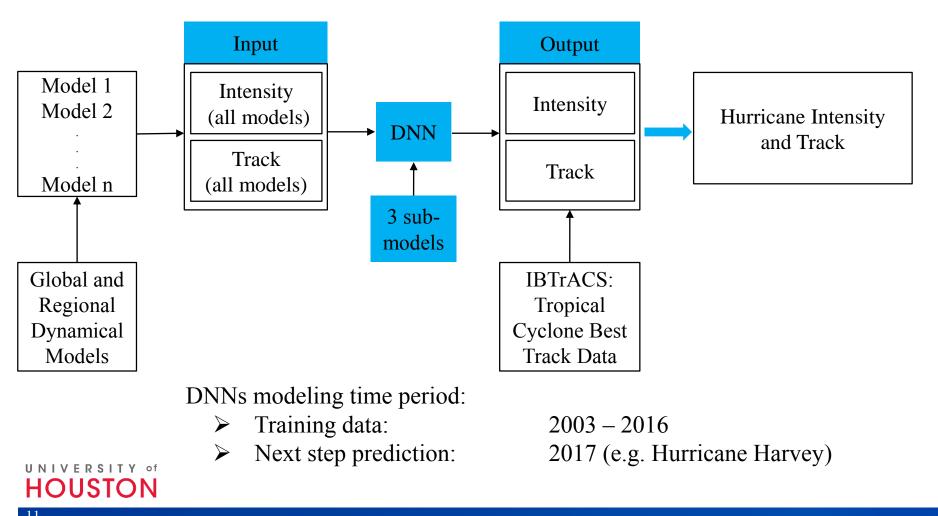


Input Models

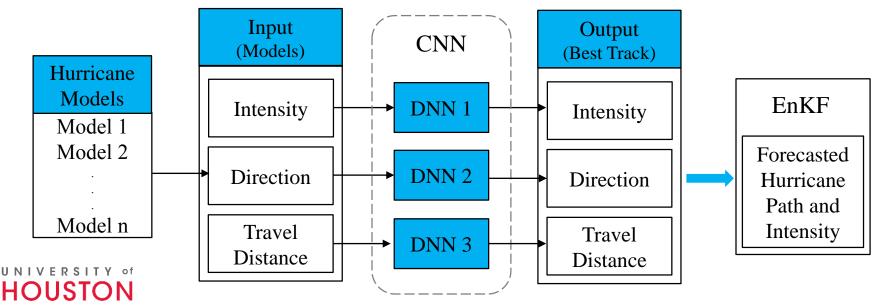
Summary of global and regional dynamical models for track, intensity, and wind radii:

ATCF* ID	Model Name	Horizontal Resolution	Cycle/Run Period	NHC Forecast Parameters
NVGM/NVGI	Navy Global Environmental Model	Spectral (~31 km)	6 hr (144 hr)	Track and intensity
AVNO/AVNI GFSO/GFSI	Global Forecast System	Spectral (~13 km)	6 hr (180 hr)	Track and intensity
EMX/EMXI/EMX2	European Centre for Medium- Range Weather Forecasts	Spectral (~9 km)	12 hr (240 hr)	Track and intensity
EGRR/EGRI/EGR2	U.K. Met Office Global Model	Grid point (~10 km)	12 hr (144 hr)	Track and intensity
CMC/CMCI	Canadian Deterministic Prediction System	Grid point (~25 km)	12 hr (240 hr)	Track and intensity
HWRF/HWFI	Hurricane Weather Research and Forecast system	Nested Grid point (18-6-2 km)	6 hr (126 hr)	Track and intensity
CTCX/CTCI	NRL COAMPS-TC w/ GFS initial and boundary conditions	Nested Grid point (45-15-5 km)	6 hr (126 hr)	Track and intensity
HMON/HMNI	Hurricane Multi-scale Ocean- coupled Non-hydrostatic model	Nested Grid point (18-6-2 km)	6 hr (126 hr)	Track and intensity
UNIVERSITY of HOUSTON	* The Automated Tropical Cyclone Forecasting System (ATCF) <u>https://www.nhc.noaa.gov/modelsummary.shtml</u>			

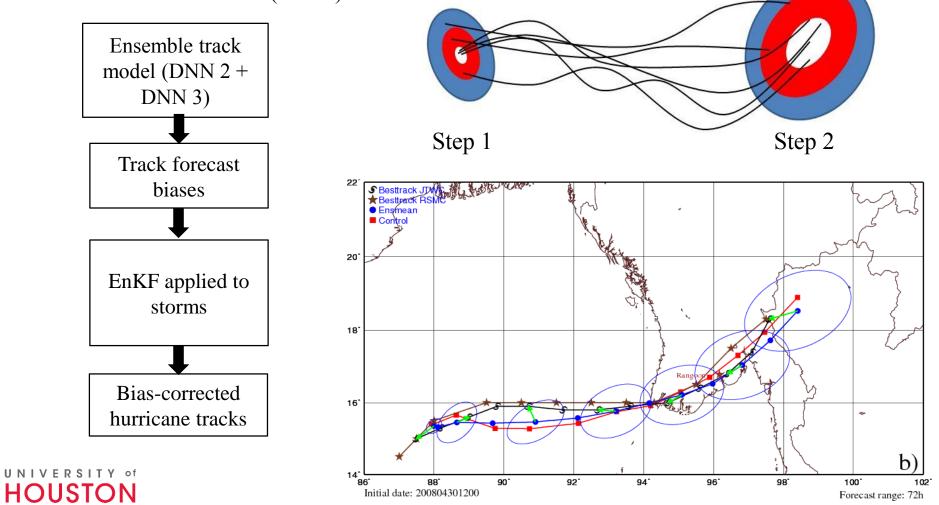
UH ML Ensemble Hurricane Forecasting System:

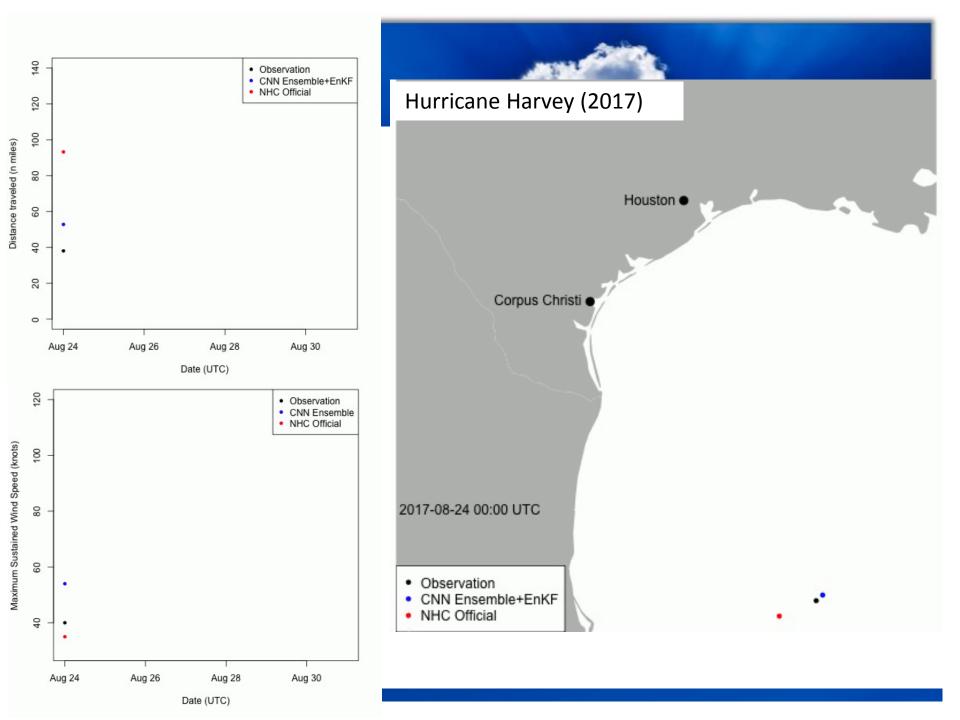


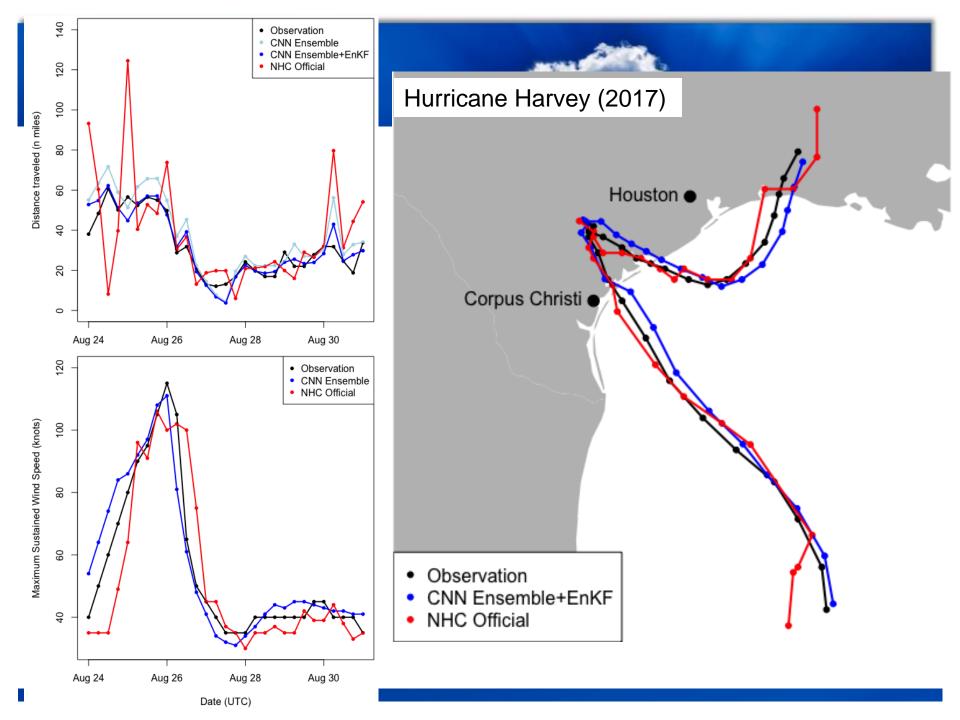
- > We used three sub-models in our ensemble model:
 - I. Intensity predictor
 - II. Direction predictor
 - III. Travel distance predictor
- ➤ Regressive Deep Convolutional Neural Network was used for all DNN models.
- After ensemble track model, an Ensemble Kalman filter (EnKF) was used to biascorrect the hurricane's path.



Ensemble Kalman Filter (EnKF)

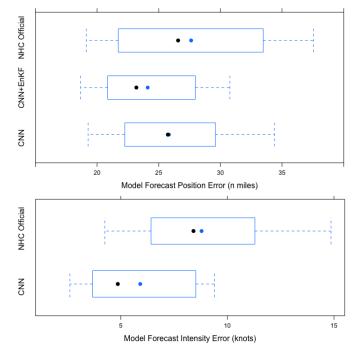






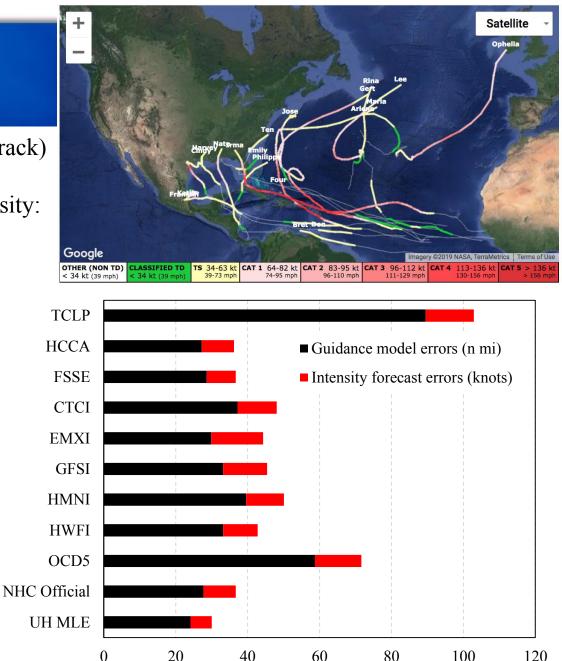
Results

All Tropical cyclones (models & best track) for the North Atlantic in 2017: RMSE for hurricane position and intensity:



UH Machine Learning Ensemble (UH MLE) Hurricane Modeling System vs. NHC official forecast (above) and other models (right). UNIVERSITY of

OUSTON



0

- ✓ We developed a hybrid three-step DNN-based ensemble hurricane forecasting model with Ensemble Kalman filter (EnKF) post-processing. The model used the output of eight dynamical hurricane models.
- ✓ We used all tropical cyclones in Atlantic Ocean from 2003-2016 and tested the model for those in 2017.
- ✓ EnKF further improved the hurricane track forecasting by reducing the bias.
- ✓ The preliminarily results show statistical advantages over NHC official forecasts ~13% improvement in track forecast biases and ~30% improvement in intensity forecast biases.

Challenges:

 Long-term forecasting and flooding prediction could be challenging due to uncertain training datasets.

HOUSTON

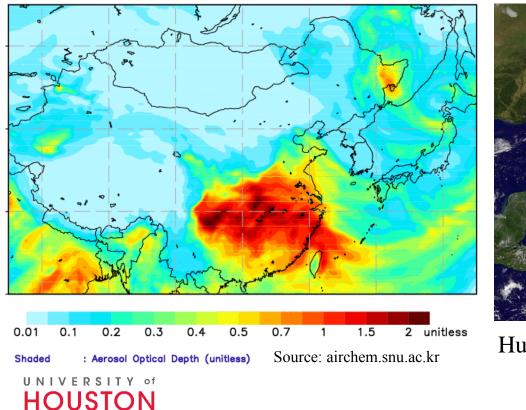
- ✓ Thanks to Earth Science Information Partner (ESIP) for seed funding
- Thanks to Dr. Young-Joon Kim (NOAA AFS) for providing a useful suggestion on this study

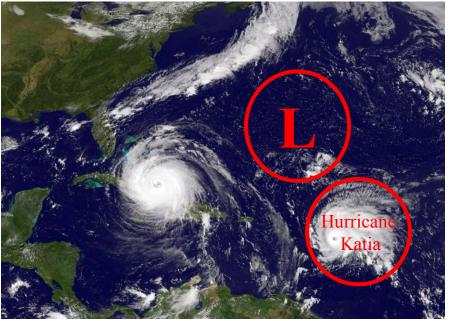
On-going Hurricane study

Image forecasting using advanced deep neural network:

For AOD and Hurricane tracking

AOD prediction (left) and hurricane tracking (right) are both image forecasting problems...





Hurricane Irma, 2017 (source: GOES, NOAA)

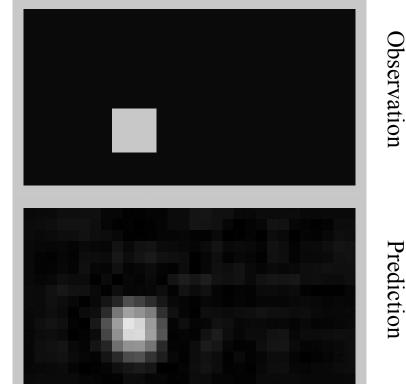
Testing Image Forecasting with AI:

Question: Can AI predict basic movements from just receiving previous states with just image as input?

YES IT CAN!

Testing Image Forecasting with AI:

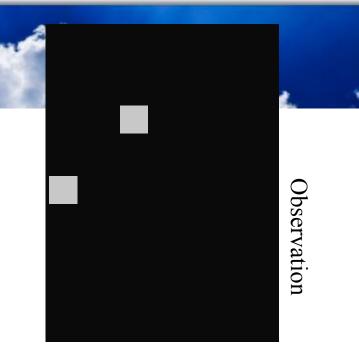
Question: Can AI predict basic movements from just receiving previous states with just image as input?



HOUSTON

Testing Image Forecasting: Part 2

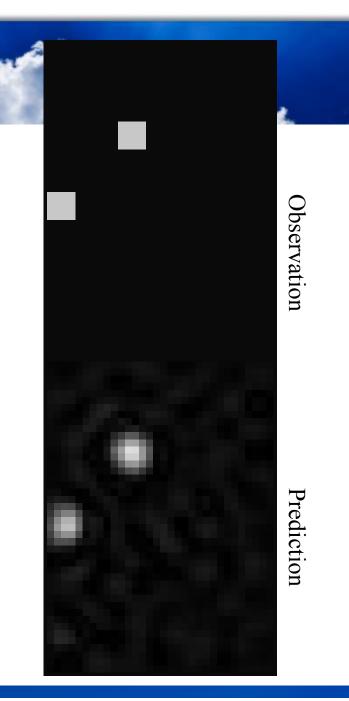
Can the AI follow two features traveling independently and understand collisions between them?



Testing Image Forecasting: Part 2

Can the AI follow two features traveling independently and understand collisions between them?

YES IT CAN!



HOUSTON

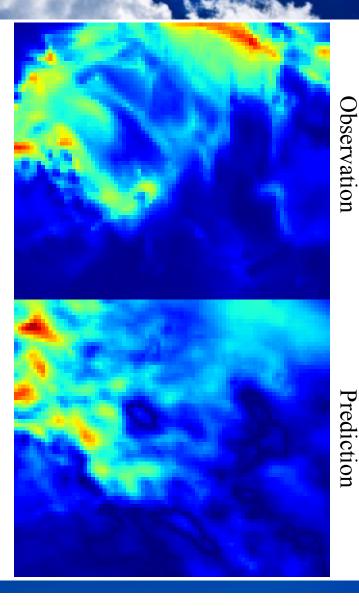
2D CNN Image Forecasting

Testing Image Forecasting:

Applied 2D-CNN to forecast CMAQ AOD 3-hours ahead with just <u>3 images</u> as input.

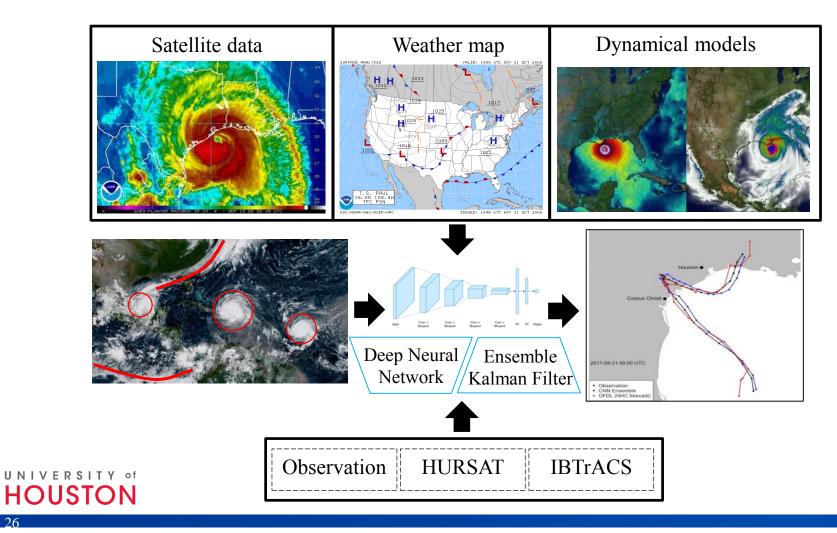
Model Accuracy:

 \checkmark ≈ 0.8 IOA & COR



Proposed study

Hurricane-AI based on image forecasting:



"It only takes one storm to devastate a community" – FEMA's Daniel Kaniewski

> Thank you for your attention