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Damage by billion-dollar U.S. hurricanes
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Overview

il
Tracking the path and forecasting the intensity of hurricanes are challenging:
v Dynamical models, like HWRF, produce a significant model-measurement error.

v Accurate forecasting is very difficult to achieve after landfall.

v Machine learning can be a supplementary approach to tune hurrlcane forecasting.

lv.\ Note: The cone contains the probable path of the storm center but does not show B
’V‘: the size of the storm. Hazardous conditions can occur outside of the cone.
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Overview

Tropical Cyclone History
Pacific: since 1949 , Atlantic: since 185 TBTACS s St e e
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Deep Convolutional
Neural Network
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» A tropical cyclone forecast involves the prediction of several interrelated
features, including:

o Track, intensity, rainfall, storm surge, areas threatened, etc.

» National Hurricane Center (NHC) normally issues a forecast every 6 hours and
up to 72 hours.

» Official forecast is based on the guidance obtained from a variety of subjective
and objective models.

» Ensemble model is a mainstream approach in hurricane forecasting.

» Machine learning (deep learning) is proven as a powerful ensemble technique.
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Best for hurricane
track forecasting

Best for hurricane
intensity forecasting

SSSSSS

HOUSTON

Dynamical

Statistical
model




Input Models

Summary of global and regional dynamical models for track, intensity, and wind radii:

ATCF* ID Model Name Horizontal Resolution Cycle./Run LS LG 2T
Period Parameters

Navy Global Environmental

NVGM/NVGI Model Spectral (~31 km) 6 hr (144 hr) Track and intensity
AVNO/AVNI : :
GFSO/GFSI Global Forecast System Spectral (~13 km) 6 hr (180 hr) Track and intensity
European Centre for Medium- . :
EMX/EMXI/EMX?2 R — Spectral (~9 km) 12 hr (240 hr)  Track and intensity
EGRR/EGRI/EGR2  U.K. Met Office Global Model  Grid point (~10 km) 12 hr (144 hr)  Track and intensity

Canadian Deterministic : : . :
CMC/CMCI Biretiotiion Systio Grid point (~25 km) 12 hr (240 hr)  Track and intensity

HWRF/HWFI Eibizalesias Wi ISR S0 e Cotdl petian (1960 ar) |G hr (106 50) | Tl o feiety
Forecast system

CTCX/CTCI NRL COAMPS-TC w/ GFS Nested Grid point (45-15-5 km) 6 hr (126 hr) Track and intensity
initial and boundary conditions

Hurricane Multi-scale Ocean- . . : .
HMON/HMNI sousiled Nan nyerosati modd Nested Grid point (18-6-2 km) 6 hr (126 hr) Track and intensity
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* The Automated Tropical Cyclone Forecasting System (ATCF) https://www.nhc.noaa.gov/modelsummary.shtml
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Methodology

UH ML Ensemble Hurricane Forecasting System:

Model 1 Intensity .
Model 2 (all models) - Intensity Hurricane Intensity
j > _' — — and Track
, Track Track
Moﬂel n (all models)
Global and IBTrACS:
Regional Tropical
Dynamical Cyclone Best
Models Track Data
DNNs modeling time period:
» Training data: 2003 — 2016
» Next step prediction: 2017 (e.g. Hurricane Harvey)
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Methodology ~' ’
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» We used three sub-models in our ensemble model:
[. Intensity predictor
II. Direction predictor
III. Travel distance predictor

» Regressive Deep Convolutional Neural Network was used for all DNN models.
» After ensemble track model, an Ensemble Kalman filter (EnKF) was used to bias-
correct the hurricane’s path.
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Methodology

Ensemble Kalman Filter (EnKF)

Ensemble track
model (DNN 2 +
DNN 3)
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Distance traveled (n miles)

Maximum Sustained Wind Speed (knots)
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Distance traveled (n miles)

Maximum Sustained Wind Speed (knots)
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Satellite ~

Ophelia

Results

All Tropical cyclones (models & best track)
for the North Atlantic in 2017:
RMSE for hurricane position and intensity:
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: ; . : FSSE m Intensity forecast errors (knots)

Model Forecast Position Error (n miles) CTCI
% .. EMXI
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| , | HWFI

Model Forecast Intensity Error (knots) OCD5
UH Machine Learning Ensemble (UH MLE) NHC Official
Hurricane Modeling System vs. NHC official

. UH MLE
forecast (above) and other models (right).
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summary

v We developed a hybrid three-step DNN-based ensemble hurricane forecasting model
with Ensemble Kalman filter (EnKF) post-processing. The model used the output of
eight dynamical hurricane models.

v We used all tropical cyclones in Atlantic Ocean from 2003-2016 and tested the model for
those in 2017.

v" EnKF further improved the hurricane track forecasting by reducing the bias.

v" The preliminarily results show statistical advantages over NHC official forecasts — ~13%
Improvement in track forecast biases and ~30% improvement in intensity forecast biases.

Challenges:

v" Long-term forecasting and flooding prediction could be challenging due to uncertain
training datasets.
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On-going Hul

Image forecasting using advanced deep neural
network:

For AOD and Hurricane tracking
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Motivation

AOD prediction (left) and hurricane tracking (right) are both image
forecasting problems...
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Hurricane Irma, 2017 (source: GOES, NOAA)
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Testing Image Forecasting with Al:

Question: Can Al predict basic movements from just receiving previous states with
just image as input?
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Testing Image Forecasting with Al:

Question: Can Al predict basic movements from just receiving previous states with
just image as input?
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Testing Image Forecasting: Part 2

Can the Al follow two features traveling
independently and understand collisions
between them?
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Testing Image Forecasting: Part 2

Qo
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Can the Al follow two features traveling é
independently and understand collisions 2.
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Testing Image Forecasting:

O
on
Applied 2D-CNN to forecast CMAQ AOD é
3-hours ahead with just 3 images as input. %
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Model Accuracy:
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» Hurricane-Al based on image forecasting:

Satelhte data Weather map
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— FEMA'’s Daniel Kaniev
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